
Econometric Theory, 41, 2025, 391–420.
doi:10.1017/S0266466623000348

PERFORMANCE OF EMPIRICAL RISK
MINIMIZATION FOR LINEAR

REGRESSION WITH DEPENDENT
DATA

CHRISTIAN BROWNLEES

Universitat Pompeu Fabra and Barcelona SE

GUÐMUNDUR STEFÁN GUÐMUNDSSON

Aarhus University

This paper establishes bounds on the performance of empirical risk minimization
for large-dimensional linear regression. We generalize existing results by allowing
the data to be dependent and heavy-tailed. The analysis covers both the cases of
identically and heterogeneously distributed observations. Our analysis is nonpara-
metric in the sense that the relationship between the regressand and the regressors is
not specified. The main results of this paper show that the empirical risk minimizer
achieves the optimal performance (up to a logarithmic factor) in a dependent data
setting.

1. INTRODUCTION

Let D = {(Yt,X′
t)

′}T
t=1 be a sequence of dependent random vectors taking values in

Y ×X with Y ⊂ R and X ⊂ R
p. The p-dimensional vector Xt = (X1 t, . . . ,Xpt)

′ is
used to predict the variable Yt through the class of linear forecasts given by

fθ t = θ1X1 t +. . . + θpXpt, (1)

where (θ1, . . . ,θp)
′ = θ ∈ R

p. As is customary in learning theory, the relation
between the regressand Yt and the regressors X1 t, . . . ,Xpt is not specified, and (1)
should be interpreted as a class of prediction rules indexed by θ ∈ R

p.
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A prediction rule is to be chosen from the data. The precision of a prediction
rule is measured by its average risk defined as

R(θ) = E

[
1

T

T∑
t=1

(Yt − fθ t)
2

]
.

Thus, a natural strategy for choosing a prediction rule from the data consists in
minimizing the empirical risk. The empirical risk minimizer (ERM) is defined as

θ̂ ∈ arg min
θ∈Rp

RT(θ), where RT(θ) = 1

T

T∑
t=1

(Yt − fθ t)
2. (2)

If more than one prediction rule achieves the minimum, we may pick one arbitrar-
ily. Clearly, the ERM in (2) corresponds to the classic least squares estimator. We
sometimes denote θ̂ as θ̂(D) to emphasize that the ERM is a function of the data
D. The problem we have described so far is known as linear regression in statistics
and econometrics, whereas in learning theory, it is known as linear aggregation
(Emery, Nemirovski, and Voiculescu, 2000).

The accuracy of the ERM is measured by its conditional average risk defined as

R(θ̂) = E

[
1

T

T∑
t=1

(Yt − f̂t)
2

∣∣∣∣∣ θ̂ = θ̂(D′)

]
, (3)

where f̂t = θ̂1X1 t +·· ·+ θ̂pXpt and D′ denotes an independent copy of the data D.
The performance measure in (3) can be interpreted as the risk of the ERM obtained
from the “training data” D′ over the “validation data” D. This performance
measure allows us to keep our analysis close to the bulk of contributions in the
learning theory literature (which typically focus on the analysis of i.i.d. data) and
facilitates comparisons. We also consider as an alternative accuracy measure the
conditional out-of-sample average risk of the ERM, which is more attractive for
time series applications. The alternative measure leads a to similar result at the
expense of introducing additional notation.

The main objective of this paper is to obtain a bound on the performance of
the ERM relative to the optimal risk that can be achieved within the given class
of prediction rules. We aim to establish a bound BT(p) such that BT(p) → 0 as
T → ∞ for which

R(θ̂) ≤ inf
θ∈Rp

R(θ)+BT(p) (4)

holds, with high probability, for all (sufficiently large) T. The inequality in (4)
is commonly referred to as an oracle inequality. Oracle inequalities such as (4)
provide non-asymptotic guarantees on the performance of the ERM. The inequality
in (4) implies that empirical risk minimization achieves asymptotically the best
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performance that is possible to attain in the class. We emphasize that in this paper,
we study the performance of the ERM for large-dimensional linear regression,
meaning that in our analysis, we assume that the number of predictors p is not
negligible relative to T (in a sense to be spelled out precisely below). Establishing
bounds on the performance of the ERM is a classic problem in learning theory.
There is a fairly extensive literature that has studied this problem in the i.i.d. setting
(Audibert and Catoni, 2011). The literature conveys that the best possible rate
for BT(p) is of the order p/T , which is referred to as the optimal rate of linear
aggregation (Tsybakov, 2003).

The main contribution of this paper consists in establishing oracle inequalities
for the ERM when the data are dependent and heavy-tailed. Our analysis covers
both the cases of identically and heterogeneously distributed observations (using
the jargon of White, 2001). In particular, our main results establish that the
ERM achieves the optimal rate of linear aggregation (up to a log(T) factor) in a
dependent data setting. Our analysis highlights a trade-off between the dependence
and moment properties of the data on the one hand, and the number of predictors on
the other. In particular, we show that the higher the dependence and the lower the
number of moments of the data, the lower the maximum rate of growth allowed for
the number of predictors. We emphasize that our analysis is nonparametric, in the
sense, that the relationship between the regressand and the regressors is assumed
to be unknown. Lastly, we remark that the performance bound we recover depends
transparently on constants that are straightforward to interpret.

Four remarks are in order before we proceed. First, this work establishes
prediction performance guarantees for empirical risk minimization/least squares
estimation with dependent data in a large-dimensional setting. These results
allow us to determine under which conditions least squares estimation is a
reliable estimation strategy in a large-dimensional setup and to appraise more
precisely the gains of estimation methodologies specifically designed for such
a setup. It is important to acknowledge that estimation methodologies designed
for large-dimensional settings (for instance, LASSO) typically achieve substan-
tially better performance guarantees than the ones obtained here. However, these
gains come at the expense of additional assumptions. In fact, the performance
guarantees obtained here are optimal (up to a logarithmic factor; Tsybakov,
2003).

Second, this paper has a number of connections with the nonparametric litera-
ture and, in particular, with nonparametric series methods (Stone, 1985; Andrews,
1991; Newey, 1997; Chen and Shen, 1998; Chen, 2006; Tsybakov, 2014; Belloni
et al., 2015). Among these papers, we remark that Chen and Shen (1998) is the only
one that considers a non i.i.d. data setup. Let {(Yt,W′

t)
′}T

t=1 be a strictly stationary
sequence of random vectors in Y ×W ⊂ R×R

d. Then our framework subsumes
the problem of estimating the conditional mean of Yt given Wt on the basis of the
approximation given by

E(Yt|Wt) ≈ θ1f1(Wt)+·· ·+ θpfp(Wt),
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where {fi} with fi : W → R is a collection of functions (e.g., B-splines) called a
dictionary. We emphasize that, in some sense, our framework is more general since
our focus lies on the estimation of the optimal linear prediction rule rather than the
conditional mean.

Third, the literature on empirical risk minimization and oracle inequalities for
dependent data has been rapidly developing in recent years. Notable contributions
in this area include the works of Jiang and Tanner (2010), Fan, Liao, and Mincheva
(2011), Caner and Knight (2013), Liao and Phillips (2015), and Miao, Phillips,
and Su (2023). We remark that one of the challenges of this literature is that it
is not straightforward to apply the theoretical machinery used in learning theory
in a dependent data setting. In fact, as forcefully argued in Mendelson (2015),
several of the standard results on empirical risk minimization used in learning
theory assume i.i.d. bounded data and cannot be extended beyond this setup. In
this work, we rely on a proof strategy based on the so-called small-ball method
developed by Shahar Mendelson and Guillaume Lecué (Mendelson, 2015; Lecué
and Mendelson, 2016). The small-ball method allows us to establish sharp bounds
on the performance of the ERM under fairly weak moment and dependence
assumptions.

Fourth, our analysis aims to provide large-dimensional analogs of some of
the classic results of White (2001) for fixed-dimensional linear regression with
dependent data. We shall point out the differences between those results and the
ones established here.

This paper is related to various strands of the literature. First, it is related to the
literature on empirical risk minimization for linear aggregation, which includes
Birge and Massart (1998), Bunea, Tsybakov, and Wegkamp (2007), Audibert and
Catoni (2011), and Lecué and Mendelson (2016). Second, it is related to the
literature on empirical risk minimization for heavy-tailed data, which includes
Audibert and Catoni (2011) and Brownlees, Joly, and Lugosi (2015). Third, it
is related to the literature on empirical risk minimization for dependent data. In
particular, this contribution is close to Jiang and Tanner (2010). Fourth, this paper is
related to the vast literature on nonparametric estimation and nonparametric series
methods, which includes Chen (2006) and Belloni et al. (2015). Li and Racine
(2006) contains a number of important results and references to this literature.
Fifth, it is related to the literature on the small-ball method, which includes
Mendelson (2018), Lecué and Mendelson (2017), and Lecué and Mendelson
(2018). Sixth, it is related to the vast literature on machine learning and large-
dimensional modeling, which includes (in econometrics) Kock and Callot (2015),
Medeiros and Mendes (2016), Garcia, Medeiros, and Vasconcelos (2017) and
Babii, Ghysels, and Striaukas (2023). Hastie, Tibshirani, and Friedman (2001),
and Wainwright (2019) contain a number of important results and references to
this literature.

The rest of the paper is structured as follows: Section 2 contains preliminaries,
additional notation, and assumptions. Section 3 contains an oracle inequality for
linear regression with heterogeneously distributed observations. Section 4 contains
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an analogous result for identically distributed observations. Section 5 contains
extensions of the baseline results. Concluding remarks follow in Section 6. All
proofs are in the Appendix.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We introduce the notation used in the remainder of the paper. For a generic vector
x ∈ R

d, we define ‖x‖r as [
∑d

i=1 |xi|r]1/r for 1 ≤ r < ∞ and maxi=1,...,d |xi| for
r = ∞. For a generic random variable X ∈ R, we define ‖X‖Lr as [E(|X|r)]1/r for
1 ≤ r < ∞ and inf{a : P(|X| > a) = 0} for r = ∞. For a positive semi-definite

matrix M, we use M
1
2 to denote the positive semi-definite square root matrix of M

and M− 1
2 to denote the generalized-inverse of M

1
2 .

In this section, we establish a preliminary result and introduce the main
assumptions required in our analysis. All results and assumptions are stated for
the case of heterogeneously distributed observations. Clearly, these simplify in a
straightforward manner if the observations are identically distributed.

We begin by establishing the existence of the optimal prediction rule, that is the
oracle. Lemma 1 states that there exists an optimal θ∗ that satisfies a Pythagorean-
type identity. We remark that the assumptions of Lemma 1 are fairly weak and, in
particular, weaker than what we require for the analysis of the ERM.

Lemma 1. Let {Yt}T
t=1 satisfy sup1≤t≤T ||Yt||L2 < ∞ and sup1≤i≤p

sup1≤t≤T ||Xit||L2 < ∞.
Then:

(i) there exists a θ∗ ∈ R
p such that

θ∗ ∈ arg min
θ∈Rp

R(θ);

(ii) θ∗ is such that for any θ ∈ R
p it holds that

1

T

T∑
t=1

‖Yt − f ∗
t ‖2

L2
+ 1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2
= 1

T

T∑
t=1

‖Yt − fθ t‖2
L2

,

where f ∗
t = fθ∗ t;

(iii) if
∑T

t=1EXtX′
t is positive definite then θ∗ is unique.

Next, we lay out the assumptions we require to establish the properties of the
ERM.

A.1 (Moments). The sequences {Yt}T
t=1, {Xt}T

t=1, {f ∗
t }T

t=1 satisfy
sup1≤t≤T ‖Yt‖Lrm

≤ Km, sup1≤i≤p sup1≤t≤T ‖Xit‖Lrm
≤ Km and sup1≤i≤p

sup1≤t≤T ‖(Yt − f ∗
t )Xit‖Lrm

≤ Km, for some Km ≥ 1 and rm > 2.
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Assumption A.1 states that the regressand, predictors, and the product of the
predictors and the forecast error of the optimal prediction rule have a number
of moments strictly larger than two. The assumption also states that the rmth
moments are bounded by a constant Km uniformly in t. A few comments are in
order. First, this moment assumption is formulated as in White (2001, Chap. 3)
in the analysis of linear regression with heterogeneous data. Alternatively, we
may state this assumption for the forecast error of the optimal prediction rule
and the predictors separately and require at least four moments to exist and to
be uniformly bounded. Second, we assume Km ≥ 1 to obtain simpler expressions
of some of the constants that appear in our analysis. Note that this is without loss
of generality. Lastly, we emphasize that this assumption is weaker than what is
assumed in a number of contributions on oracle inequalities for dependent data
for large-dimensional models such as Jiang and Tanner (2010), Fan et al. (2011),
and Kock and Callot (2015) which assume that all moments exist. We remark that
assuming that the moments are uniformly bounded is fairly standard in the analysis
of regression models with heterogeneous dependent data and that requiring more
than two moments to exist is also required to establish consistency of the least
squares estimator for fixed-dimensional linear regression (White, 2001, Chap. 3).

A.2 (Dependence). LetF s−∞ andF∞
s+l be the σ -algebras generated by {(Yt,X′

t)
′ :

−∞ ≤ t ≤ s} and {(Yt,X′
t)

′ : s+ l ≤ t ≤ ∞}, respectively, and define the α-mixing
coefficients

α(l) = sup
s

sup
A∈F s−∞,B∈F∞

s+l

|P(A∩B)−P(A)P(B)| .

The α-mixing coefficients satisfy α(l) ≤ exp(−Kαlrα ) for some Kα > 0 and rα > 0.

Assumption A.2 states that the sequence {(Yt,X′
t)

′}T
t=1 is strongly mixing with

geometrically decaying mixing coefficients. The definition of the mixing coeffi-
cients is as in White (2001, Defn. 3.42) and does not hinge on the data generating
process being stationarity. See also Su and White (2010) for the analysis of α-
mixing processes that are not required to be stationary. Note that while this is a
stronger assumption than what is required by classical results for consistency and
asymptotic normality for the (finite-dimensional) linear regression model that rely
on polynomial α-mixing (White, 2001, Chap. 3), geometric α-mixing is commonly
used in the analysis of large-dimensional time series models (Jiang and Tanner,
2010; Fan et al., 2011; Kock and Callot, 2015). Moreover, geometric α-mixing is
satisfied by many commonly encountered processes such as ARMA and GARCH
(Meitz and Saikkonen, 2008).

A.3 (Number of Predictors). The number of predictors satisfies p = 
KpTrp� for
some Kp > 0 and 0 ≤ rp < rα

rα+1 ∧ rm−2
2 .

Assumption A.3 states that the number of predictors is a function of T. This
assumption allows the number of predictors to be constant or to grow sublinearly
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in T. Importantly, the bound on the rate of growth of the number of predictors p
depends on the number of moments and the amount of dependence of the data. The
more moments and the less dependence, the higher the maximum rate of growth of
the number of predictors. If the data have at least four moments, then the number
of predictors is only constrained by the amount of dependence in the data.

A.4 (Eigenvalues). Define �t = E(XtX′
t) and let λmin (�t) and λmax (�t) be the

smallest and largest eigenvalue of �t, respectively. Then the sequence {�t}T
t=1

satisfies (i) λ ≤ inf1≤t≤T λmin (�t) for some 0 < λ and (ii) sup1≤t≤T λmax (�t) ≤ λ

for some 0 < λ < ∞.

Assumption A.4 states that the eigenvalues of the covariance matrix of the
predictors are bounded from above and bounded away from zero uniformly
in t. The assumption that the smallest eigenvalue is bounded away from zero is
fairly standard (Newey, 1997). Notice that θ∗ is unique when A.4(i) holds, by
Lemma 1(iii). Assuming that the largest eigenvalue of the covariance matrix of
the predictors is bounded above uniformly in t is more restrictive. We remark
that, as we shall see in detail below, under the additional assumption of identically
distributed observations these constraints can be relaxed. In what follows we shall
also use the constant K� = λ/λ, which is an upper bound on the condition number
of the matrices {�t}T

t=1 and measures the maximum degree of collinearity between
the predictors.

A.5 (Distribution). Consider the sequence of random vectors {Zt}T
t=1 with

Zt = �
− 1

2
t Xt. Then sup1≤t≤T P(Zt ∈ E)≤ KZP(S ∈ E) holds for some p-dimensional

spherical random vector S, some positive constant KZ and any E ∈ B(Rp). The
density of S exists and the marginal densities of the components of S are bounded
from above.

Assumption A.5 is required to establish upper bounds on the probability of a
certain event associated with the vector of predictors Xt in one of the intermediate
propositions of our analysis. The probability of this event boils down to a multiple
integral that can be expressed using n-spherical coordinates. The spherical distri-
bution bound in A.5 makes it easy to compute such an integral after the n-spherical
coordinates transformation. We conjecture that the assumption could be relaxed,
however, this would be at the expense of more tedious computations. That being
said, the family of spherical distributions is fairly large and includes the appro-
priately standardized versions of the multivariate Gaussian, Student t, Cauchy,
and uniform1 distributions.2 Moreover, finite mixtures of spherical distributions
are also spherical. Assumption A.5 may be interpreted as a generalization of the

1To be precise, the multivariate uniform distribution over the sphere.
2For more details on the class of spherical distributions, we refer to Fang, Kotz, and Ng (1990).
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bounded density assumption typically encountered in the nonparametric literature
(Newey, 1997; Li and Racine, 2006; Hansen, 2008). Bounded density assumptions
are also formulated in Jiang and Tanner (2010) in the analysis of empirical risk
minimization for time series data with bounded support. Last, we remark that
this assumption allows for weaker moment conditions than what is imposed by
Assumption A.1.

A.6 (Identification/Small-ball). The sequence {Xt}T
t=1 satisfies, for each

t = 1, . . . ,T and for each θ1,θ2 ∈ R
p,

P
(|fθ1 t − fθ2 t| ≥ κ1‖fθ1 t − fθ2 t‖L2

)≥ κ2,

for some κ1 > 0 and κ2 > 0.

Assumption A.6 is the so-called small-ball assumption, and it is stated here as it
is formulated in Lecué and Mendelson (2016). This assumption can be interpreted
as an identification condition. If we define v = (θ1 − θ2), then the condition is
equivalent to P

(|v′X| ≥ κ1‖v′X‖L2

) ≥ κ2, which can be seen as requiring that the
random variable v′X does not have excessive mass in a neighborhood around zero.
We remark that the constants κ1 and κ2 measure the strength of the identification in
the sense that the larger the value of these constants the stronger the identification
condition is. In Section 5, we establish alternative identification assumptions that
in turn imply Assumption A.6.

3. DEPENDENT HETEROGENEOUSLY DISTRIBUTED
OBSERVATIONS

The ERM performance bound that we derive in this section depends on a constant
related to the variance of the gradient of the empirical risk evaluated at the optimal

prediction rule (after an appropriate rescaling), that is, Var
(

1√
T

∑T
t=1(Yt − f ∗

t )Xt

)
.

As is well known, in the standard large sample analysis of linear regression the
asymptotic variance of the least squares estimator is typically expressed as a
function of the limit of this quantity (White, 2001, Chap. 5). In our analysis, the
ERM performance depends on an upper bound on the diagonal elements of this
quantity that is given by

Kσ 2 = K2
m

(
1+128

rm

rm −2

∞∑
l=1

α(l)1− 2
rm

)
.

It is possible to make substantially smaller choices of this constant if we make
simplifying assumptions on the setup of our analysis. We explore this in more
detail in Section 4.

We can now state the main result of this section.
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Theorem 1. Suppose Assumptions A.1–A.6 are satisfied. Then, for all T suffi-
ciently large, the ERM defined in (2) satisfies

R(θ̂) ≤ R(θ∗)+Kσ 2
K3

�

λ

(
48

κ2
1 κ2

)2 p log(T)

T
, (5)

with probability at least 1−3Kp(2Km)rm/(K
1
2
σ 2 log(T))−o(log(T)−1).

The theorem establishes that the ERM for large-dimensional linear regression
with heterogeneous dependent data achieves the optimal rate of linear aggregation
(up to a log(T) factor). We remark that A.3 implies that (p log(T))/T → 0 as
T → ∞, which makes the inequality in the theorem an oracle inequality. Note
that the bound on the performance of the ERM is proportional to quantities that
are associated with a larger asymptotic variability of the least squares estimator.
We remark that Theorem 1 may be seen as a non-asymptotic version of classic
asymptotic results in the series estimation literature, which establish optimality of
the nonparametric least squares estimator. In fact, the convergence rate of p/T (up
to a log(T) factor) is the same as the rate obtained (for instance) in Belloni et al.
(2015, Thm. 4.1).

It is interesting to compare Theorem 1 with an analogous result for i.i.d.
data. The following result in Lecué and Mendelson (2016, Cor. 1.2) is taken as
benchmark.

Theorem. Consider the linear regression model

Yt = X′
tθ

∗ + εt, t = 1, . . . ,T,

where {Xt} and {εt} are sequences of i.i.d. random variables with E(εt) = 0,
Var(εt) = σ 2, and εt is independent of Xt. Assume that there are constants κ1 and
κ2 such that

P
(|fθ1 t − fθ2 t| ≥ κ1‖fθ1 t − fθ2 t‖L2

)≥ κ2,

for all θ ∈ R
p. Then, for all T > (400)2p/κ2

2 and x > 0 we have that the ERM
defined in (2) satisfies

R(θ̂) ≤ R(θ∗)+σ 2

(
16

κ2
1 κ2

)2 p

T
x,

with probability at least 1− exp(−κ2T/4)− (1/x).

As is immediate to see, we recover an analogous bound to what is established
in Lecué and Mendelson (2016). The constant that appears in our risk bound in
(5) is much larger than the one in this benchmark result. However, we remark that
below we obtain a more favorable bound by simplifying the setup of our analysis.
Also, we remark that the result above relies on assuming that the “true model”
exists. Lecué and Mendelson (2016) also have results that do not depend on such
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an assumption but rely on stronger assumptions on the prediction errors of the
optimal forecast.

We conclude this section with a sketch of the proof. This is an elegant argument
based on Lecué and Mendelson (2016). Define the empirical risk differential for
θ ∈ R

p as

L̂θ = RT(θ)−RT(θ∗) = 1

T

T∑
t=1

(f ∗
t − fθ t)

2 + 2

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t).

The proof is based on showing that if the condition

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2 >

48K
1
2
σ 2 K�

λκ2
1 κ2

√
p log(T)

T
(6)

holds, then we have that

1

T

T∑
t=1

(f ∗
t − fθ t)

2 >

∣∣∣∣∣ 2

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t)

∣∣∣∣∣ (7)

with high probability. This, in turn, implies that for any θ that satisfies (6) we have
L̂θ > 0. Since the ERM θ̂ must satisfy L̂

θ̂
≤ 0 then, conditional on the same events,

we must have that

1

T

T∑
t=1

‖f ∗
t − f̂t‖L2 ≤ 48K

1
2
σ 2 K�

λκ2
1 κ2

√
p log(T)

T
,

which, in turn, implies that

R(θ̂)−R(θ∗) = 1

T

T∑
t=1

‖f ∗
t − f̂t‖2

L2
≤ Kσ 2

K2
�

λ

(
48

κ2
1 κ2

)2 p log(T)

T
,

by an application of Lemma 1.
The following two propositions are key in establishing that the inequality in (7)

holds with high probability; and thus, to determine the risk bound in Theorem 1.

Proposition 1. Suppose Assumptions A.2–A.6 are satisfied. Then, for all T
sufficiently large and any θ ∈ R

p,

1

T

T∑
t=1

(f ∗
t − fθ t)

2 ≥ κ2
1 κ2

2K�

1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

holds with probability at least 1−8T−1 −o(T−1).
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Proposition 2. Suppose Assumptions A.1–A.4 are satisfied. Then, for all T
sufficiently large and any θ ∈ R

p/{θ∗},

∣∣∣∣∣ 1

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t)

∣∣∣∣∣≤ 12

√
Kσ 2

λ

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2

√
p log(T)

T

holds with probability at least 1−3Kp(2Km)rm/(K
1
2
σ 2 log(T))−o(log(T)−1).

Both propositions exploit a Bernstein-type inequality for α-mixing sequences
from Liebscher (1996, Thm. 2.1); (based on the famous covariance inequality of
Rio 1995). Proposition 1 uses a covering argument similar to the one used in Jiang
and Tanner (2010) and Hansen (2008). Proposition 2 relies on the Bernstein-type
inequality and a classic truncation trick used in, for instance, Hansen (2008). See
also Dendramis, Giraitis, and Kapetanios (2021) and Babii et al. (2023) for recent
developments on concentration inequalities for dependent data with applications
to large-dimensional estimation problems.

4. DEPENDENT IDENTICALLY DISTRIBUTED OBSERVATIONS

The constant term in the bound of Theorem 1 can be improved by assuming
stationarity.

A.7 (Stationarity). The sequence of random vectors {(Yt,X′
t)

′}T
t=1 is stationary.

We remark that Assumptions A.2 and A.7 imply that the data are ergodic.
In the stationary case, it is convenient to state the moment assumption differ-

ently.

A.1* (Moments). The sequences {Yt}T
t=1, {Xt}T

t=1, {f ∗
t }T

t=1 and {Zt}T
t=1 with

Zt = �
− 1

2
t Xt satisfy ‖Yt‖Lrm

≤ Km, sup1≤i≤p ‖Xit‖Lrm
≤ Km and sup1≤i≤p ‖(Yt −

f ∗
t )Zit‖Lrm

≤ Km, for some Km ≥ 1 and rm > 2.

The difference between A.1 and A.1* is that the former assumption bounds
the rmth moment of (Yt − f ∗

t )Xit whereas the latter bounds the rmth moment of
(Yt − f ∗

t )Zit.
In the stationary case, the assumption on the eigenvalues of �, Assumption A.4,

can be dropped. In fact, as we show in the proof of Theorem 2, A.1* implies that
λmax (�) ≤ K2

mp. This allows the set of predictors to be generated by a factor model
(Forni et al., 2000; Bai and Ng, 2002; Stock and Watson, 2002; Onatski, 2012).
Additionally, λmin(�) is allowed to be zero. This allows the set of predictors to
contain some predictors that are perfectly correlated.
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Before stating the main result of this section, we introduce a new constant

K′
σ 2 = K2

m

(
1+32

rm

rm −2

∞∑
l=1

α(l)1− 2
rm

)
.

This constant plays the same role as Kσ 2 and can be interpreted as an upper bound

on the diagonal elements of Var
(

1√
T

∑T
t=1(Yt − f ∗

t )Zt

)
. Note that K′

σ 2 ≤ Kσ 2 .

We can now state the main result of this section.

Theorem 2. Suppose Assumptions A.1*, A.2, A.3, A.5–A.7 are satisfied. Then,
for all T sufficiently large, the ERM defined in (2) satisfies

R(θ̂) ≤ R(θ∗)+K′
σ 2

(
48

κ2
1 κ2

)2 p log(T)

T

with probability at least 1−3KpKrm
m /((K′

σ 2)
1
2 log(T))−o(log(T)−1).

Note that the bound in Theorem 2 does not depend on the eigenvalues of �.
Inspection of the proof shows that if {(Yt,X′

t)
′} is an i.i.d. sequence, Yt − f ∗

t is
independent of Xt and Var(Yt − f ∗

t ) = σ 2 the bound in Theorem 2 becomes

R(θ∗)+σ 2

(
48

κ2
1 κ2

)2 p log(T)

T
,

which is close to the bound established in Lecué and Mendelson (2016, Cor. 1.2).

5. ADDITIONAL RESULTS

5.1. Alternative Risk Definition

It is important to emphasize that the performance measure defined in (3) is the
average risk of the prediction rule over the data D when θ̂ is estimated using
an independent copy of the data D′. This measure may have limited appeal for
time series applications since a forecaster typically does not have access to an
independent copy of the data. Alternative more appropriate risk measures may
be introduced to evaluate the performance of the risk minimizer in a time series
context.

Assume that we are interested in predicting the out-of-sample observations
{(Yt,X′

t)
′}T+H

t=T+1 on the basis of the prediction rule estimated from the in-sample
observations {(Yt,X′

t)
′}T

t=1. For simplicity, here we focus only on the case of
identically distributed observations. We define the average out-of-sample risk
of θ as

Roos(θ) = E

[
1

H

T+H∑
t=T+1

(Yt − fθ t)
2

]
,
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and we measure the accuracy of the ERM θ̂ using the conditional out-of-sample
average risk defined as

Roos(θ̂) = E

[
1

H

T+H∑
t=T+1

(Yt − f
θ̂ t)

2

∣∣∣∣∣(YT,X′
T)′, . . . ,(Y1,X′

1)
′
]

.

For the following result, a slightly stronger version of Assumption A.1 is needed.

A.1** (Moments). The sequences {Yt}T
t=1, {f ∗

t }T
t=1 and {Xt}T

t=1 satisfy
sup1≤i≤p sup1≤t≤T ‖Yt − f ∗

t ‖Lrm
≤ Km sup1≤t≤T ‖Yt‖Lrm

≤ Km and sup1≤i≤p
sup1≤t≤T ‖Xit‖Lrm

≤ Km for some Km ≥ 1 and rm > 4.

If we define KH = 24(K2
m/λ)

∑∞
l=1 α(l)

1
2 , we can establish the following theo-

rem.

Theorem 3. Suppose Assumptions A.1**, A.2, A.3, A.4(i), A.5–A.7 are satisfied.
Then, for all T sufficiently large, the ERM defined in (2) satisfies

Roos(θ̂) ≤ Roos(θ
∗)+K′

σ 2

(
48

κ2
1 κ2

)2 p log(T)

T
+KH

p log(T)

H

with probability at least 1− (6KpKrm
m +1)/((K′

σ 2)
1
2 log(T))−o(log(T)−1).

A key ingredient in the proof of Theorem 3 is Ibragimov’s inequality (Ibragimov,
1962), which bounds the expected value of the difference between the conditional
and unconditional expectation as a function of the α-mixing coefficients. It is
important to remark that the theorem requires (p log(T))/H → 0 in order to have
that Roos(θ̂) − Roos(θ

∗) → 0. In other words, there exists a “wedge” between
Roos(θ̂) and Roos(θ

∗) that only vanishes as the forecast horizon H grows large.
This may be intuitively explained as follows. The ERM θ̂ is consistent for θ∗,
the minimizer of R(θ). However, the minimizers of R(θ) and Roos(θ) are not
guaranteed to be same for finite H and the difference between the two only vanishes
as the forecast horizon H grows large.

5.2. Small-Ball Assumption

It is possible to introduce alternative assumptions that imply the small-ball condi-
tion stated in A.6. For example, as Lecué and Mendelson (2016) remark, the small-
ball condition holds when the L2 and L4 norms of fθ t are equivalent. More precisely,
if for each θ ∈ R

p (and all t = 1, . . . ,T) it holds that ‖fθ t‖L4 ≤ C‖fθ t‖L2 , for some
constant C (that does not depend on θ or t). We remark that norm equivalence
conditions are commonly used in the literature to establish the properties of
empirical risk minimization (see, for instance, Audibert and Catoni, 2011).
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To give a concrete example, below we show that if the distribution of the

standardized predictors Zt = �− 1
2 Xt is spherical then the small-ball assumption

is satisfied.

A.6* (Spherical Density). Consider the sequence of random vectors {Zt}T
t=1 with

Zt = �
− 1

2
t Xt. Then for each t = 1, . . . ,T it holds that Zt ∼ S where S is a p-

dimensional spherical random vector that satisfies sup1≤i≤p ‖Si‖L4 < ∞.

Lemma 2. Suppose Assumption A.6* holds. Then, for each t = 1, . . . ,T and for
each θ1,θ2 ∈ R

p, P
(|fθ1 t − fθ2 t| ≥ κ1‖fθ1 t − fθ2 t‖L2

) ≥ κ2 holds for some κ1 > 0
and κ2 > 0.

The proof uses the Paley–Zygmund inequality. A.6* can replace A.6 in Theo-
rems 1 and 2.

6. CONCLUSION

This paper establishes oracle inequalities for the prediction risk of the ERM for
large-dimensional linear regression. We generalize existing results by allowing
the data to be dependent and heavy-tailed. Our main results show that the ERM
achieves optimal performance (up to a logarithmic factor). The results have been
established using the small-ball method, which is a powerful technique to obtain
oracle inequalities. Future research includes extending these results to regular-
ized empirical risk minimization, analogously to Lecué and Mendelson (2017,
2018).

APPENDICES

A. Proofs

Proof of Lemma 1. (i) The existence of θ∗ follows from the fact that R(θ) is quadratic.
(ii) It is equivalent to show that θ∗ satisfies

1

T

T∑
t=1

E[(Yt − f ∗
t )(f ∗

t − fθ t)] =
⎛⎝ 1

T

T∑
t=1

E[(Yt − f ∗
t )X′

t]

⎞⎠(θ∗ − θ) = 0, (A.1)

for any θ ∈R
p. We then have that (A.1) is implied by the first-order condition for a minimum

for R(θ), as θ∗ is such that 2
T
∑T

t=1E[(Yt − f ∗
t )X′

t] = 0. (iii) This follows from the strict
convexity of R(θ). �

Proof of Theorem 1. Define the empirical risk differential for an arbitrary θ ∈ R
p as

L̂θ = RT (θ)−RT (θ∗) = 1

T

T∑
t=1

(f ∗
t − fθ t)

2 + 2

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t).
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Assume that it holds that

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2 > 48

√
Kσ 2

λ

K�

κ2
1κ2

√
p log(T)

T
. (A.2)

Conditioning on the events of Propositions 1 and 2, for all T sufficiently large, at least with

probability 1−3Kp(2Km)rm/(K
1
2
σ 2 log(T))−o(log(T)−1), we have that

1

T

T∑
t=1

(f ∗
t − fθ t)

2 (a)≥ κ2
1 κ2

2K�

1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

(b)≥ κ2
1 κ2

2K�

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2

(c)
> 24

√
Kσ 2

λ

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2

√
p log(T)

T

(d)≥
∣∣∣∣∣ 2

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t)

∣∣∣∣∣,
where (a) follows from Proposition 1, (b) follows from Jensen’s inequality, (c) follows
from condition (A.2), and (d) follows from Proposition 2. Thus, conditional on the events
of Propositions 1 and 2 and assuming (A.2) holds we have with high probability that
L̂θ > 0. Since the ERM θ̂ satisfies L̂

θ̂
≤ 0 then conditional on the same events we have

1
T
∑T

t=1 ‖f ∗
t − f̂t‖L2 ≤ 48K

1
2
σ2 K�

λ
1
2 κ2

1 κ2

√
p log(T)

T . The claim follows from:

R(θ̂)−R(θ∗) = 1

T

T∑
t=1

‖f ∗
t − f̂t‖2

L2
≤ λ‖θ̂ − θ∗‖2

2 ≤ Kσ 2
K3

�

λ

(
48

κ2
1κ2

)2
p log(T)

T
, (A.3)

where the first equality follows from Lemma 1 where the L2 norm is conditional on
{θ̂ = θ̂ (D′)}, the first inequality follows from 1

T
∑T

t=1 ‖f ∗
t − f̂t‖2

L2
≤ λ‖θ̂ − θ∗‖2

2, and the

second inequality follows from λ
1
2 ‖θ̂ − θ∗‖2 ≤ 1

T
∑T

t=1 ‖f ∗
t − f̂t‖L2 . �

Proof of Proposition 1. For any θ ∈R
p \{θ∗} (notice that A.4 implies that θ∗ is unique),

define the standardized parameter vector v = (θ∗ − θ)/

√
1
T
∑T

t=1 ‖f ∗
t − fθ t‖2

L2
and note

1

T

T∑
t=1

(f ∗
t − fθ t)

2 =
1
T
∑T

t=1(f ∗
t − fθ t)

2

1
T
∑T

t=1 ‖f ∗
t − fθ t‖2

L2

1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

= 1

T

T∑
t=1

(X′
tv)

2 1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2
≥ κ2

1
K�

1

T

T∑
t=1

1{|X′
tv|≥κ1K−1/2

�

} 1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2
.

Let gv t = 1{|X′
tv|≥κ1K−1/2

� }, define V = {v ∈ R
p : 1

T E[
∑T

t=1(X′
tv)

2] = 1} and note that

1

T

T∑
t=1

gv t = 1

T

T∑
t=1

Egv t +gv t −Egv t ≥ 1

T

T∑
t=1

Egv t − sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣,
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since the standardized parameter vector v belongs to V. Let Vi = {v ∈ R
p : ‖v − vi‖2 ≤ δ}

with vi ∈ V for i = 1, . . . ,Nδ denote a δ-covering of V. Then, we have that

P

⎛⎝sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣> ε

⎞⎠≤
Nδ∑
i=1

P

⎛⎝ sup
v∈Vi

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣> ε

⎞⎠
≤

Nδ∑
i=1

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

gi t −Egi t

∣∣∣∣∣∣> ε

2

⎞⎠
+

Nδ∑
i=1

P

⎛⎝ sup
v∈Vi

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t −
⎛⎝ 1

T

T∑
t=1

gi t −Egi t

⎞⎠∣∣∣∣∣∣> ε

2

⎞⎠,

where gi t = gvi t. Proposition B.1 establishes that (i) for each v ∈ Vi, we have |gv t −gi t| ≤
ḡi t, where ḡi t is defined in that proposition and (ii) there exists a positive constant K1 (that

does not depend on i, t, and p) such that for all δ < K−1/2
� /(2λ

1/2
) we have that Eḡi t ≤

K1p1/2δ. Set δ = ε/(8K1p1/2) and note that for all ε < 4K−1/2
� K1p1/2/λ

1/2
,

P

⎛⎝ sup
v∈Vi

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t −
⎛⎝ 1

T

T∑
t=1

gi t −Egi t

⎞⎠∣∣∣∣∣∣> ε

2

⎞⎠
= P

⎛⎝ sup
v∈Vi

∣∣∣∣∣∣ 1

T

T∑
t=1

(gv t −gi t)− (Egv t −Egi t)

∣∣∣∣∣∣> ε

2

⎞⎠≤ P

⎛⎝ 1

T

T∑
t=1

(ḡi t +Eḡi t) >
ε

2

⎞⎠
= P

⎛⎝ 1

T

T∑
t=1

(ḡi t −Eḡi t) >
ε

2
− 2

T

T∑
t=1

Eḡi t

⎞⎠ (a)≤ P

⎛⎝ 1

T

T∑
t=1

(ḡi t −Eḡi t) >
ε

4

⎞⎠,

where (a) follows from the fact that Eḡi t ≤ ε/8. Finally, we have that

P

⎛⎝sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣> ε

⎞⎠
≤

Nδ∑
i=1

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

gi t −Egi t

∣∣∣∣∣∣> ε

2

⎞⎠+
Nδ∑
i=1

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

ḡi t −Eḡi t

∣∣∣∣∣∣> ε

4

⎞⎠
≤ Nδ max

1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′
i t

∣∣∣∣∣∣> ε

2

⎞⎠+Nδ max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′′
i t

∣∣∣∣∣∣> ε

4

⎞⎠,

where Z′
i t = gi t −Egi t and Z′′

i t = ḡi t −Eḡi t. We have that

Nδ max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′
i t

∣∣∣∣∣∣> ε

2

⎞⎠ (a)≤
(

1+ 16K1p1/2

λ1/2ε

)p

max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′
i t

∣∣∣∣∣∣> ε

2

⎞⎠,
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where (a) follows from the fact that the δ-covering number Nδ of an euclidean sphere of
radius C in R

p satisfies Nδ ≤ (1 + (2C)/δ)p (Vershynin, 2018, Cor. 4.2.13), and that the
covering number of V is smaller than the covering number of {v ∈R

p : ‖v‖2 ≤ λ−1/2} since
V ⊂ {v ∈ R

p : ‖v‖2 ≤ λ−1/2}. Note that Z′
i t inherits the mixing properties of (Yt,X′

t)
′ and

satisfies ‖Z′
i t‖L∞ ≤ 1. It follows from Proposition B.3 that for all T sufficiently large and

for the choice of ε′
T spelled out in that proposition that ε′

T ≤ 4K−1/2
� K1p1/2/λ

1/2 ∧ κ2/2
and

(
1+ 16K1p1/2

λ1/2ε′
T

)p

max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′
i t

∣∣∣∣∣∣> ε′
T
2

⎞⎠≤ 4

T
+o

(
1

T

)
. (A.4)

Using analogous arguments, we have that for all T sufficiently large and for the choice of

ε′′
T spelled out in Proposition B.3 that ε′′

T ≤ 4K−1/2
� K1p1/2/λ

1/2 ∧κ2/2 and

Nδ max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′′
i t

∣∣∣∣∣∣> ε′′
T
4

⎞⎠

≤
(

1+ 16K1p1/2

λ1/2ε′′
T

)p

max
1≤i≤Nδ

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′′
i t

∣∣∣∣∣∣> ε′′
T
4

⎞⎠≤ 4

T
+o

(
1

T

)
. (A.5)

The inequalities in (A.4) and (A.5) imply that for all T sufficiently large we can pick εT =
ε′

T ∧ ε′′
T to obtain

sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣≤ κ2

2

with probability at least 1 − 8T−1 − o(T−1). The claim of the proposition follows after
noting that with probability at least 1−8T−1 −o(T−1), we have

κ2
1

K�

1

T

T∑
t=1

1{|X′
tv|≥κ1K−1/2

� }
1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

≥ κ2
1

K�

⎛⎝ 1

T

T∑
t=1

P(|X′
tv| ≥ κ1K−1/2

� )− sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣
⎞⎠ 1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

(a)≥ κ2
1

K�

(
κ2 − κ2

2

) 1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2
≥ κ2

1κ2

2K�

1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2
,

where (a) follows from the fact that P(|X′
tv| ≥ κ1K−1/2

� ) ≥ P(|X′
tv| ≥ κ1‖X′

tv‖L2) ≥ κ2

since ‖X′
tv‖L2 = ‖X′

t(θ
∗ − θ)‖L2/

√
1
T
∑T

t=1 ‖X′
t(θ

∗ − θ)‖2
L2

≥ K−1/2
� . �
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Proof of Proposition 2. Define νt = E
[
(Yt − f ∗

t )Xt
]

and note that Lemma 1 implies

T∑
t=1

ν′
t(θ

∗ − θ) = E

⎛⎝ T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t)

⎞⎠= 0 for any θ ∈ R
p.

For any θ ∈ R
p \ {θ∗}, we have that (notice that A.4 implies that θ∗ is unique)

P

⎛⎝
∣∣∣∑T

t=1(Yt − f ∗
t )(f ∗

t − fθ t)
∣∣∣∑T

t=1 ‖f ∗
t − fθ t‖L2

> ε

⎞⎠≤ P

⎛⎝ sup
θ∈Rp\{θ∗}

∣∣∣∑T
t=1(Yt − f ∗

t )(f ∗
t − fθ t)

∣∣∣∑T
t=1 ‖f ∗

t − fθ t‖L2

> ε

⎞⎠ .

Define v = (θ∗ − θ)/( 1
T
∑T

t=1 ‖f ∗
t − fθ t‖L2) for any θ ∈ R

p \ {θ∗} and note that

‖v‖2 = ‖θ∗ − θ‖2

1
T
∑T

t=1

√
(θ∗ − θ)′E(XtX′

t)(θ
∗ − θ)

≤ λ−1/2.

Then we have that

T∑
t=1

∣∣(Yt − f ∗
t )(f ∗

t − fθ t)
∣∣∑T

t=1 ‖f ∗
t − fθ t‖L2

=
T∑

t=1

∣∣(Yt − f ∗
t )X′

t(θ
∗ − θ)

∣∣∑T
t=1 ‖f ∗

t − fθ t‖L2

=
∣∣∣∣∣∣ 1

T

T∑
t=1

(Yt − f ∗
t )X′

tv

∣∣∣∣∣∣
=
∣∣∣∣∣∣ 1

T

T∑
t=1

[(Yt − f ∗
t )X′

t −ν′
t ]v

∣∣∣∣∣∣=
∣∣∣∣∣∣ 1

T

T∑
t=1

U′
tv

∣∣∣∣∣∣,
where Ut = (Yt − f ∗

t )Xt −νt. Next, we have

P

⎛⎝ sup
θ∈Rp\{θ∗}

∣∣∣∑T
t=1(Yt − f ∗

t )(f ∗
t − fθ t)

∣∣∣∑T
t=1 ‖f ∗

t − fθ t‖L2

> ε

⎞⎠≤ P

⎛⎝ sup
v:‖v‖2≤λ−1/2

∣∣∣∣∣∣ 1

T

T∑
t=1

U′
tv

∣∣∣∣∣∣> ε

⎞⎠
≤ P

⎛⎝ sup
v:‖v‖2≤λ−1/2

∥∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥∥
2

‖v‖2 > ε

⎞⎠≤ P

⎛⎝∥∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥∥
2

> λ1/2ε

⎞⎠ .

Note that {Ut} is mean zero, satisfies ‖Uit‖L2 ≤ Km and

‖Uit‖Lrm
≤ ‖(Yt − f ∗

t )Xit‖Lrm
+‖νi t‖Lrm

= ‖(Yt − f ∗
t )Xit‖Lrm

+‖(Yt − f ∗
t )Xit‖L1 ≤ 2Km

because of A.1, and inherits the mixing properties of {(Yt,Xt)
′} spelled out in A.2.

Proposition B.4 then implies that, for all T sufficiently large, we have

sup
θ∈Rp\{θ∗}

∣∣∣∑T
t=1(Yt − f ∗

t )(fθ t − f ∗
t )

∣∣∣∑T
t=1 ‖fθ t − f ∗

t ‖L2

≤ 12

√
Kσ 2

λ

√
p log(T)

T

with probability at least 1 − 3Kp(2Km)rm/(K
1
2
σ 2 log(T)) − o(log(T)−1), where Kσ 2 is the

constant σ 2 defined in that proposition. The claim of the proposition then follows. �
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Proof of Theorem 2. We begin by showing that when A.1 is satisfied, we have
λmax(�) ≤ K2

mp. Let � = E(XtX′
t), and let �i• denote the ith row of �. Then,

λmax(�) = sup
x∈Rp:‖x‖2=1

‖�x‖2 = sup
x∈Rp:‖x‖2=1

√√√√ p∑
i=1

(�i•x)2 ≤ sup
x∈Rp:‖x‖2=1

√√√√ p∑
i=1

‖�i•‖2
2‖x‖2

2

=
√√√√ p∑

i=1

‖�i•‖2
2 ≤

√√√√ p∑
i=1

‖K2
m1p‖2

2 = K2
m

√√√√ p∑
i=1

p = K2
mp,

where 1p is p-dimensional vector with entries equal to one.
The proof is similar to the one of Theorem 1 and we only highlight the main differences.

In the proof of Proposition 1, define Zt = �− 1
2 Xt and v = �

1
2 (θ∗ − θ)/‖f ∗

t − fθ t‖L2 .
Then A.6 and A.7 imply P(|Z′

tv| ≥ κ1‖Z′
tv‖L2) ≥ κ2. Thus, in that proposition the function

gv t can be defined as 1{|Z′
tv|≥κ1‖Z′

tv‖L2 }. Proposition B.1 can then be modified and it is

straightforward to see that there exists a ḡi t function such that for all δ < 1/2 we have

Eḡi t ≤ K1p
1
2 δ for some positive constant K1. If we set δ = ε/(8K1p

1
2 ) for all ε < 4K1p

1
2

we get, following the same steps as in Proposition 1 and noting that ‖v‖2 = 1, that

P

⎛⎝sup
v∈V

∣∣∣∣∣∣ 1

T

T∑
t=1

gv t −Egv t

∣∣∣∣∣∣> ε

⎞⎠
≤
(

1+ 16K1p

ε

)p
max

i=1,...,Nδ

⎡⎣P
⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′
i t

∣∣∣∣∣∣> ε

2

⎞⎠+P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Z′′
i t

∣∣∣∣∣∣> ε

4

⎞⎠⎤⎦ .

Finally, Proposition B.3 implies that for all T sufficiently large and any θ ∈ R
p,

1

T

T∑
t=1

(f ∗
t − fθ t)

2 ≥ κ2
1κ2

2

1

T

T∑
t=1

‖f ∗
t − fθ t‖2

L2

holds with probability at least 1 − 8T−1 − o(T−1). In the proof of Proposition 2, define

v = �
1
2 (θ∗ − θ)/‖f ∗

t − fθ t‖L2 and Ut = (Yt − f ∗
t )Zt. Following the steps of the proof of

Proposition 2, we have that for any θ ∈ R
p \ {θ∗}

P

⎛⎝ sup
θ∈Rp\{θ∗}

∣∣∣∑T
t=1(Yt − f ∗

t )(f ∗
t − fθ t)

∣∣∣∑T
t=1 ‖f ∗

t − fθ t‖L2

> ε

⎞⎠≤ P

⎛⎝∥∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥∥
2

> ε

⎞⎠,

where we have used the fact that ‖v‖2 = 1. Note that {Ut} is mean zero, satisfies ‖Uit‖Lrm
≤

Km for each i = 1, . . . ,p because of A.1* and inherits the mixing properties of {(Yt,Xt)
′}

spelled out in A.2. Applying Proposition B.4, we have that for all T sufficiently large and
any θ ∈ R

p \ {θ∗},

1

T

T∑
t=1

(Yt − f ∗
t )(f ∗

t − fθ t) ≤ 12
√

K′
σ 2

1

T

T∑
t=1

‖f ∗
t − fθ t‖L2

√
p log(T)

T
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holds with probability at least 1 − 3KpKrm
m /((K′

σ 2)
1
2 log(T)) − o(log(T)−1) with K′

σ 2 =
K2

m

(
1+32 rm

rm−2
∑∞

l=1 α(l)1− 2
rm

)
. Finally, in the proof of Theorem 1, we can replace

condition (A.2) with

‖f ∗
t − fθ t‖L2 >

48(K′
σ 2)

1
2

κ2
1κ2

√
p log(T)

T
.

Following the same steps as in the proof there, we obtain the claim. �

Proof of Theorem 3. We begin by introducing the out-of-sample risk for the “ghost”
out-of-sample observations. Let {(YG

t ,(XG
t )′)′}T+H

t=T+1 denote a sequence of observations

from the {(Yt,X′
t)

′} process that is independent of {(Yt,X′
t)

′}T
t=1. Then define

RG
oos(θ) = E

⎡⎣ 1

H

T+H∑
t=T+1

(YG
t − f G

θ t)
2

⎤⎦
RG

oos(θ̂) = E

⎡⎣ 1

H

T+H∑
t=T+1

(YG
t − f̂ G

t )2

∣∣∣∣∣∣(YT,X′
T )′, . . . ,(Y1,X

′
1)′
⎤⎦,

where f G
θ t = θ ′XG

t and f̂ G
t = θ̂

′
XG

t with θ̂ = θ̂({(Y1,X
′
1)′, . . . ,(YT,X′

T )′}). Notice that clearly

RG
oos(θ) = Roos(θ). We may then note that

Roos(θ̂)−Roos(θ
∗) ≤ |Roos(θ̂)−RG

oos(θ̂)|+ |RG
oos(θ̂)−Roos(θ

∗)|
= |Roos(θ̂)−RG

oos(θ̂)|+ |RG
oos(θ̂)−RG

oos(θ
∗)|.

The claim of the theorem follows from the fact that if for some ε1 > 0, ε2 > 0, δ1 ∈ (0,1)

and δ2 ∈ (0,1) we have that

P(|RG
oos(θ̂)−RG

oos(θ
∗)| ≥ ε1) ≤ δ1 (A.6)

P

(
|Roos(θ̂)−RG

oos(θ̂)| ≥ ε2

∣∣∣ |RG
oos(θ̂)−RG

oos(θ
∗)| ≤ ε1

)
≤ δ2, (A.7)

then it follows from the union bound and the total probability theorem that Roos(θ̂) −
Roos(θ

∗) ≤ ε1 + ε2 with probability at least 1−2δ1 − δ2. Theorem 2 implies that for all T
sufficiently large (A.6) holds for the choice of ε1 and δ1 implied by the theorem. Thus, this
proof focuses on establishing that (A.7) holds. Denote by E = {RG

oos(θ̂)− RG
oos(θ

∗) ≤ 1}
and note that conditional on E we have that 1 ≥ RG

oos(θ̂) − RG
oos(θ

∗) = ‖f G
θ∗ t − f G

θ̂ t
‖2

L2
>

λ‖θ∗ − θ̂‖2
2. Let ET (·) = E(·|IT ) be the expectation conditional on information up to time

T, with IT the information set at time T. This implies that for r = (1/λ)
1
2 we have

|ET (YT+h − f
θ̂ T+h)2 −ET (YG

T+h − f G
θ̂ T+h

)2|
≤ sup

θ∈B2(θ
∗,r)

|ET (YT+h − fθ T+h)2 −ET (YG
T+h − f G

θ T+h)2|

= sup
θ∈B2(θ

∗,r)
|ET (YT+h − fθ T+h)2 −E(YT+h − fθ T+h)2|
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≤ |ET (YT+h − fθ∗ T+h)2 −E(YT+h − fθ∗ T+h)2|
+ sup

v∈B2(0,r)
v′[ET (XT+hX′

T+h)−E(XT+hX′
T+h)]v

+2 sup
v∈B2(0,r)

|[ET ((YT+h − fθ∗ T+h)XT+h)−E((YT+h − fθ∗ T+h)XT+h)]′v|.

It follows from Ibragimov’s inequality that

‖ET (YT+h − fθ∗ T+h)2 −E(YT+h − fθ∗ T+h)2‖L1

≤ 6α(h)
1
2 ‖(YT+h − fθ∗ T+h)2‖L2 ≤ 6α(h)

1
2 K2

m,

‖ sup
v∈B2(0,r)

v′[ET (XT+hX′
T+h)−E(XT+hX′

T+h)]v‖L1

≤ ‖max
ij

|[ET (XT+hX′
T+h)−E(XT+hX′

T+h)
]
ij |‖L1 sup

v∈B2(0,r)
‖v‖2

1 ≤ 6α(h)
1
2

K2
m
λ

p,

‖2 sup
v∈B2(0,r)

|[ET ((YT+h − fθ∗ T+h)XT+h)−E((YT+h − fθ∗ T+h)XT+h)]′v|‖L1

≤ 12α(h)
1
2 ‖(YT+h − fθ∗ T+h)Xi,T+h‖L2 sup

v∈B2(0,r)
‖v‖1 ≤ 12α(h)

1
2

K2
m√
λ

√
p.

Thus, conditional on E and for T sufficiently large we have

‖ET (YT+h − f
θ̂ T+h)2 −ET (YG

T+h − f G
θ̂ T+h

)2‖L1

≤ 6α(h)
1
2 K2

m

(
1+ p

λ
+2
√

p

λ

)
≤ 24α(h)

1
2

K2
m
λ

p.

The conditional version of Markov’s inequality implies that

P(|Roos(θ̂)−RG
oos(θ̂)| ≥ ε2|E) ≤ 1

ε2

1

H

H∑
h=1

‖ET (YT+h − f
θ̂ T+h)2 −E(YT+h − f

θ̂ T+h)2‖L1

≤ 24

ε2

K2
m
λ

∞∑
l=1

α(l)
1
2

p

H
,

which implies the claim of the theorem. �

Proof of Lemma 2. Let v = θ1 −θ2 and note that the Paley–Zygmund inequality implies
that for any ϑ ∈ [0,1], we have

P(|v′Xt| > ϑ
1
2 ‖v′Xt‖L2) ≥ (1−ϑ)2 E(|v′Xt|2)2

E(|v′Xt|4)
. (A.8)

Note that A.6* implies that Xt is elliptical. Then v′Xt = σtU holds where σ 2
t = v′�tv and U

is an elliptical random variable with zero mean and unit variance (whose distribution does
not depend on v nor �t). Thus, we have that the probability in (A.8) is lower bounded by
[(1−ϑ)2

E(|U|2)2]/E(|U|4), which implies the claim of the lemma. �
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B. Auxiliary Results

Proposition B.1. Consider the same setup as in Proposition 1. Let Vi = {v ∈ R
p :

‖v − vi‖2 ≤ δ} with vi ∈ V for i = 1, . . . ,Nδ denote a δ-covering of the set V for some

δ < K−1/2
� /(2λ

1/2
). Define the function gv t = 1{|X′

tv|≥κ1K−1/2
� } and let gi t = gvi t .

Then (i) for all v ∈ Vi we have that |gv t − gi t| ≤ ḡi t = 1{Xt∈Si}, where Si =⋃
v∈Vi

{x ∈
R

p : |x′v| = κ1K−1/2
� } and (ii) there exists a positive constant K1 that depends on KZ, λ, λ

and κ1 (and it does not depend on t, i or p) such that Eḡi t ≤ K1p1/2δ.

Proof. (i) We show that Si = ⋃
v∈Vi

{x ∈ R
p : |x′v| = κ1K−1/2

� } is the set containing
all the vectors x such that the indicator functions 1{|x′v|≥κ1K−1/2

� } and 1{|x′vi|≥κ1K−1/2
� } are

different. We do so by showing that the complement of Si is a set of vectors x where the
indicator functions are equal. We establish this by contradiction. Assume x is not in Si and
that the indicator functions 1{|x′v|≥κ1K−1/2

� } and 1{|x′vi|≥κ1K−1/2
� } are different. Since Vi is

convex there must be an intermediate v̇ ∈ Vi such that |x′v̇| = κ1K−1/2
� implying that x is

in Si, which leads to a contradiction. (ii) Note that

Si =
⋃

v∈Vi

{x ∈ R
p : x′v = κ1K−1/2

� }∪
⋃

v∈Vi

{x ∈ R
p : x′v = −κ1K−1/2

� } = Si+ ∪Si−.

In what follows, we bound the probability of the event {Xt ∈ Si+} only as the event {Xt ∈
Si−} can be treated analogously. We divide the proof into four steps. 1. We work with an
appropriately rotated version of Xt denote by Z. Let ϑ be the angle between the vector

�
1/2
t vi and (1,0, . . . ,0)′, and let R ∈ R

p×p be the rotation matrix associated with ϑ . Recall

that: (i)R′R = Ip; (ii)R�
1/2
t vi = ‖�1/2

t vi‖2(1,0, . . . ,0)′; (iii) if we define W1 = {w ∈ R
p :

‖w‖2 ≤ 1} and W2 = {w ∈R
p : w = Rw
 for some w
 ∈ W1}, then we have that W1 = W2.

Define Z = R�
−1/2
t Xt and note that

P({Xt ∈ Si+}) = P

⎛⎝⎧⎨⎩Xt ∈
⋃

w∈Rp:‖w‖2≤1

{x ∈ R
p : v′

ix+ δw′x = κ1K−1/2
� }

⎫⎬⎭
⎞⎠

= P

⎛⎝⎧⎨⎩Z ∈
⋃

w∈Rp:‖w‖2≤1

{z ∈ R
p : v′

i�
1/2
t R′z+ δw′�1/2

t R′z = κ1K−1/2
� }

⎫⎬⎭
⎞⎠ .

Define ci t = ‖�1/2
t vi‖2 and note that the set in the last equation is such that⋃

w∈Rp:‖w‖2≤1

{z ∈ R
p : ‖�1/2

t vi‖2z1 + δ(R�
1/2
t w)′z = κ1K−1/2

� }

⊂
⋃

w∈Rp:‖w‖2≤1

{z ∈ R
p : ci tz1 +λ

1/2
δw′z = κ1K−1/2

� }

=
⋃

w∈Rp:‖w‖2≤1

{z ∈ R
p : (ci t +λ

1/2
δw1)z1 +λ

1/2
δw′−1z−1 = κ1K−1/2

� } = S′
it+.
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Lastly, we note that for any i = 1, . . . ,Nδ and t = 1, . . . ,T , we have

ci t = ‖�1/2
t (θ∗ − θ i)‖2√

1
T
∑T

t=1 ‖X′
t(θ

∗ − θ i)‖2
L2

=
√

(θ∗ − θ i)
′�t(θ

∗ − θ i)

1
T
∑T

t=1(θ∗ − θ i)
′�t(θ

∗ − θ i)
> K−1/2

�

and ci t −λ
1/2

δ > K−1/2
� /2 > 0. 2. We construct two sets S′1

it+ and S′2
it+ such that S′

it+ ⊂
S′1

it+ ∩S′2
it+. Define

S′1
it+ =

{
z ∈ R

p : z1 ≤ κ1K−1/2
�

ci t −λ
1/2

δ
+ λ

1/2
δ

ci t −λ
1/2

δ

√
z2
2 +·· ·+ z2

p

}
, (B.1)

that is the set of points “underneath” a hyper-cone. Let z be in S′
it+, define ż =

‖z−1‖−1
2 (z2, . . . ,zp)′ and note that ‖ż‖2 = 1. Then for some w such that ‖w‖2 ≤ 1 we

have that

z1 = κ1K−1/2
�

ci t +λ
1/2

δw1

− λ
1/2

δw′−1z−1

ci t +λ
1/2

δw1

= κ1K−1/2
�

ci t +λ
1/2

δw1

− λ
1/2

δw′−1ż

ci t +λ
1/2

δw1

‖z−1‖2

≤ κ1K−1/2
�

ci t −λ
1/2

δ
+ λ

1/2
δ‖w−1‖2‖ż‖2

K−1/2
� −λ

1/2
δ

‖z−1‖2 ≤ κ1K−1/2
�

ci t −λ
1/2

δ
+ λ

1/2
δ

ci t −λ
1/2

δ

√
z2

2 +·· ·+ z2
p,

which implies that z is also in S′1
i+. Define

S′2
it+ =

{
z ∈ R

p : z1 ≥ κ1K−1/2
�

ci t +λ
1/2

δ
− λ

1/2
δ

ci t −λ
1/2

δ

√
z2
2 +·· ·+ z2

p

}
, (B.2)

that is the set of points “above” a hyper-cone. Let z in S′
it+ and define ż as above. Then for

some w such that ‖w‖2 ≤ 1 we have that

z1 = κ1K−1/2
�

ci t +λ
1/2

δw1

− λ
1/2

δw′−1z−1

ci t +λ
1/2

δw1

= κ1K−1/2
�

ci t +λ
1/2

δw1

− λ
1/2

δw′−1ż

ci t +λ
1/2

δw1

‖z−1‖2

≥ κ1K−1/2
�

ci t +λ
1/2

δ
− λ

1/2
δ‖w−1‖2‖ż‖2

K−1/2
� −λ

1/2
δ

‖z−1‖2 ≥ κ1K−1/2
�

ci t +λ
1/2

δ
− λ

1/2
δ

ci t −λ
1/2

δ

√
z2
2 +·· ·+ z2

p,

which implies that z is also in S+,2
i .

3. We establish an upper bound on the probability of the event {Z ∈ S′
it+}. Note that S′

it+ ⊂
S′1

i+ ∩S′2
i+ = Ai ∪Bi ∪Ci where

Ait = S′1
it+ ∩

{
z ∈ R

p : z1 ≥ κ1K−1/2
�

ci t −λ
−1/2

δ

}

Bit =
{

z ∈ R
p :

κ1K−1/2
�

ci t +λ
1/2

δ
≤ z1 ≤ κ1K−1/2

�

ci t −λ
1/2

δ

}

Cit = S′2
it+ ∩

{
z ∈ R

p : z1 <
κ1K−1/2

�

ci t +λ
1/2

δ

}
.
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Then we have that P(Xt ∈ Si+) < P(Z ∈ Ait)+P(Z ∈ Bit)+P(Z ∈ Cit). Using Proposition
B.2 and A.5, we have that

P(Z ∈ Ait) ≤ KZK1/2
� λ

1/2
√

π

2
p1/2δ

P(Z ∈ Bit) = P

(
κ1K−1/2

�

ci t +λ
1/2

δ
≤ Z1 ≤ κ1K−1/2

�

ci t −λ
1/2

δ

)

≤ KZ sup
s

fS1(s)κ1K−1/2
�

2λ
1/2

δ

(cit −λ
1/2

δ)(cit +λ
1/2

δ)
≤ 8KZκ1K1/2

� sup
s

fS1(s)λ
1/2

δ

P(Z ∈ Cit) ≤ KZK1/2
� λ

1/2
√

π

2
p1/2δ.

4. It follows from the inequalities above, and by using analogous steps to bound the
probability of the event P(Xt ∈ Si−), that there exists a positive constant K1 that depends on
KZ, S, λ, λ, and κ1, but does not depend on i and t or p, such that P(Xt ∈ Si) ≤ K1p1/2δ. �

Proposition B.2. Let Z be a p-dimensional random vector. Suppose P(Z ∈ E) ≤
KZP(S ∈ E) holds for some p-dimensional spherical random vector S whose density is
assumed to exist, some positive constant KZ and any E ∈ B(Rp). Define the set S = {z ∈
R

p : a ≤ z1 ≤ a+b
√

z2
2 +·· ·+ z2

p} for some a,b > 0.

Then, there is a positive constant C such that P(Z ∈ S) ≤ Cp
1
2 b.

Proof. For convenience, we show this result for p > 2 and for a = 0. We have

P(Z ∈ S) = P

(
0 ≤ Z1 ≤ b

√
Z2

2 +. . . +Z2
p

)
= P

(
0 ≤ Z2

1 ≤ b2(Z2
2 +·· ·+Z2

p)
)

= P

(
0 ≤ Z2

1

‖Z‖2
2

≤ b2 ‖Z‖2
2 −Z2

1

‖Z‖2
2

)
= P

(
0 ≤ Z1

‖Z‖2
≤ b√

1+b2

)
.

Consider the p-spherical transformation of Z (Fang and Zhang, 1990, Exam. 1.6.8)

(Z1, . . . ,Zi, . . . ,Zp)′ = r

⎛⎝cosθ1, . . . ,

i−1∏
k=1

sinθk cosθi, . . . ,

p−2∏
k=1

sinθk sinθp−1

⎞⎠′
,

where r ∈ [0,∞), θi ∈ [0,π ] for 1 ≤ i ≤ p−2 and θp−1 ∈ [0,2π ]. We remark that r denotes
‖Z‖2 and that the angles θ1, . . . ,θp−1 are set according to the following scheme: θ1 is the
angle between the z1 axis and the vector Z; θ2 is the angle between the projection of the
Z vector on the span generated by z2, . . . ,zp, which we denote by Z(1), and the z2 axis; θ3
is the angle between the projection of Z(1) on the span generated by z3, . . . ,zp, which we
denote by Z(2), and the z3 axis; . . .; θp−1 is the angle between the projection of Z(p−2) on
the span generated by Zp−1,Zp and the zp−1 axis. If we let ϑ denote the angle such that

cos(ϑ) = b/
√

1+b2, then we have

P

(
0 ≤ Z1

‖Z‖2
≤ b√

1+b2

)
= P

(
0 ≤ cosθ1 ≤ b√

1+b2

)
= P

(
ϑ ≤ θ1 ≤ π

2

)
. (B.3)
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We use KZ and the distribution of S to bound the probability in (B.3). Fang et al. (1990, Thm.

2.11) establish that the density of θ1 implied by S is given fθ1(t) = �
( p

2

)
�
(

1
2

)
�
(

p−1
2

) sinp−2 t.

Then we have that (B.3) is upper bounded by

KZ

∫ π/2

ϑ

fθ1 (t)dt
(a)≤ KZ√

π

�
( p

2

)
�
(

p−1
2

) ∫ π/2

ϑ

1dt
(b)≤ KZ√

2π
p1/2

(π

2
−ϑ

) (c)≤ KZ

2

√
π

2
p1/2 b√

1+b2
,

where (a) follows from the fact that for any θ it holds that sinp−2 θ ≤ 1, (b) follows from
the fact that for x > 0 and s ∈ (0,1) it holds that �(x+1)/�(x+s) < (x+1)1−s (Gautschi’s
inequality), and (c) follows from the fact that π

2 − ϑ = π
2 − arccos(cos(ϑ)) ≤ π

2 cos(ϑ).

The claim then follows since, for any b > 0, we have that b/
√

1+b2 < b. �

Proposition B.3. Let {Zt}T
t=1 be a sequence of centered Bernoulli random variables.

Suppose that the α-mixing coefficients of the sequence satisfy α(l) < exp(−Kα lrα ) for some
Kα > 0 and rα > 0.

Define p = 
KpTrp� for some Kp > 0 and rp ∈ [0,rα/(rα +1)) and define

εT =
√

K1K2p log(T)

T
rα

rα+1
+
√

K2log(T)

T
rα

rα+1
,

where K1 = 3/2 and K2 = 64σ 2 with σ 2 = ( 1
4 +8

∑∞
l=1 α(l)).

Then, for any K3 > 0 and all T sufficiently large, it holds that(
1+ K3p

1
2

εT

)p

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Zt

∣∣∣∣∣∣> εT

⎞⎠≤ 4

T
+o

(
1

T

)
.

Proof. We begin by noting that Zt is zero mean and that sup1≤t≤T ‖Zt‖L∞ ≤ 1, thus it
satisfies the mixing and moment conditions of Theorem 2.1 of Liebscher (1996). Define

MT = 
T
1

rα+1 � and note that for all T ≥ 2 we have that MT ∈ [1,T] and 4MT < TεT , as
required by the theorem. Then, we have

P

⎛⎝∣∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣∣> TεT

⎞⎠≤ 4exp

(
− Tε2

T

64D(T,MT )/MT + 8
3 MTεT

)
+4

T

MT
e−KαMrα

T

with D(T,MT ) = sup0≤j≤T−1E

[(∑j+MT∧T
t=j+1 Zt

)2
]

. Define γ (l) = sup1≤t≤T−l |Cov(Zt,

Zt+l)| for l = 0, . . . ,T −1. Note that γ (0) ≤ 1/4 and, by Billingsley’s inequality (Bosq, 1998,
Cor. 1.1), that γ (l) ≤ 4α(l) for l = 1, . . . ,T −1. Thus, it holds that D(T,MT ) ≤ MTγ (0)+
2MT

∑MT−1
l=1 γ (l) ≤ MT ( 1

4 +8
∑∞

l=1 α(l)) = MTσ 2. We have(
1+ K3p

1
2

εT

)p

P

⎛⎝∣∣∣∣∣∣ 1

T

T∑
t=1

Zt

∣∣∣∣∣∣> εT

⎞⎠
≤ 4

(
1+ K3p

1
2

εT

)p

exp

(
− Tε2

T

64σ 2 + 8
3 MTεT

)
+4

(
1+ K3p

1
2

εT

)p
T

MT
e−KαMrα

T
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≤ 4

(
1+ K3p

1
2

εT

)p

exp

⎛⎝− T
rα

rα+1 ε2
T

64σ 2 + 8
3εT

⎞⎠+8

(
1+ K3p

1
2

εT

)p

T
rα

rα+1 exp

(
− Kα

2rα
T

rα
rα+1

)
(a)≤ 4

(
1+ K3p

1
2

εT

)p

exp

(
−T

rα
rα+1

64σ 2
ε2

T

)
+8

(
1+ K3p

1
2

εT

)p

T
rα

rα+1 exp

(
− Kα

2rα
T

rα
rα+1

)
= AT +BT,

where (a) follows from the fact that x2/(64s2 +8/3x) > x2/(64s2 +8/3) for any x in (0,1]
and σ 2 > 1/4. Note that for all T sufficiently large, we have

log

(
1+ K3p

1
2

εT

)p

= p log
(
εT +K3p

1
2

)
−p log(εT )

= 1

2
p log(p)+p log

(
εT

p
1
2

+K3

)
−p log(εT )

≤ 1

2
p log(Kp)+ rp

2
p log(T)+p log(1+K3)−p log(εT )

≤
(

1

2
+ rp

2
+1+ rα

2(rα +1)

)
p log(T) < K1p log(T),

where the last inequality follows from the fact that rp < 1 and rα/(2(rα +1)) < 1. Finally,
the claim follows after noting that for all T sufficiently large, we have

AT ≤ 4exp

(
K1p log(T)− T

rα
rα+1

K2
ε2

T

)
(a)≤ 4exp(K1p log(T)−K1p log(T)− log(T)) ≤ 4exp(− log(T)) = 4

T
,

where (a) follows from the fact that (x+ y)2 ≥ x2 + y2 for x,y ≥ 0, and that

BT ≤ 8

(
1+ K3p1/2

εT

)p

T
rα

rα+1 exp

(
− Kα

2rα
T

rα
rα+1

)
≤ 8exp

(
rα

rα +1
log(T)+K1KpTrp log(T)− Kα

2rα
T

rα
rα+1

)
= o

(
1

T

)
. �

Proposition B.4. Let {Zt}T
t=1 be a sequence of p-dimensional zero-mean random vec-

tors. Suppose that (i) sup1≤i≤p sup1≤t≤T ‖Zit‖L2 ≤ Km and sup1≤i≤p sup1≤t≤T ‖Zit‖Lrm
≤

2Km for some Km ≥ 1 and rm > 2; (ii) the α-mixing coefficients of the sequence satisfy
α(l) < exp(−Kα lrα ) for some Kα > 0 and rα > 0; and (iii) p = 
KpTrp� for some Kp > 0
and rp ∈ [0,(rm −2)/2∧1).

Then, for all T sufficiently large, it holds that

P

⎛⎝∥∥∥∥∥∥ 1

T

T∑
t=1

Zt

∥∥∥∥∥∥
2

> 12σ

√
p log(T)

T

⎞⎠≤ 3Kp(2Km)rm

σ log(T)
+o

(
1

log(T)

)
,

where σ 2 = K2
m(1+128 rm

rm−2
∑∞

l=1 α(l)1− 2
rm ).
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Proof. For any positive constant K, we have that

P

⎛⎝∥∥∥∥∥∥ 1

T

T∑
t=1

Zt

∥∥∥∥∥∥
2

> K

√
p log(T)

T

⎞⎠≤ P

⎛⎝ max
1≤i≤p

∣∣∣∣∣∣ 1

T

T∑
t=1

Zit

∣∣∣∣∣∣> K

√
log(T)

T

⎞⎠
≤ p max

1≤i≤p
P

⎛⎝∣∣∣∣∣∣
T∑

t=1

Zit

∣∣∣∣∣∣> K
√

T log(T)

⎞⎠ .

Let
∑T

t=1 Zit =∑T
t=1 Z′

i t +
∑T

t=1 Z′′
i t, where Z′

i t = Zit1(|Zit| ≤ bT )−E(Zit1(|Zit| ≤ bT ))

and Z′′
i t = Zit1(|Zit| > bT )−E(Zit1(|Zit| > bT )). For any λ ∈ (0,1), we have

p max
1≤i≤p

P

(∣∣∣∣∣
T∑

t=1

Zit

∣∣∣∣∣> K
√

T log(T)

)

≤ p max
1≤i≤p

P

(∣∣∣∣∣
T∑

t=1

Z′
i t

∣∣∣∣∣> λK
√

T log(T)

)
+p max

1≤i≤p
P

(∣∣∣∣∣
T∑

t=1

Z′′
i t

∣∣∣∣∣> (1−λ)K
√

T log(T)

)
.

The sequence {Z′
i t}T

t=1 has the same mixing properties as {Zt}T
t=1 and sup1≤i≤p

sup1≤t≤T ‖Z′
i t‖∞ < 2bT . Define ε′

T = λKT
1
2
√

log(T), bT = (T
1+2rp

2
√

log(T))
1

rm−1 and

MT = 
b−1
T T

1
2 /
√

log(T)�. For all T sufficiently large, the conditions of Theorem 2.1 of
Liebscher (1996) are satisfied, since for all T sufficiently large, we have that MT ∈ [1,T]
and 4(2bT )MT < ε′

T and we have

p max
1≤i≤p

P

⎛⎝∣∣∣∣∣∣
T∑

t=1

Z′
i t

∣∣∣∣∣∣> ε′
T

⎞⎠
≤ 4pexp

(
− (ε′

T )2

64 T
MT

D(T,MT )+ 16
3 bT MTε′

T

)
+4

pT

MT
exp

(−KαMrα
T

)
with D(T,MT ) = sup0≤j≤T−1E

[(∑j+MT∧T
t=j+1 Z′

i t

)2
]

. Define γ (l) = sup1≤i≤p sup1≤t≤T−l

|Cov(Z′
i t,Z

′
i t+l)| for l = 0, . . . ,T − 1 and note that D(T,MT ) ≤ MT

∑T−1
l=−T+1 γ (l). Next,

we note that γ (0) ≤ K2
m since

Var(Z′
i t) = ‖Zit1(|Zit| ≤ bT )‖2

L2
− [E(Zit1(|Zit| ≤ bT ))]2 ≤ ‖Zit‖2

L2
≤ K2

m.

Davydov’s inequality (Bosq, 1998, Cor. 1.1) implies that

γ (l) ≤ 4
rm

rm −2
α(l)1− 2

rm ‖Z′
i t‖Lrm

‖Z′
i t+l‖Lrm

≤ 64K2
m

rm

rm −2
α(l)1− 2

rm ,

for l = 1, . . . ,T −1, where we have used the fact that

‖Z′
i t‖Lrm

≤ ‖Zit1(|Zit| ≤ bT )‖Lrm
+‖E(Zit1(|Zit| ≤ bT ))‖Lrm

≤ ‖Zit1(|Zit| ≤ bT )‖Lrm
+‖Zit1(|Zit| ≤ bT )‖L1

≤ 2‖Zit1(|Zit| ≤ bT )‖Lrm
≤ 2‖Zit‖Lrm

≤ 4Km.
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These together imply that D(T,MT ) ≤ MT K2
m(1+128 rm

rm−2
∑∞

l=1 α(l)1− 2
rm ) = MTσ 2. For

any K that satisfies

K >
1

λ

(
8

√
σ 2 + 1

9
+ 8

3

)
, (B.4)

we have 1−λ2K2/(64σ 2 + 16
3 λK) < 0. Notice that the condition is satisfied, for instance,

by K = λ−18
√

2σ 2 since σ 2 ≥ 1. Thus, for any K that satisfies this, we have

p max
1≤i≤p

P

(∣∣∣∣∣
T∑

t=1

Z′
i t

∣∣∣∣∣> ε′
T

)
≤ 4Kp exp

(
rp log(T)− λ2K2T log(T)

64σ 2T + 16
3 λKT

)
+4KpT1+rp exp

(−KαMrα
T

)
≤ 4Kp exp

([
rp − λ2K2

64σ 2 + 16
3 λK

]
log(T)

)
+4KpT1+rp exp

(−KαMrα
T

)
≤ o

(
1

log(T)

)
.

Let ε′′
T = (1−λ)KT

1
2
√

log(T) and note that

p max
1≤i≤p

P

(∣∣∣∣∣
T∑

t=1

Z′′
i t

∣∣∣∣∣> ε′′
T

)
(a)≤ p

ε′′
T

max
1≤i≤p

E

∣∣∣∣∣
T∑

t=1

Z′′
i t

∣∣∣∣∣≤ p

ε′′
T

T∑
t=1

max
1≤i≤p

E|Z′′
i t|

≤ 2p

ε′′
T

T∑
t=1

max
1≤i≤p

E |Zit1(|Zit| > bT )|

(b)≤ 2p

ε′′
T

T∑
t=1

max1≤i≤pE|Zit|rm

brm−1
T

≤ 2pT(2Km)rm

ε′′
T brm−1

T

= 2Kp(2Km)rm

(1−λ)K log(T)
,

where (a) follows from Markov’s inequality and (b) from the inequality E(|Z1(|Z| > b)|) ≤
E(|Z|r)/br−1 for a random variable Z with finite rth moment and positive constant b. The
claim follows after picking λ = 8

√
2/12 and noticing that K = 12σ satisfies (B.4). �
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