§ 0. Introduction

A connected complex Lie group without non-constant holomorphic functions is called a toroidal group ([5]) or an \((H, C)\)-group ([9]). Let \(X\) be an \(n\)-dimensional toroidal group. Since a toroidal group is commutative ([5], [9] and [10]), \(X\) is isomorphic to the quotient group \(C^*/\Gamma\) by a lattice of \(C^*\). A complex torus is a compact toroidal group. Cousin first studied a non-compact toroidal group ([2]).

Let \(L\) be a holomorphic line bundle over \(X\). \(L\) is said to be homogeneous if \(T^*_xL\) is isomorphic to \(L\) for all \(x \in X\), where \(T_x\) is the translation defined by \(x \in X\). It is well-known that if \(X\) is a complex torus, then the following assertions are equivalent:

1. \(L\) is topologically trivial.
2. \(L\) is given by a representation of \(\Gamma\).
3. \(L\) is homogeneous.

But this is not always true for a toroidal group. Vogt showed in [11] that every topologically trivial holomorphic line bundle over \(X\) is homogeneous if and only if \(\dim H^r(X, \mathcal{O}) < \infty\) ([6]). The cohomology groups \(H^r(X, \mathcal{O})\) were classified by Kazama [3] and Kazama-Umeno [4].

In this paper we shall show the equivalence of conditions (2) and (3). In the case that \(X\) is a complex torus, a similar equivalence was proved for a vector bundle ([7] and [8]). We state our theorem.

Theorem. Let \(X = C^*/\Gamma\) be a toroidal group. Then every homogeneous line bundle over \(X\) is given by a 1-dimensional representation of \(\Gamma\).

The converse of the above theorem is easily seen by the definitions ([11, Proposition 6]). We shall prove the theorem by virtue of the following proposition.

Proposition. Every homogeneous line bundle over a toroidal group is topologically trivial.

Received July 27, 1987.
§ 1. Preliminaries

We state some results concerning toroidal groups and fix the notations used in this paper.

If $X = C^n/\Gamma$ is a toroidal group, then the rank of Γ is $n + m$, $0 < m \leq n$. Let $p^i = (p_{1i}, \ldots, p_{ni}), \ldots, p^{n+m} = (p_{1, n+m}, \ldots, p_{n, n+m}) \in C^n$ be generators of Γ. The $n \times (n + m)$ matrix

$$P = (\{p^i, \ldots, p^{n+m}\})$$

is called a period matrix of Γ. We may assume by Proposition 2 in [11] that Γ has a period matrix P as follows

$$(1.1) \quad P = \begin{pmatrix} 0 & T \\ I_{n-m} & R \end{pmatrix},$$

where I_{n-m} is the $(n - m) \times (n - m)$ unit matrix, T is a period matrix of an m-dimensional complex torus and R is a real $(n - m) \times 2m$ matrix with

$$\sigma R \notin 0 \mod Z^{2m} \quad \text{for all } \sigma \in Z^{n-m}\setminus\{0\}. \quad \tag{1.2}$$

Let $R_{p;m}$ be the real-linear subspace of C^n spanned by Γ. We denote by $C_{p;m}$ the maximal complex-linear subspace contained in $R_{p;m}$. When a period matrix P of Γ has the form as (1.1), $C_{p;m}$ is the space of the first m variables. Then we take the coordinates of $C^n = C_{p;m} \times C^{n-m}$ as (z, w) with $z \in C_{p;m}$, $w \in C^{n-m}$.

We refer the reader to [11] for the definitions of factors of automorphy and summands of automorphy.

Lemma 1 ([11, Proposition 8]). Let $X = C^n/\Gamma$ be a toroidal group. Then every summand of automorphy $b: \Gamma \times C^n \to C$ is equivalent to a summand of automorphy $a: \Gamma \times C^n \to C$ with the following properties:

a) $a(\gamma; z, w) = a(\gamma, w)$ for all $\gamma \in \Gamma$.

b) $a(\gamma; z, w) = 0$ for $\gamma \in (0 \, Z^{n-m})$.

c) For all $\gamma \in \Gamma$ the holomorphic function $a(\gamma; w) := a(\gamma, w)$ is Z^{n-m}-periodic.

A homomorphism $\alpha: \Gamma \to C^*$ is called a (1-dimensional) representation of Γ. Two representations α and β of Γ are equivalent if there exists a holomorphic function $g: C^n \to C^*$ such that

$$g(x + \gamma)\alpha(\gamma)g(x)^{-1} = \beta(\gamma).$$
for all \(\gamma \in \Gamma \) and \(x = (z, w) \in C^n \).

Lemma 2. Let \(X = C^n/\Gamma \) be a toroidal group and let \(\alpha: \Gamma \to C_1^\times = \{ \zeta \in C; |\zeta| = 1 \} \) be a homomorphism. If \(\alpha \) is equivalent to the constant map 1, then there exists a \(C \)-linear form \(L \) on \(C^n \) depending only on \(w \) such that
\[
\alpha(\gamma) = e(L(\gamma)) \quad \text{for all} \quad \gamma \in \Gamma,
\]
where \(e(x) = \exp(2\pi\sqrt{-1}x) \).

Proof. By the assumption, there exists a holomorphic function \(g: C^n \to C^* \) with \(g(x) = e(h(x)) \). All first order derivatives of \(h \) are \(\Gamma \)-periodic by (1.3). Then we can write \(h(x) = -\mathcal{L}(x) + c \), where \(\mathcal{L}(x) \) is a \(C \)-linear form on \(C^n \) and \(c \) is a complex number. Using (1.3) again, we have \(\alpha(\gamma) = e(\mathcal{L}(\gamma)) \). Since \(|\alpha(\gamma)| = 1 \) for all \(\gamma \in \Gamma \), \(L \) is real-valued on \(\mathfrak{g}^- + \mathfrak{m} \). Then \(L \) is constant on \(C^n \).

A factor of automorphy \(\alpha(\gamma; z, w) \) is called a theta factor if it is expressed by a linear polynomial \(\ell(\gamma; z, w) \) on \((z, w) \), so \(\alpha(\gamma; z, w) = e(\ell(\gamma; z, w)) \).

Lemma 3 ([5]). Let \(\rho(\gamma; z, w) \) be a theta factor for \(\Gamma \) on \(C^n \). Then there exist a hermitian form \(\mathcal{H} \) on \(C^n \times C^n \) with \(\mathcal{H} := \text{Im} \mathcal{H} \) \(\mathbb{Z} \)-valued on \(\Gamma \times \Gamma \), a \(C \)-bilinear symmetric form \(\mathcal{J} \), a \(C \)-linear form \(\mathcal{L} \) and a semi-character \(\psi \) of \(\Gamma \) associated with \(\mathcal{H}^\Gamma \) such that
\[
\rho(\gamma; z, w) = \psi(\gamma)e\left[\frac{1}{2\sqrt{-1}}(\mathcal{H} + \mathcal{J})(\gamma; z, w) + \frac{1}{4\sqrt{-1}}(\mathcal{H} + \mathcal{J})(\gamma, \gamma) + \mathcal{L}(\gamma)\right]
\]
for all \(\gamma \in \Gamma \) and \((z, w) \in C^n \). We say that \(\rho \) is of type \((\mathcal{H}, \psi, \mathcal{J}, \mathcal{L})\) when it has an expression as the above.

Remark. If rank \(\Gamma = 2n \), then \(\rho \) is of the unique type. But in general, a type of \(\rho \) is not uniquely decided. Let \(\mathcal{R}_F^{+m} = C_F^m \oplus V \), where \(V \) is a real-linear subspace of \(\mathcal{R}_F^{+m} \). Then \(C^n = C_F^n \oplus V \oplus \sqrt{-1}V \). A hermitian form \(\mathcal{H} \) changes according to the choice of \(\mathcal{H}^\Gamma \). We may assume that \(\mathcal{H}^\Gamma_{\mathbb{R} \times \sqrt{-1} \mathbb{R}} = 0 \).

§ 2. Proof of the proposition

Let \(L \) be a homogeneous line bundle over a toroidal group \(X = C^n/\Gamma \). We may assume by a result of Vogt ([12], see also [1]) that \(L = L_\alpha \otimes L_\psi \),

\[\text{https://www.cambridge.org/core/terms} \]
\[\text{https://doi.org/10.1017/S0027763000001665} \]
where \(L_a \) is a topologically trivial holomorphic line bundle given by a factor of automorphy \(\alpha \) and \(L_p \) is a theta bundle given by a theta factor \(\rho \). Furthermore we may assume that \(\rho \) is reduced, i.e. \(\rho \) is of type \((\mathscr{H}, \psi) = (\mathscr{H}, \psi, 0, 0)\), and \(\alpha \) has the properties in Lemma 1.

Let \(\pi : C^n \to X \) be the projection. Take any \(x^* = (x_1^*, x_2^*) \in C^n \times Z^{n-m} \), and set \(x = \pi(x^*) \). The pull-back \(T^x_*L \) of \(L \) by a translation \(T_x \) is given by a factor of automorphy \(\alpha(\gamma, w - x_1^*)\rho(\gamma; z - x_1^*, w - x_2^*) \). Since \(\alpha(\gamma, w) \) is \(Z^{n-m} \)-periodic, we have \(T^x_*L_a = L_a \). Then \(T^x_*L_p \cong L_p \). We set \(\alpha := - x^* \) and \(\rho_1(\gamma; z, w) := \rho(\gamma; z - x_1^*, w - x_2^*) \). Then \(\rho_1 \) is of type \((\mathscr{H}, \psi, 0, \mathscr{L})\), where

\[
\psi_1(\gamma) := \psi(\gamma) e(-\mathscr{A}(a, \gamma)), \\
\mathscr{L}(z, w) := \frac{1}{2\sqrt{-1}} \mathscr{H}(a; z, w).
\]

We define a homomorphism \(\beta : \Gamma \to C^n \) by

\[
\beta(\gamma) := \psi(\gamma) e\left(-\mathscr{A}(a, \gamma)\right) = e(\mathscr{A}(a, \gamma)).
\]

Since \(\rho \cdot \rho_1 \) is equivalent to 1, \(\beta \) is also equivalent to 1. By Lemma 2 there exists a \(C \)-linear form \(\mathscr{L} \) on \(C^n \) depending only on \(w \) such that

\[
\beta(\gamma) = e(\mathscr{L}(\gamma)) \quad \text{for all } \gamma \in \Gamma.
\]

It follows immediately from the above equality that

\[
\mathscr{A}(a, x) = \mathscr{L}(x) \quad \text{for all } x \in R^{n+m}_r.
\]

Since \(a \in C^n \times Z^{n-m} \) is arbitrary, have

\[
\mathscr{A}(x, y) = 0 \quad \text{for all } x \in R^{n+m}_r \text{ and } y \in C^n.
\]

By Remark below Lemma 3 we may assume that \(\mathscr{A}|_{\Gamma \times \mathbb{R}^n} = 0 \). Then we have

\[
(2.1) \quad \mathscr{A}|_{C^n \times C^n} = 0 \text{ and } \mathscr{A}|_{C^n \times C^n} = 0,
\]

because \(\mathscr{A} \) is the imaginary part of a hermitian form \(\mathscr{H} \). By (2.1) a hermitian form \(\mathscr{H} \) is regarded as a hermitian form on \(C^{n-m} \times C^{n-m} \).

We set \((r_{n-m}, R) = (e_1, \ldots, e_{n-m}, r_1, \ldots, r_{m}) \) in the period matrix (1.1). Every \(r_k \) is represented as

\[
r_k = \sum_{j=1}^{n-m} r_{j,k} e_j, \quad r_{j,k} \in \mathbb{R}.
\]

For any \(i \) and \(k \) we have
HOMOGENEOUS LINE BUNDLES

\[J^*(e^i, r) = \sum_{j=1}^{n-m} r_j, e_j \in \mathbb{Z}. \]

Since \(X = C^n/\Gamma \) is a toroidal group, we obtain by (1.2) that

(2.2) \[J^*(e^i, e_j) = 0 \quad \text{for all } i, j = 1, \ldots, n - m. \]

By (2.1) and (2.2) we conclude

(2.3) \[J^* = 0 \quad \text{on } C^n \times C^n, \]

hence \(J^* = 0 \) on \(C^n \times C^n \). This means that \(L^*_1 \) is given by a representation of \(\Gamma \), therefore \(L^*_1 \) is topologically trivial.

§ 3. Proof of the theorem

Let \(L \) be a homogeneous line bundle over a toroidal group \(X = C^n/\Gamma \). By Proposition \(L \) is topologically trivial. Then \(L \) is given by a factor of automorphy \(\alpha(\gamma, w) = \exp(a(\gamma, w)), \) where a summand of automorphy \(a(\gamma, w) \) has the properties in Lemma 1. Since \(L \) is homogeneous, \(a(\gamma, w + x) \) and \(a(\gamma, w) \) are equivalent for all \(x \in C^{n-m} \). That is, there exist a holomorphic function \(g_x : C^n \to C \) and a homomorphism \(n_x : \Gamma \to \mathbb{Z} \) for any \(x \) such that

(3.1) \[g_x(z + \gamma, w + \gamma) - g_x(z, w) = a(\gamma, w + x) - a(\gamma, w) + 2\pi \sqrt{-1} n_x(\gamma) \]

for all \(\gamma \in \Gamma \) and \(z, w \in C^n \). We see by (3.1) that all first order derivatives of \(g_x \) with respect to \(z \) are \(\Gamma \)-periodic. Then \(g_x \) is expressed as

\[g_x(z, w) = \ell_x(z) + h_x(w), \]

where \(\ell_x(z) \) is a \(C \)-linear form on \(C^n \) and \(h_x(w) \) is a holomorphic function on \(C^{n-m} \). By (3.1) it holds that

(3.2) \[h_x(w + \gamma) - h_x(w) = a(\gamma, w + x) - a(\gamma, w) + 2\pi \sqrt{-1} n_x(\gamma) - \ell_x(\gamma) \]

\[= a(\gamma, w + x) - a(\gamma, w) + c_x(\gamma) \]

for all \(\gamma \in \Gamma \) and \(w \in C^{n-m} \), where we set \(c_x(\gamma) = 2\pi \sqrt{-1} n_x(\gamma) - \ell_x(\gamma) \).

Let \(p^l = (p^l_1, p^l_2) \in C^n \times C^{n-m} \). We define a \(C \)-linear form \(L_x(w) \) on \(C^{n-m} \) by

\[L_x(w) := \sum_{j=1}^{n-m} c_x(p^l_j) w_j. \]

Putting \(\tilde{g}_x(w) := h_x(w) - L_x(w) \), we have by (3.2) that

\[\tilde{g}_x(w + \gamma) - \tilde{g}_x(w) = a(\gamma, w + x) - a(\gamma, w) + c_x(\gamma) - L_x(\gamma). \]
for all $\gamma \in \Gamma$ and $w \in \mathcal{C}^{n-m}$. We set newly $g_x(w) = \tilde{g}_x(w)$ and $c_x(\gamma) = c_x(\gamma) - \mathcal{L}_x(\gamma)$. Then we have

$$(3.1') \quad g_x(w + \gamma) - g_x(w) = a(\gamma, w + x) - a(\gamma, w) + c_x(\gamma)$$

for all $\gamma \in \Gamma$ and $w \in \mathcal{C}^{n-m}$, where $c_x(\gamma) = 0$ for $\gamma \in (0 \mathcal{Z}^{n-m})$ and $g_x(w)$ is a \mathcal{Z}^{n-m}-periodic holomorphic function on \mathcal{C}^{n-m}.

We set $(I_{n-m} R) = (s_1, \ldots, s_{n+m})$, i.e. $s_j = p_j$ and define

$$b_j^i(w) := a(p', w + x) - a(p', w) + c_x(p').$$

Then $b_j^i(w)$ is a \mathcal{Z}^{n-m}-periodic holomorphic function on \mathcal{C}^{n-m}. We obtain by (3.1') that

$$(3.3) \quad g_x(w + s_j) - g_x(w) = b_j^i(w), \quad j = 1, \ldots, n + m.$$

We put

$$a(p', w) = \sum_{\sigma' \in \mathcal{Z}^{n-m}} a_{j,\sigma} e(\sigma'w),$$

$$b_j^i(w) = \sum_{\sigma' \in \mathcal{Z}^{n-m}} b_{i,\sigma}^j e(\sigma'w)$$

and

$$g_x(w) = \sum_{\sigma' \in \mathcal{Z}^{n-m}} g_{x,\sigma} e(\sigma'w).$$

Since $g_x(w)$ is a solution of the system of difference equations (3.3), we have

$$b_{i,0}^j = c_x(p') = 0$$

and

$$g_{x,\sigma} = \frac{b_{j,\sigma}^i}{e(\sigma's_j) - 1}, \quad \sigma \neq 0$$

for j with $\sigma's_j \in \mathcal{Z}$ ([11, Lemma 2]). The system of difference equations (3.3) is independent of $g_{x,0}$. So we may assume that $g_{x,0} = 0$. It follows from the definition of b_j^i that

$$(3.4) \quad g_{x,\sigma} = a_{j,\sigma} \frac{e(\sigma'x) - 1}{e(\sigma's_j) - 1}, \quad \sigma \neq 0.$$

For any $\gamma \in \Gamma$ we have

$$e(\sigma'(x + \gamma)) - 1 = e(\sigma'\gamma)(e(\sigma'x) - 1) + e(\sigma'\gamma) - 1.$$

Using (3.1'), (3.4) and the above equality, we get

$$(3.5) \quad g_{x+\gamma}(w) - g_x(w) = a(\gamma, w + x) - a(\gamma, w) + g_{\gamma}(w)$$
for all $r \in \Gamma$ and $w \in C^{n-m}$.

The series $\sum_{s \in \mathbb{Z}^{n-m}} g_{z,s}$ is absolutely convergent at each point $x \in C^{n-m}$. We shall show that this series is uniformly absolutely convergent in the wider sense on C^{n-m}. Let

$$A_\sigma := \begin{cases} \frac{a_{j,s}}{e(\sigma_i s_j) - 1} & \text{if } \sigma \neq 0 \\ 0 & \text{if } \sigma = 0. \end{cases}$$

Then

$$g_{z,s} = A_\sigma (e(\sigma_i x) - 1) \quad \text{for } \sigma \neq 0.$$

It suffices to show that $\sum_{s \in \mathbb{Z}^{n-m}} A_\sigma X^\sigma$ is uniformly absolutely convergent in the wider sense of C^{n-m}. Now we set

$$r_\sigma(x) := \exp(- 2\pi \sigma \text{Im } x).$$

Then we have

$$|g_{z,s}| \geq |A_\sigma||r_\sigma(x) - 1|.$$

We can write $r_\sigma(x) = r_i(x_i)^{\sigma_1 + \cdots + \sigma_{n-m}(x_{n-m})}$, where $r_i(x_i) := \exp(- 2\pi \text{Im } x_i)$, $i = 1, \ldots, n - m$. There exists a positive number C such that for sufficiently large $r_i(x_i), \ldots, r_{n-m}(x_{n-m})$

$$|r_\sigma(x) - 1| \geq C r(x)^{\sum_{i=1}^{n-m}(x_{n-m})}$$

for all $\sigma_1 > 0, \ldots, \sigma_{n-m} > 0$. Thus we have

(3.6) $\sum_{\sigma_1 \geq 0, \ldots, \sigma_{n-m} \geq 0} |A_\sigma||r_\sigma(x) - 1| \geq C \sum_{\sigma_1 > 0, \ldots, \sigma_{n-m} \geq 0} |A_\sigma||r_\sigma(x)^{\sum_{i=1}^{n-m}(x_{n-m})}.$

This implies that the series $\sum_{s \in \mathbb{Z}^{n-m}} A_\sigma X^\sigma$ is absolutely convergent in the wider sense on C^{n-m}. Also we have

(3.7) $\sum_{s \in \mathbb{Z}^{n-m}} A_\sigma X^\sigma = \sum_{\sigma_1 \geq 0, \ldots, \sigma_{n-m} \geq 0} A_\sigma X^\sigma + \sum_{\sigma_1 < 0, \sigma_2 \geq 0, \ldots, \sigma_{n-m} \geq 0} A_\sigma X^\sigma + \cdots + \sum_{\sigma_1 < 0, \ldots, \sigma_{n-m} < 0} A_\sigma X^\sigma.$

Since we can write $r_i(x_i)^{\epsilon_i} = r_i(- x_i)^{-\epsilon_i}$ when $\sigma_i < 0$, we obtain similar inequalities as (3.6) and each term in the right side of (3.7) is uniformly absolutely convergent in the wider sense on C^{n-m}. Hence $\sum_{s \in \mathbb{Z}^{n-m}} g_{z,s}$ is
uniformly absolutely convergent in the wider sense on C^{n-m}. Let $G(x) := g_x(0)$. Since each g_x is holomorphic, $G(X)$ is a holomorphic function on C^{n-m}. It follows from (3.5) that

\[(3.8) \quad G(x + \tau) - G(x) = a(\tau, x) - a(\tau, 0) + G(\tau)\]

for all $\tau \in \Gamma$. This implies that a factor of automorphy $a(\tau, x) = \exp(a(\tau, x))$ is equivalent to a representation $\exp(\phi(\tau))$ of Γ, where $\phi(\tau) := a(\tau, 0) - G(\tau)$.

References

Department of Mathematics
Toyama University
Gofuku, Toyama 930, Japan