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ON GROUPS WITH SMALL ORDERS OF ELEMENTS
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To Bernhard Neumann on his 90th birthday

For a periodic group G, denote by w{G) the set of orders of elements in G. We prove
that if u(G) is a proper subset of the set {1,2,3,4,5} then either G is locally finite
or G contains a nilpotent normal subgroup N such that G/N is a 5-group.

Let G be a periodic group. Denote by w(G) the set of orders of elements in G. It
is obvious that a group with u>(G) = {1,2} is elementary Abelian. Levi and van der
Waerden [5] proved that if UJ{G) = {1,3} then G is nilpotent of class at most 3. B.H.
Neumann [6] described the groups with w(G) = {1,2,3}. Sanov [8] and M. Hall [1] stated
that a group G with u>{G) C {1,2,3,4}, respectively with w(G) C {1,2,3,6}, is locally
finite. Nothing is known about local finiteness of groups of exponent 5, but it follows
from [11] that every group G with UJ{G) = {1,2,3,5} is isomorphic to the alternating
group A5.

In this direction, we prove the following results.

THEOREM 1 . Let G be a group with w(G) = {1,3,5}. Then one of the following
holds:

(i) G = FT where F is a normal 5-subgroup which is nilpotent of class at

most 2 and \T\ = 3;

(ii) G contains a normai 3-subgroup T which is nilpotent of class at most 3
such that G/T is a 5-group.

THEOREM 2 . Ifu(G) = {1,2,5} then G contains either an elementary Abelian
5-subgroup of index 2, or an elementary abelian normal Sylow 2-subgroup.

THEOREM 3 . Ifui{G) = {1,2,4,5} then one of the following holds:

(i) G — TD where T is a non-triviai elementary Abelian 2-group and D is a

non-Abelian group of order 10;

(ii) G = FT where F is an elementary Abelian normal 5-subgroup and T is
isomorphic to a subgroup of a quaternion group of order 8.
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198 N.D. Gupta and V.D. Mazurov [2]

(iii) G contains a normal 2-subgroup T which is nilpotent of class at most 6
such that G/T is a 5-group.

In a forthcoming paper, we prove that every group G with cu(G) — {1,2,3,4,5}
is locally finite. In this connection, we propose a conjecture that every group in the
conclusion of Theorems 1-3 is also locally finite. This is equivalent to the following

CONJECTURE 1 . Let A be an automorphism group of an elementary Abelian
{2,3}-group G such that every non-trivial element of A fixes in G only the trivial element.
If A is of exponent 5 then A is cyclic.

NOTATION AND PRELIMINARY RESULTS

If H is a subgroup of a group G, x,y € G, X, Y are subsets of G then xv =
y-^xy, X« = {y^xy | x G X}, [x,y] = x'^y, xY = {x^ \ y € Y}, XY = {rc» | x €
X, y € Y], NH(X) = {g€H\X9 = X}, (X) is the subgroup generated by X, [X, Y] =
{[x,y] | x € X, y € Y}), CH(X) = {h € H | (Vx 6 X)[h,x] = l} , Z(G) = CG(G).
For a prime p, OP(G) is the product of all normal p-subgroups of G, Am and Sm denote,
respectively, the alternating and symmetric group on m letters.

An automorphism group of a group is said to be regular if every non-trivial element
of it is fixed-point-free.

LEMMA 1 . IfR = (r) is a regular automorphism group of order 3 of a finite group
H then, for every Abelian subgroup A of H, (AR) — (A, AT) and (A, AT) is Abelian.

P R O O F : Let HR be the natural semi-direct product of H and R. Then HR is a
Frobenius group and hence (hr~l) = 1 for every element h € H. Since (/ir"1)3 =
hhThr\ we have hr2 = (h,-l)rh-1. Therefore Ar* ^ (A,AT). Let a,b € A. Then 1 =
ab(ab)r(ab)ri = ab(arbr)ar2bT2 = a{bbT)(arari)br2 = a M ' V 1 ^ = [a"1, ft1"2]. Therefore
[a, 6r2] = 1 and [ar, b] = 1. This means that Ar centralises A. The lemma is proved. D

An element of order 2 in a group is called an involution. The proof of the following
well-known lemma is straightforward.

LEMMA 2 . Let i, j be involutions. Then the following hold:

1. For every x € (ij), xl = xj = x~l.

2. If the order ofij is finite and odd then i,j are conjugate by an element in

(ij) and by an involution in i(ij).

3. If the order ofij is finite and even, then (ij) contains an involution which

commutes with i and j .

LEMMA 3 . Suppose that t is an involution in the automorphism group A of a
periodic group G. If t is fixed-point-free then, for every g G G, gl = g~l, G is Abelian
and t lies in the centre of A.
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PROOF: Let H = G(t) be the natural semi-direct product and g e G. Since Cu{t) =

(t) and t9t = g'Hgt = g~lgl e G, the order of t9t is odd, by part 3 of Lemma 2. By part

2 of Lemma 2 there exists an involution i e tG such that t9* = t and hence pi = 1 or

gi = t. If yi = 1 then g = i & tG which is not the case. Thus gi = t, g — ti and by part 1

of Lemma 2, gl = g~l. If h £ G then #/i = {h^g'1)'1 = ( / iV) ' = /is, and G is Abelian.

If a 6 .4 then g t o = {g~l)a = (ga)~l = gat and hence ta = at. The lemma is proved. D

LEMMA 4 . Let A be a proper subgroup of a group H. If A contains no elements

of order 3 and every element in H \ A is a 3-element then A is normal in H and A is

nilpotent of class at most 2.

PROOF: It is obvious that A is normal in H. Let x be an element of order 3 in H.

Then, for every a 6 A, ax~l 0 A, so ( a i " 1 ) 3 = 1 and hence aaxax2 = 1. It was proved by

B.H. Neumann [7] that , in this situation, every element of A commutes with each of its

conjugates. By a result of Levi [4], A is nilpotent of class at most 3 and the third term

T of the lower central series of A is of exponent 3. By assumption, T = 1. The lemma is

proved. D

LEMMA 5 . Let G be a finite group with u(G) = {1 ,3 ,5} . Then G contains a

normal Sylow subgroup of prime index with non-cyclic centre.

P R O O F : Since the order of G is divisible only by two distinct prime numbers, G is

soluble and Op(G) ^ 1 for p = 3 or p = 5. If F/OP(G) is a minimal normal subgroup

of G/OP(G) then F is a Frobenius group and Z[Op{G)j is non-cyclic. By [3, Theorem

V.8.15], F/OP(G) is cyclic and hence F = G. D

LEMMA 6 . Let u(G) = {1,2,4,5}. IfV = O2(G) ^ 1 and G = VD where D is a
dihedral group of order 10 generated by an involution t and an element r of order 5 then
V is elementary Abelian, [V,t] = Cv(t) and \V : Cv{t)\ > 2.

PROOF: Suppose that V is elementary Abelian. If v S Cv{t) then W = (v^) is a
£>-invariant subgroup of order 16, v e [W,t] and 2 < W : Cw(t)\ ^ V : Cv(t)\. Thus, it
suffices to prove that V is elementary Abelian. Since G is locally finite, we can assume
that G is finite and proceed by induction on \G\. Suppose that V is not elementary
Abelian. Let Z be a minimal normal subgroup of G. Then Z ^ Z(V), \Z\ = 16 and V/Z
is elementary Abelian. If C/Z = Cy/z(t) and C contains an element u of order 4 then
U = (ii<r>)Z is a D-invariant subgroup and all elements in U\Z are of order 4. But then G
contains an element of order 8. Thus C is elementary Abelian. Let v € V be an element
of order 4. Then, by induction, V = (v<r>)Z, \V\ = 212 and \C\ = 28. UceC\Z then
Uc = (c^)Z is an elementary Abelian group of order 28 and C/Cl n UC2 = Z if C\Z / c2Z.
Thus V = UCl UC2 for some C\, c2 and there exists a uniquely defined D-homomorphism <p of
the tensor product X®Y of a D-module X = UCl/D and D-module Y = UC2/Z into a D-
module Z which extends the map xZ®yZ -> [x, y\. Let F be a splitting field of D over a

https://doi.org/10.1017/S0004972700036339 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036339


200 N.D. Gupta and V.D. Mazurov [4]

field F2 of order 2, ~X - X®F2F, Y = Y®FiF, ~Z - Z®FlF. Then there exists a uniquely

defined homomorphism 0 of X ® Y into Z which extends <j>. Let 1 / A e F , A5 = 1.

We can choose bases {it \ i = 1 , . . . , 4 } , {j/j | z = 1 , . . . , 4 } and {ZJ | i = 1 , . . . ,4}

of X,Y,Z, respectively, such tha t x\ = X*Xi, y\ — X'yt, z\ = Xizi, i = 1 , . . . ,4 and

x\ = x4, x\ - x3, y[ - y4, y2 = y3, z\ = z4, z2 - z3. Denote {x,y) - ~4>{x®y). Since

(Xi,yi)r = (xJ.J/f) = (A'sj, A ^ ) = Ai+J(zi l%), we see that

(1) (zil%-) = 0for( i , i ) € {(1,4), (2,3), (3,2), (4,1)}, and, for other pairs (ij),
(Xi, Xj) = aiijZk where ai7- e F and A; is defined by A*+J' = Afc, 1 ̂  fc ^ 4.

Since C is Abelian,

(2) (x, +ar4,yi + 2/4) = (xj +x4,y2+y3) = (x2 + x3,y1 + y4)

- (x2+x3,y2 + y3) =0 .

By (1), (2) gives 0 = (x1+x4,yi+y4) = (xuyi) + {x4,y4) = anz2 + a44z3 and hence

Similarly,

{xi,y2) = (14,2/2) = (0:1,2/3) = (14,2/3) = 0,

( i2 , ?/i) = (2:3,2/1) = (3:2,2/4) = (13,2/4) = 0,

Thus 0 is the zero-homomorphism, [x,y] = 1 for x € UCl,y e UC2 and V is elementary
Abelian. The lemma is proved. D

LEMMA 7 . Letu(G) C {1,2,4,5}. IfG is locally finite then either G has a normal
Sylow subgroup or G = VD where V = O2(G) is a non-trivial elementary Abelian group
and D is a dihedral group of order 10.

P R O O F : Suppose first that G is finite and proceed by induction on G. If V —
O2(G) ^ 1 then, by induction, G/V contains a normal Sylow 5-subgroup P/V. If P = G
then the conclusion is true. If P ^ G, then P ^ V and, by [3, Theorem V.8.15],
\P : V\ = 5, G/V is a Frobenius group of order 10 or 20. In particular, there exist
involutions x, y 6 G \ P such that xy is not a 2-element and hence D = (x, y) is a
dihedral group of order 10. Let H = O2(G)D. By Lemma 6, V = O2{H) is elementary
Abelian. If G/V contains an element of order 4 then G contains an element of order
8. Thus H = G and the conclusion is true. If O2(G) = 1 then P - O5(G) ^ 1 and
CQ(P) ^ P. By Lemma 3, Z(G/P) contains an element of order 2 and hence G/P is a
2-group.

Suppose G is infinite. If the product of every two 2-elements (every two 5-elements)
in G is a 2-element (respectively, 5-element) then a Sylow 2-subgroup (respectively, a
Sylow 5-subgroup) of G is normal in G. Suppose that there exist elements x, y, z, t
such that x,y are 2-elements, z,t are 5-elements, xy is not a 2-element and zt is not
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a 5-element. Then H = (x, y, z, t) is a finite group without non-trivial normal Sylow
subgroups. Therefore, V = Oi(H) is elementary Abelian and H = VD where D is a
dihedral group of order 10. Let C = Ca(V), N = CD. By Lemma 6, every element in C
is of order 2. If u 6 G then (u, H) is finite and hence H ^ CD = N. Thus N = G and
the lemma is proved. D

The following four lemmas can be verified by the coset enumeration algorithm (see,
for instance [9]):

LEMMA 8 . Let A = (a, b | R). Table 1 gives the order of A for some defining

relations R.

Table 1 Table 2

R

27
75

1
62400

R

[a,
[a,

a.

b\5,
b}3,
b}3,

(ab
(ab

(ab

~'ab)3

~'ab)3

~'ab)5

\A\

5
3 9 - 5

5

a\b3,(ab)3,(ab-1)3

a3,b3,(ab)3,(ab-lf
a\b3,(ab)5,(ab-l)5,(aba-lb)3

a3,b\(ab)5,(ab-l)5,(aba-lb)5

LEMMA 9 . Let A - (a, b | a3, ft5, {ab)5, (aft"1)5, (ab2)5, (ab~2)5, R ) . Table 2 gives
the order of A for various values of R.

LEMMA 1 0 . Let A = (a, b, c \ a3, b3, c3, aba-lb~l, (ac)5, (ac'1)3, (be)3, R). Table 3

gives the order of A for various values of R.

LEMMA 1 1 . Let A = (a, b \ a2, b5, R). Table 4 gives the order of A for various

values of R-

PROOFS OF MAIN RESULTS

Let G be a group with w(G) = {1,3,5}. Note, that if x3 = y3 = 1 for x,y &G then
(xy)3 = 1 or (x - 1y)3 = 1. Indeed, X = (x,y) is finite by Lemma 8 and if X ^ 1 then,
by Lemma 5, X contains a normal 5-subgroup Y of index 3, hence one of the elements
xy, x~ly is not contained in Y. Since every element in X \ Y is of order 3, the assertion
follows.

If G contains a normal Sylow 5-subgroup P then, by Lemma 4, P is nilpotent of
class at most 2 and hence G is locally finite. By Lemma 5, \G/P\ — 3. Suppose that
there exist elements a, b 6 G of order 5 such that ab is not a 5-element. Then the order of
c = ab is equal to 3 and (a, b) = (c, a). If (cal) = 1 for i = 1.2,3 or 4 then, for d = ca\
(a,b) = (c,a) — (c,d) is finite by Lemma 8. Suppose that, for i = 1,2,3,4, (ca') = 1.
Since (c~lc°)3 = 1 or (a?)3 - 1, by Lemma 9, (a, b) = (c, a) is finite. By Lemma 5, (a, b)
contains a subgroup T of order 9. Let if be a maximal 3-subgroup of G which contains
T. Then H is nilpotent of class at most 3 by [5]. Suppose that H is not a normal
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subgroup of G. Then there exists an element u 0 H of order 3 and an element v € H
such that vu is not a 3-element. Then the order of vu is equal to 5. Since H is non-cyclic
nilpotent, there exists an element t £ H such that (v, t) is an elementary Abelian group
of order 9. As above, (t, u) is finite and one of the elements tu, t~lu is of order 3. We can
assume that (tu)3 = 1. By Lemma 10, {u, v,t) is finite which is impossible by Lemma 5.
Theorem 1 is proved. D

Table 3 Table 4

R

(6c2)3, (abc)3,
(be2)3, (abc)3,

(be2)3, (abc)3,

(be2)3, (abc)3,

(be2)3, (abc)5,

(be2)3, (abc)3,

(be2)3, (abc)3,

(be2)3, (abc)5,

(be2)3, (abc)5,

(be2)5, (abc)3,

(be2)5, (abc)3,

(be2)5, (abc)3,

(be2)5, (abc)3,

(be2)5, (abc)3,

(be2)5, (abc)3,

(be2)5, (abc)5,

(be2)5, (abc)5,

(be2)5, (abc)5,

(abc2)3, (ab2cf,

(abc2)3, (ab2c)3,

(abc2)3, (ab2c)5,

(abc2)5, (ab2c)3,

(abc2)3, (ab2cf,

(abc2)5, (ab2c)3,

(abc2)5, (ab2c)5,

(abc2)3, (ab2c)3,

(abc')3, (ab2c)5,

(abc2)3, (ab2cf,

(abc2)3, (ab2c)3,

(abc2)3, (ab2c)5,

(abc2)5, (ab2cf,

(abc2)5, (ab2c)3,

(abc2)5, (ab2c)5,

(abc2)3, (ab2cf,

(abc2)3, (ab2c)3,

(abc2)3, (ab2c)5,

(ba2cf
(ba2cf
(ba2cf
(ba2c)3

(ba2cf
(ba2cf
(ba2c)3

(ba2cf
(ba2cf
(ba2cf
(ba2cf
(ba2cf
(ba2cf
(ba2cf
(ba2c)3

(ba2c)3

(ba2cf
(ba2c)3

\A\

9
3
3
3
3
1
1
1

75
3

75
1
1
1
1
1
1
1

R

(ab)5,

(ab)5,

(ab)5,

(ab)5,

(ab)4,

(ab)4,

(ab)4,

(ab)4,

[a,b}5,(bab)5

a,b]\(bab)5

a,bf,(bab)4

\a,b)\(bab)4

\a,b?,(bab)5

[a,b]\(bab)5

[a,b}5,(bab)4

[a,b]*,(bab)4

\A\

5
29-5

360
1
1

360
160

2

P R O O F OF THEOREM 2: Let G be a group with w(G) - {1,2,5}. By Lemma 11, every
subgroup H of G generated by an element of order 5 and an element of order 2 is finite.
If H contains a normal Sylow 5-subgroup P then, by Lemma 3, P is elementary Abelian
and hence H is a dihedral group of order 10. Suppose first that all subgroups of G
generated by an element of order 5 and an element of order 2 are of this type. Then
the product of every two 5-elements is a 5-element and hence O$(G) ^ 1. By Lemma 3,
G/O5(G) contains at most one involution and hence is a 2-group. Thus there exists an
H containing a non-trivial Sylow 2-subgroup T, and hence G contains an elementary
Abelian subgroup V of order 4. Let F be the subgroup of G generated by all involutions
in G. If F is a 2-group then the conclusion of the theorem is true.

Suppose that F is not a 2-group. Then there exists an element x € G of order 5 such
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that x = M2 • • • ts where every tt, i = 1 ,2 , . . . , s is an involution. Choose x such that s is

minimal. Then ti • • • ts-\ is an involution and X = (x, ta) is a dihedral group of order 10.

Let t — ts. If Cc(t) contains only one involution then, by Lemma 2, every involution in G

is a conjugate of t, t is contained in a subgroup which is a conjugate of V and hence Cc[t)

contains an involution u / t. If (ux) = 1 then the involution ut centralises x which is

impossible by assumption. Thus (u,x) is a finite subgroup which has a non-trivial normal

Sylow 2-subgroup. This subgroup is t-invariant and hence X = (u, x, t) is a finite group

which has no non-trivial normal Sylow subgroups. It is easy to see that H must contain

an element of order 4 contrary to the assumption. Thus, G contains a non-trivial normal

Sylow p-subgroup P . If p = 5 then, by Lemma 3, P is Abelian, G/P contains only one

involution and (i) holds. If p = 2 then P is elementary Abelian. Theorem 2 is proved. D

P R O O F O F T H E O R E M 3: Let G be a group with w(G) = {1 ,2 ,4 ,5} .

LEMMA 1 2 . Suppose that every finite non-trivial subgroup ofG contains a non-

trivial normal Sylow subgroup. Then G contains a non-trivial normal Sylow subgroup

and (ii) or (iii) in the conclusion of Theorem 3 holds.

P R O O F : Let F be the subgroup of G generated by all involutions in G. If F is a

2-group then G/F does not contain an element of order 4 or 10. By Theorem 3, the

conclusion of the theorem is true. Hence F is not a 2-group. It follows that there exists

an element x € G of order 5 such that x = txt2 •• -t, where every tit i = 1 ,2 , . . . , s is an

involution. Choose x such that s is minimal. Then t\--- ta_i is a non-trivial 2-element

and, by Lemma 11, X = (x,ts) is a finite group which cannot contain a normal Sylow

2-subgroup. Thus X is a dihedral group of order 10. Let t = ts. If Cc{t) contains

only one involution then Cdt) is a finite 2-group, by [10], G is locally finite and hence

contains, by Lemma 7, a non-trivial normal Sylow 5-subgroup.

Suppose that Cdt) contains an involution u ^ t. If (ux)2 = 1 then the involution

ut centralises x which is impossible by assumption. Thus (u, x) has a normal Sylow

2-subgroup and hence (ux)5 = 1. Thus (u, x) is a finite subgroup which has a non-

trivial normal Sylow 2-subgroup. This subgroup is t-invariant and hence (u, x, t) is a

finite group which has no non-trivial normal Sylow subgroups. This contradicts the

assumption. Therefore, G contains a non-trivial normal Sylow p-subgroup P. If p = 5

then, by Lemma 3, P is Abelian, G/P contains only one involution and, by [3, Theorem

V.8.15], (ii) holds. If p = 2 then P is locally finite. Let xlt.. .,x7 € P, y € G \ P.

Then the order of y is 5 and Y = ( i ! , . . . ,x7,y) is a finite group with a normal Sylow

2-subgroup Z = PC\Y. By assumption, (y) acts regularly on Z and Z is nilpotent of

class at most 6 by [2]. In particular, [ [ . . . [[2:1,12], ^3], • • -],x7] = 1. This means that P is

nilpotent of class at most 6 and (iii) holds. The lemma is proved. D

Suppose that G does not contain a non-trivial normal Sylow subgroup.

LEMMA 1 3 . There exists a non-trivial elementary Abelian subgroup V in G such
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that TV — NQ(V) — VD where D is generated by an element r of order 5 and an
involution t with rl = r~l. Furthermore, ifV0 is a non-trivial normal subgroup of N
which is contained in V then Nc(Vo) = N.

PROOF: By Lemmas 7 and 12, there exists a finite subgroup H of G such that
U = O2(H) is a non-trivial elementary Abelian group and H — UD where D is generated
by an element r of order 5 and an involution t with r( = r~l. Let V = CG(U). Then V is
a locally finite 2-group and N — VD is also locally finite. By Lemma 7, V is elementary
Abelian and, since U ^ V, CG{V) = V. Therefore O2(NG{V)) = O2{NG(V))D is also
elementary Abelian and hence 02(NG{V)) — V. If NQ{V)/V contains an invariant Sylow
5-subgroup then, by Lemma 12, NG(V) is locally finite. By Lemma 7, NG(V)/V ~ D.

If NG(V)/V does not contain an invariant Sylow 5-subgroup then, by Lemma 7,
NG{V)/V contains a subgroup 5 such that 02(5) ^ 1 and S/O2(S) ~ D. The full
preimage U of 02(S) in G is again elementary Abelian and hence U = V contrary to the
choice of 5. Thus NG(V) = N.

Suppose that 1 ^ Vo ^ V and Vo is normal in N. Then V ^ CG(V0), CG(V0)

is a Af-invariant 2-group and CG(V0)D is locally finite. Again, by Lemma 7, CG(V0)

is elementary Abelian and CG(V0) ^ CG(V) = V. Thus CG(V) = V and NG(V0) ^

NG(CG(V0)) = NG(V) = N. The lemma is proved. D

Throughout the rest of the proof, N, V, D, r, t are the subgroups and elements of G
defined in Lemma 13.

LEMMA 14 . If v is an involution in V then CG(v) ^ N.

P R O O F : Suppose that there exists x € CG(v) \ N. Then Vo — (vD,x) is a finite

2-subgroup in CG(v) and Vo & N. Let Vx = VC\V0. Then V ^ CG(VX) ^ CG((vD)) < V.

If Vi is normal in Vo then Vo ^ NoM) ^ iVG(CG(Vi)) = NG(V) = V contrary to the

choice of Vo. Thus V2 = NVo(Vi) ± V3 = NVo{V2). Let yeV3\ V2. Then V," ? Vu V? ±

Vy? ^ V2 < N and \VxVj1 : Vx\ = 2. But then |Vj : C y , ^ ) ! = 2, contradicting

Lemma 6. D

LEMMA 1 5 . If v is an involution in N\V then CG(v) ^ N.

P R O O F : Since (v, vr)/V ~ D, vvr is of order 5 and hence v £ NN(R) for some Sylow
5-subgroup R of N. Therefore v is a conjugate of t in N and we can assume that v = t.
Let Vo be a subgroup of order 4 in Cv(t). Then Vj = (Vo,t) is an elementary Abelian
group of order 8 in CG(t). Let x be an element in CG(t)\N. Then V2 — {V\,x) is a finite
subgroup in CG(t). Let V̂  = V2 D N. Then V3 = V4 x (t) where V4 < V and there exists
y € Nv,(V3) \ N. Since |V3 : V4| = 2 < |V4|, Cv4(y) ^ 1. This contradicts Lemma 14. D

LEMMA 1 6 . N = G.

P R O O F : There exists an involution v & N such that CN{V) is non-Abelian. Since,
By Lemma 15, CG{t) is Abelian, not all involutions of iV are conjugate in G. If all
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involutions of G are contained in N then N is normal in G and hence G ^ Nc(V) — N.
Suppose that N ^ G and let x be an involution in G\N. Then there exists an involution
y £ N which is not a conjugate of x in G. By Lemma 2, there exists an involution
z € Z((x,y)). By Lemmas 14 and 15, z € CG(V) ^ N and x € CQ{Z) ^ N contrary to
the choice of x. The lemma and Theorem 3 are proved. D
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