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ON GL2(R) WHERE R IS A BOOLEAN RING 
BY 

JOSEPH G. ROSENSTEIN 

In this paper we characterize the 2 x 2 invertible matrices over a Boolean ring, 
and, using this characterization, show that every invertible matrix has order 
dividing 6. This suggests that GL2 of a Boolean ring is built up out of copies of the 
symmetric group S3. Indeed, if B is a finite Boolean ring, then GL2(B) turns out to 
be a direct sum of copies of S3. If Bis infinite, then GL2(B) is more difficult to cal
culate ; we present here descriptions of GL2(B) for the " extreme " cases of countable 
Boolean rings—namely, the Boolean ring which is generated by its atoms and the 
atomless Boolean ring. The former provides a negative answer to the question of 
whether the functor GL2() preserves inverse limits; the latter is a corollary of a 
theorem which states that, under certain circumstances, GL2() preserves direct 
limits. It turns out, in addition, that every invertible matrix is a product of elemen
tary ones, as is the case for matrices over a Euclidean domain. 

My interest in this topic was generated during a study of groups whose theories 
are X0-categorical—i.e. which can be characterized up to isomorphism, within the 
class of countable groups, by their first-order properties. One can show that such a 
group must be one of bounded order in which finitely generated subgroups are 
(uniformly) finite. The search for examples of such groups led me to study the 
GL2 of a Boolean ring. It turns out that the GL2 of an atomless Boolean ring is K0-
categorical, whereas the GL2 of the Boolean ring generated by its atoms is not 
(although it satisfies the conditions above). 

We adopt the following convention : by "ring" we shall always mean "commuta
tive ring with unit." 

The structure of GL2(R) has been studied extensively for many years; initially R 
was assumed to be a field, but subsequently this requirement was relaxed so that R 
was assumed to belong to certain classes of integral domains. (Cf. [1] and the refer
ences given there.) Boolean rings are of course far from integral domains; for, in a 
Boolean ring, a+a=0 and a2=a hold for all elements a of the ring. 

THEOREM 1. A matrix I ,) over a Boolean ring is invertible if and only if it can 

be written as 
/ a 1+a + x \ 
\l+a + x' a + w+xx'J 

where ax=x, ax'=x\ and aw=0. 
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Proof. We first note that for any ring R a matrix ( ,1 over R is invertible if 

and only if ad—be is a unit of R, in which case its inverse is 

/ d/ad—bc —b/ad—bc\ 
\ — c/ad— be a/ad— be) 

Now in a Boolean ring if xy = 1 then x = x(xy) = x2y = xy = 1, so that 1 is the only 
unit in a Boolean ring. Thus, since in addition a=—a for each element a of a 

Boolean ring, we can write the inverse of the original matrix as I I, the matrix 

having an inverse if and only if ad+bc= 1. 
Now set y=b + ab. Then ay=0. Hence b=x-\-y where ax=a(ab) = ab=x and 

ay=0. 
Similarly, set y' = c + ac. Then ay' = 0. Hence c = xf+y' where ax' = a(ae) = ac 

= x' and ay' = 0. 
Note that xy=(ax)y=x(ay) = 0 and similarly x'y==xy' = x'y'=0. In particular, 

be = (x+y)(x'+y') = xx'+yy'. 

Thus l=ad+bc = ad+xx'+yy' so that 

a — ad+a(xx') + a(yy') = ad+xx'. 

Hence if we set z=d+xxf, then az=ad-\-axx' = a. Thus d=xx' + z where az=a. 
If we set w=z+a, then d=xx'+a-\-w and aw=az+a=0. 

Hence can be written in the form ci) 
/ a x+y \ 
\x' + y' xx' + w + a)' 

where ax = x9 ax' = x\ ay = 0, ay' = 0, and aw = 0. Now write g=y+l+a and 
g ^ y + l + a; note that ag=ag'=0. Hence, 

yy' = ( l+a+g) ( l+ f l+g ' ) = l + a + g + g ' + g g ' 

so that l+a+yy'=g+g'+gg'. But on the other hand, since ad+bc=l, we get 

a(xx' + w+a) + (x+y)(x'+y') = 1 

and therefore xx' + a + xx'+yy' = 1. Thus l + a + j / = 0 . Hence g + g ' + g g ' = 0. 
But then g=g(g+g '+gg ' ) = 0 a n d, similarly, g' = 0. So ^ = 1 + 0 and y' = l+a. 

Therefore is of the form C Ï ) 
/ a l-\-a + x \ 
\l+a + x' a + w + xx'J' 
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where ax=x, ax'=x', and aw=0. Note also that xw=(ax)w=x(aw) = 0 and, 
similarly, x'w = 0. 

It is a simple matter to verify that a matrix of the form arrived at in the last 
paragraph is indeed invertible, and this proves the theorem. 

The representation given in Theorem 1 is unique, as can easily be verified. 

THEOREM 2. Let M e GL2(B). Then 

(i) M6 = 11 notation for I M> 

(ii) M2 = I if and only if 

/ a l + * + a \ 
\l+x' + a a / 

where ax=x, ax' = x' and xx' = 0. 
(iii) M3 = 1 if and only if 

/ a l + x + a\ 
\l+x + a l+jc / 

where ax = x. 

Proof. Since M e GL2(B), we can write M as 

/ a 1+a+x \ 
\l+a + x' a + w + xx')' 

where ax = x, ax' = x', and aw = 0. Then 

M2 = (l+xx' xx' + w\ 
\xx' + w 1 + w J 

and 

i + w l+a + x + w + xx'\ = ( a + 

\l+a + x'-
M3 

• - • ' + 1^4.^^' fl + W 

But M 3 G GL2(B) and so (M 3 ) _ 1 = M3 . Hence M6 = I, proving (i). (An alternative 
proof, suggested by the referee, is obtained by first observing, via Cayley's theorem, 
that if M e GL2{B) then M2 = / + MT, where Tis the trace of M, and then verifying 
that (/+ MT)3 = /.) 

If M2 = I, then XJC' = 0 and w = 0. So 

Conversely, if M is of this form, where ax=x, ax' = x\ and xx'=0, then M2 = L 
This proves (ii). 
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Finally, if M 3 =7, then 

a + w = 1, 
1+a + x+w+xx' = 0, 

and 

l+a + x' + w + xx' = 0. 

Hence x + xx' = 0 and x' + xx' = 0 so x = xx' = xf. Hence, making the appropriate 
substitutions, we see that Mean be written in the prescribed form. Conversely, if M 
is of this form then M3 = L This proves (hi). 

THEOREM 3. Let <JfQ={M \ M3=I}. Then <Jf3<\ GL2(B), and is Abelian. 

Proof. By direct computation. 

THEOREM 4. Every element of GL2(B) is a product of elementary matrices—i.e. 

matrices of the form I nJ and I ft -1 for ae B. 

Proof. If Me GL2(B\ then M=M*-M3, (M4)3 = /, and (M3)2 = 7, so it is suffi
cient to prove the claim for matrices of order 2 and order 3. 

If M2=I9 then by Theorem 2 we can write 

is ( a l+x + a\ 
M=[l+x' + a a )' 

where xx' = 0, ax=x, and ax' = x'. But then 

-CM MHKKUWÙ-
If M 3 =7, then by Theorem 2 we can write 

_ / a l+x + a\ 
~ [l+x+a l+x I 

where ax = x. But then 

"•(ÎMKMKMKH3-
The verifications we leave for the reader. 

Let B be a finite Boolean ring. Then, as is well known, B ̂  2o <; i* n -1 © A where, 
for each /, Bt is the field with two elements ; conversely, each such direct sum is a 
Boolean ring. Thus for each n > 1 there is a unique Boolean ring with 2n elements. 
Furthermore, if B is as above, each element be B can be described by an «-tuple 
<&o, bl9..., 6n_!> of 0's and l's. Let nb = {i\ ^ = 1 } . Then nbc = nb n nc so that 
nbc = nb iff nb^nc, and nbc= 0 iïïnb n nc= 0. 
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THEOREM 5.I/B has 2n elements then GL2(B) has 6n elements; of these, 3n have 
order 3 and 4n have order 2. 

Proof. There is a 1-1 correspondence between GL2{B) and the set of all quad
ruples <#, x, x\ w} of elements of B for which ax = x, ax' = xf, and aw = 0. This is 
true since 

/ a 1+a + x \ = / b l+b+y\ 
\l+a + x' w + a + xx'J \l+b+/ v + b+yy') 

if and only if a=b, x=y, x' =y\ and w = v. 
Suppose that aeB and na=k. We can then choose xin 2k different ways (since 

nx^na), we can choose x' in 2k different ways, and we can choose w in 2n~k different 
ways (since nw n na = 0). Hence the number of elements of GL2(B) which have a in 
the upper left-hand corner is exactly 2fc-2fc-2n~fc. The total number of a e B for 

which na=k is precisely I, j . Thus the number of elements in GL2(B) is 

2 (?) -2fc.2fc-2n-fc = 2n 2 ft) -2* = 2n'3n = 6n-

By Theorem 2, an element of GL2(B) has order 3 iff it has the form 

/ a l+x+a\ 
\l+x+a 1+x j 

where ax=x, so that the number of elements of order 3 is 

2 (£).2* = 3«. 
0 £ fc ̂  n W 

Similarly, an element of GL2(B) has order 2 iff it has the form 

/ a l+a+x\ 
\l+a + x' a j 

where xx'=09 ax=x, and ax' — x', so that the number of elements of order 2 is 

Theorem 5 suggests the possibility that GL2(B) is a direct sum of n six-element 
groups. One can see immediately that GL2(B) is not a direct sum of cyclic groups of 
order six, since such a direct sum would have to be commutative, which GL2(B) is 
not. The only other group with six elements is the group S3, the symmetric group 
on three letters. This group is generated by two elements c and d satisfying c2 = 1, 
d3 = l, and cd=d2c. 

THEOREM 6. If B has 2n elements, then G£2C#)-2o*i<n ©Gi5 where G^S^for 
each i. 
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Proof. For each i, 0<i<n, define b* to be the unique element of B satisfying 

t_(0 iîiïj 
b i - \ i i f / - ; . 

Define G* to consist of the following six elements of GL2{B) : 

(i a- (i n- a- a-
I *• 1+W' I 6' l ) ' and U 1+W' 

One can easily verify that G{ is a group isomorphic to S3 ; one can further verify, 
although the calculations are tedious, that GX<GL2(B). (The verification is simpli
fied if one first observes, as in Theorem 4, that we need only show that if M has 
order 2 and A e Gt then MAM e Gt and that if M has order 3 and AeG{ then 
MAM2 e Gt.) One can also verify straightforwardly that if A e Gt and B e Gy, 
where i^j, then AB=BA. In all of these verifications one must lean heavily on the 
fact that for every ae B either ab{ = bl or abl = 0, with the former taking place if and 
only if 0 t = l . 

To show that G0-\ \-Gn-1 = G0 ©• • • © Gn_x we need only show that if 
At e Gi for each i and A0AX'... -An-1 = I then A{=I for each /. (This is sufficient 
because we already know that elements of different Gj's commute.) 

Partition {0, 1,...,«— 1} into six sets Pl9...,P6 putting 

/into Pi iff At = L -I» 

i into P2 iff Ai = Lt A > 

lintoPs iff A= ( J 1+#)> 

i i n t o P 4 iff 4 = (fcl 1 + 6 , ) ' 

z into P5 m Ai = I „ b 

and 
i into PQ iff ^i = J. 

Now let B^YliePj dt for 1 <j<6. (This is well defined since the Afs commute.) 
Thus B1B2BQB4:B5 = L One can verify that 

* 1 = (o l ) ' **={<? l)' 5 s = C i a l+o*)* 

where #f = 1 iff i e Py. This, of course, implies that a V = 0 ifj^k. 
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But then 

B1BaBaBéBB = ^ a + a3 + a* + flB 1 + f l 3 + a4 ) • 

If this equals the identity, then it follows easily that a1 = a2 = a3 = a* = a5 = Q and 
hence that P 1 = J P 2 = J P 3 =P 4 =P 5 = 0 and therefore ^ = 7 for all i. 

Hence 

G0 + G1 + • • • +Gn_1 = Go©G10- • -©Gn-!. 

But the direct sum has 6n elements, hence must be all of GL2(B). Therefore 

GL2(B)~ 2 @Gu 
0<izn 

where each Gi~S3. 
An element 6 of a Boolean ring B is said to be atomic if whenever ab^O then 

ab = b. We define Gb to be 

/ / l 0\ / l M / l 0\ (l+b b \ (l b \ (l + b b\\ 

Ho \y lo ijj [b \y \ b \+by U i+J5 l & i;j" 
THEOREM 6A. Let B be a Boolean ring and let {bt \ i e [} be the set of atomic ele

ments of B. Then J,iei Gbi = J,ieI ®Gbi and is a normal subgroup of GL2{B). 

Proof. The same as Theorem 6. 
The difference between Theorem 6 and Theorem 6A is that in the former we are 

able to conclude that GL2{B) = 2i e / ®Gb. since the latter has the same number of 
elements as the former. This conclusion is not possible in Theorem 6A. In cases 
where lis small (e.g. if B is atomless) then GL2(B) will clearly be a proper superset 
of 2t e / ®Gbi ; we shall see that even if I is large, i.e. even if B is generated by its 
atomic elements, as long as it is infinite we still may not have GL2(B) = ^ieI@Gbi. 

We first note that homomorphisms behave properly. 

LEMMA. Let h: B-> B' be a ring homomorphism between Boolean rings. Define 
h*:GL2(B)~>GL2(B')by 

(a b\ (h(a) h(b)\ 
\c d) \h(c) hid))' 

Then A* is a group homomorphism. Furthermore, A* is 1-1 iff h is 1-1, and h* is onto 
iff h is onto. 

Proof. All but one of the claims are easily proved for any homomorphism h in the 
category of rings. The assumption that B' is a Boolean ring is needed only to invoke 
Theorem 4 to show that if h is onto then so is h*. Note that in general this is false— 
e.g. h:Z-*Z5 does not induce an onto map /**. 

Let Bi be the ring of all finite and cofinite subsets of I. Then Bl can be represented 
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as a particular subring of YJie j Rt where each Rt~Z2. This subring consists of all 
/ G Z2 such that either {f | / ( f)=0} is finite or {f | /(f) = 1} is finite. Thus the structure 
of Bi is completely determined by the cardinality of /. 

THEOREM 6B. GL2(BN)^^ieN @Gbi; in fact, ^ieN ©Gbi is not a direct summand 
ofGL2(BN). 

Proof. Define a function h: BN-> {0, 1} by 

r\ if {f | / (f) = 0} is finite 
h ^ \0 if {f | /(f) = 1} is finite. 

One must verify that h is a homomorphism and that A*(Af)=/ if and only if 
M e^ieN ®Gbr Since h is onto so is A*; but GL2({0, 1}) has six elements, hence 
h*(IieN ®Gb^GL2({0, 1}). Therefore GL2(BN)^2ieN ®Gbi for in fact 

GL2(BN)/2@Gbi~Ss. 
I ieN 

It remains a possibility that there is a subgroup H<\ GL2(BN) such that GL2(BN) 
= H®^ieI©Gbi. To see that this does not happen it suffices to show that if 
R e GL2(BN) — *2ieN @Gbi then the normal subgroup H generated by R contains 
more than six elements. 

There are three cases : 

Case 1. h*(R) = ( J J) or h*(R) = ( j J ) . Let R = (* b\. Then, for each x e B, 

G n H >"• 
( Q-\- CX \ 

I. Since h(a) = h(c)=l we know that h(ac) = l so 

that there are infinitely many x e B for which ax=cx = x. Each of these gives a 
different element of H, so that H has many more than six elements. 

Case 2. h*(R) ={\ J j or h*(R) = ( J J ) . Then for each x e B, 

(x l ) ' ( c d)'(x l)GH' 

But this equals I ' ' ^ J and we can proceed as in Case 1. 

Case 3. h*(R) = 11 n J. We proceed as in Case 2 but note that since h(d)=0 and 

h(b)=l we can find infinitely many x e B for which bx—x and dx=0. 
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Thus 2 i6iV (&Gbi is not a direct summand of GL2(BN). It is easy to see however 
that 2ieN ®Gbi together with 

{C i)- C J> Ç !)• 6 !)• (! ?)} 
generates GL2(BN). 

THEOREM 7. 77z£ grow/? GL2(BN) is isomorphic to the group generated by the ele
ments {xt | / e N} u {^ | i e N} subject to the following relations: 

(i) x? = 1, j? = 1 /or eac/j i > 0 
(ii) x{Xj=XyXf /or eac/z /, y > 0 

(iii) xiyJ=yjxi for each i9j> 1 where i^j 
(iv) yiyj=yjyi for each /, j>0 
(v) x, yt=jfXi /or eac/z / > 0 

(vi) JiX0=x0ji
2 for each i> 1 

(vii) x^o^o^iJ* / o r ^ ^ ' ^ 1 

Proof. Define a homomorphism from the free group on the generators above to 
GL2(BN) as follows: 

/(*o) = (J J) , /(*<) = ( J j *ô<) for / > 0, 

/ W - ( l J), / W - C î " J) for/>0. 

It suffices to show that w e ker/if and only if w= 1 is a consequence of (i)—(vii) 
above. 

The "if" part requires a direct verification that certain words, obtained from 
(i)-(vii) above, are actually in the kernel of/ On the other hand, let w be any word. 
Then using (ii), (iv), (vi), and (vii) we can write it in a form where all x0's and j/0's 
are to the left of all xfs and yt

9s for / > 0. Furthermore, using (i), (iii), and (v) we can 
write w in the form w0w1w2-. .wk where for each7, 0<j<k9 Wj is one of 

{hxjyyttyftXMtXjyf}. 

If now/(w)=7, then we can show, as in the proof of Theorem 6, that f(wj) = I for 
each j , and hence that wy=l for each/ Hence w=\ is a consequence of (i)—(vii) 
above, and the theorem is proven. 

We now wish to look at GL2(-) as a functor from the category of rings to the 
category of groups, and interpret Theorem 6B from this point of view. 

For each n e N let Bn be the Boolean ring generated by the atoms {b? J i<n}. If 
m<n we define fmn Bn-+Bm by stipulating that /mn(6?) = *7l if i<m and fmn(bf) 
=0 if i>m. Thus {Bn \neN} together with {/mn | m<n} is an inverse system of 
rings. It is easy to see that BN, generated by the atoms {b{ \ i e N}, is its inverse 
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limit, where/n : BN-> Bn is defined by stipulating that/„(£*) = èj1 if i < n and/n(6 f)=0 
if i>n. 

Also {GL2(Bn) \neN} together with {/*n \m<n} forms an inverse system of 
groups; and since GL2(i?n) = 2 i < r i ©Gf, where G"~Sz for each n and /, and since 

f*n maps GL2(Bn) to GL2(Bm) by sending G? to Gf for i<m and Gf to 0 for />m, 
it is clear that the inverse limit of this sytem is J,ieN ©Gi9 where each Gi~S3 and 
where fn maps J,ieN ©G* to 2f < n ©G? by sending Gf to Gf if / < « and otherwise to 
0. 

Thus from a categorical point of view, Theorem 6B may be interpreted as 

COROLLARY. The functor GL2() does not preserve inverse limits; more strongly, 
GL2() does not preserve inverse limits even if in the inverse system the morphisms 

fmn are <dl surjections and all induce surjections fmn- (/ do not know whether there 
already are examples of this in the literature.) 

The following theorem provides the usual contrast between inverse and direct 
limits. 

THEOREM 8. Let {Rt \ iel} and {ftj \ i<j} form a direct system of rings. Let 
{GL2(Rt) | iel} and {f* \ i<j} be the corresponding direct system of groups. Let R 
and G be the direct limits of these systems. Assume that all fXj are injective. Then 
G~GL2(R). 

Proof. Let/i : R{-> R and gt : GL2(Ri) -> G be the maps required by the definition 
of direct limit. Thus for each i<j we h&vQfi^ffj and gx=gjgiy Since f: Rt -> R, 

ff : GL2(Ri) -> GL2(R) for each i. Hence there is a (unique) isomorphism 
p: G->GL2(R) such that pg4=/f. 

We wish to find an isomorphism T: GL2(R) -> G SO that pr = idGL2(R) and rp = idG; 
for then G~GL2(R). First of all, we note that, using the fact that R is the direct 
limit, if x G R then for some / there is an element y e R such that/ t(y) = x. Secondly, 
we note that if A e GL2(R) then, since / is a directed partial ordering, there is an 
iel and a matrix 5{ e ( J I 2 ( ^ I ) such that ff(Bt) = A. We would like to define 
r(A)=gi(Bi)—but in order to do that we must first show that the value of r(A) does 
not depend on i. So suppose that B{eGL2{R^ BjeGL2(Rj), f*(Bt) = A, and 

ff(Bj) = A. Find a /; e / such that i<k andy<&. Then fi=fkfik and fj=fkfjk so that 
/ * =f*f*k and /* =f*f*ic- Now since each/y is an injection so is each/fc, and, by the 
lemma, the same is true for each / * ; therefore, ffk(Bi) =ffk(Bj) so that g^A) 
—gkfuc{Bd~gkffk{Bj)=gj{Bj). Hence T(A) is well defined. It is a simple matter to 
verify that r is a homomorphism, that T is 1-1, and that pr and rp are both iden
tity maps. Therefore, G~GL2(R). 

We now turn to the situation where the Boolean ring in question is an atomless 
Boolean ring. In this case B contains a set {p{ \ iel} of elements which freely gene
rate it; that is, every element of B can be written uniquely (modulo commutativity 
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of the generators) in the form Yli^j^k% where foryV/ we have irfir and where 
for each j , 1 <j<k, qXj is either/^ or is 1 +pir 

Let p and q be two of the free generators of B, and let B0 be the subring of B 
generated by p and q. One can easily verify that B0 has sixteen elements and that 
its atoms &repq,p(l +q), (1 +p)q, and (1 +p){\ +q). Thus from Theorem 5 we know 
that GL2(B0) has 64 elements and can be decomposed into a direct sum of four sub
groups each of which is isomorphic to S3. More generally, if B is freely generated 
by the set {pt \ ie N} then the subring Bk of B generated by {pl9p2,...,Pk} has 2k 

atoms and therefore has 2(2k) elements. Hence Theorem 5 implies that GL2(Bk) has 
6(2fc) elements, and can be decomposed into a direct sum of 2k subgroups each of 
which is isomorphic to S3. 

Thus locally GL2(B) behaves like the groups of GL2(B^) discussed earlier—in the 
sense that if a given element of GL2{B) has entries which involve the generators 
ph,pi2,.. .,pir then it can be viewed as an element of a subgroup of GL2(B) which 
is isomorphic to a direct sum of 2r copies of S3. 

But these subgroups of GL2(B) do not fit together nicely to form GL2(B)—in the 
way that the corresponding subgroups of GL2{Bj) fit together to form GL2(Bj). 
This is so because GL2(Bk) is not, in the case where B is atomless, a simple projec
tion of GL2(Bk + 1); this results from the fact that the atoms of Bk are no longer 
atoms in Bk + 1—for example, pxp2.. .pk decomposes into pxp2.. .pkpk+1 and 
PiP2- • -Pk(l +Pk+i)- Thus if one tried to present GL2(B) as in Theorem 7 by taking 
as generators for GL2(B) the union of the generators of the GL2(Bk) then one would 
have the unhappy situation that each generator, e.g. 

(l+Pi Pi \ 
\ Pi 1+pJ 

could be decomposed into a product of two generators 

I+P1P2 P1P2 \(1+Pi0-+P2) Pi(l+P2) \ 
P1P2 1 +PipJ \ PiO- +P2) 1 +Pi(l +P2)/ • 

Such a presentation is not at all satisfactory. But one could not hope to do much 
better; for trying to find an acceptable presentation of GL2(B) is tantamount to 
finding atoms for an atomless Boolean ring. 

So instead of trying to describe GL2(B) in terms of generators and relations we 
shall describe it categorically. 

Let Bk be as above the subring of B freely generated by {pl9p2,...,pk} and for 
each k let/fc : Bk-^ Bk+1be the identity map on Bk. Using the notation of the lemma 
stated earlier, the ring isomorphisms fk give rise to group isomorphisms / * : 
GL2(Bk)-+GL2(Bk+1) for each k. The sequence of groups {GL2(Bk) \ k e N}9 

together with the isomorphisms {/* | k e N}, forms a direct system of groups. 
Let G be the direct limit of this direct system. 
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THEOREM 9. G~GL2(B). 

Proof. This conclusion is just a corollary of Theorem 8. 
From these two extreme cases, the atomic and atomless Boolean rings, it should 

be possible to specify the structure of GL2(B) where B is any particular Boolean 
ring. We leave that to the reader. He may also want to generalize the conclusions 
here in several other directions. If he is interested in applying these techniques to 
other rings, he should be aware that the early theorems of this paper depend 
heavily on the fact that, in a Boolean ring, 1 is the only invertible element. On the 
other hand, if he is interested in finding GLn(B) for « > 2, he should be aware that 
the basic building block GLn({0, 1}), which for « = 2 is S3, is in general a group 
which has ( 2 n - l ) ( 2 n - 2 ) ( 2 n - 4 ) . . . (2 n -2 n - 1 ) elements—and for « = 3 this is 
already 168 elements. (See [2, p. 77].) This difficulty, however, does not appear to be 
insurmountable. 

As I pointed out in the opening paragraphs of this paper my investigations here 
arose during a search for X0-categorical groups. Since any further examples that I 
might find by looking in this direction are probably limits of finite groups, it seems 
that my purposes would best be served by studying such limits in general rather than 
by pursuing further examples. 

Appendix. It seems appropriate to include at this point proofs of the claims 
mentioned earlier concerning the X0-categoricity of the groups of Theorems 7 and 
9. These proofs rest on a theorem of Engeler, Svenonius, and Ryll-Nardzewski 
(cf. [3]) which can be described as follows : Let L be the first-order predicate calculus 
which contains symbols for the group operations, and let Fn(L) be the set of well-
formed formulas (wffs) of L whose free variables are among vl9 v2,..., vn. We say 
that two «-tuples of elements of the group G are first-order equivalent^ if they 
satisfy in G precisely the same wffs of FJJL). Then G is X0-categorical iff for each « 
the number of first-order equivalenceG classes of «-tuples of elements of G is finite. 
Let us call two «-tuples (al9 a2,..., an} and (Jbu b2,..., bn} of elements of G 
automorphically équivalente if there is an automorphism T of G such that T(At) = bt 

for each i. If two «-tuples are automorphically equivalent^, they are also first-
order equivalentG. 

Thus in order to show that a group G is not X0-categorical it is necessary and 
sufficient to display, for some «, an infinite list of pairwise first-order inequivalentG 

«-tuples of elements of G. On the other hand, to show that G is K0-categorical it is 
sufficient (though not necessary) to display enough automorphisms of G so that 
for each « the number of automorphism equivalence^ classes of «-tuples of elements 
of B is finite—since that implies the same is true for the number of first-order 
equivalenceG classes. 

We first show that the group G = GL2(BN) of Theorem 7 is not X0-categorical. For 
each t let dt = x1x2.. .xt; we shall show that the 1-tuples {<4> 1 ^ 1 } are pairwise 
first-order inequivalentG. For each t let cpt(v) be the wff (3l3tu)(3w)(w~1vw = u) 
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which says that v has precisely 3l distinct conjugates in G. It is a simple matter to 
verify, using the proof of Theorem 7, that <4> satisfies the wff cpt(v) in G for each 
t. On the other hand it is clear from the definition of the <pt(v) that <4> does not 
satisfy the wff<ps(V) in G if s^t. Hence the 1-tuples {<4> 1*^1} are pairwise first-
order inequivalentG so that GL2(BN) is not X0-categorical. 

We now show that the group G of Theorem 9 is X0-categorical. First some infor
mation about Boolean rings. An r-tuple <è1? b2,..., br} of elements of a Boolean 
ring B is said to be independent if no product of the form qxq2... qr, where each qt is 
either bt or 1 +bt, is zero. If B and B' are countable atomless Boolean rings, then 
B and B' are isomorphic (so that such a ring is X0-categorical); furthermore, if 
<Jbl9 b2,..., bry and <Jb'l9 b2,..., b'r} are independent r-tuples of elements of B and 
B', then we can find an isomorphism a so that a(bù = b'i for each L (This result, 
although apparently unpublished, is well known.) 

Now let <M1, Af2,..., Mn} be an «-tuple of elements of G. We shall construct 
an automorphism p of G so that p(Mi) e gén(GL2(B±rJ) for each /, where g4n: 
GL2(B±n) -> G is the canonical map. This implies that the «-tuple <Ml9 M 2 , . . . , 
Mny is automorphically equivalent to one of the (624n)n «-tuples of elements of 
g4n(GL2(J64n)). Hence we will be able to conclude that G is X0-categorical. 

Since Ml9 M2,..., Mn have altogether at most An different entries there is an 
r<An and there is an r-tuple <è1? b2,..., br} of independent elements of B which 
generate a subring of B which includes all entries of Ml9 M2,..., Mn. Let hr be the 
canonical map from Br to 5 (recall that Br is generated by the r-tuple </?1? /?2> • • • ,Pr} 
of independent elements) so that <Jhr{pu> • • • > hr(pr)} is an r-tuple of independent 
elements of 5. Then, by the above, there is an automorphism a of B such that 
a(bi)=hr(pt) for each /. By the lemma a* is an automorphism of G such that 
a*(Mt) E gr(GL2(Br)) and hence of g4sn(GL2(Bén)) for each i. This completes the 
proof. 
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