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Abstract. Given any smooth Anosov map, we construct a Banach space on which the
associated transfer operator is quasi-compact. The peculiarity of such a space is that,
in the case of expanding maps, it reduces exactly to the usual space of functions of
bounded variation which has proved to be particularly successful in studying the statistical
properties of piecewise expanding maps. Our approach is based on a new method of
studying the absolute continuity of foliations, which provides new information that could
prove useful in treating hyperbolic systems with singularities.
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1. Introduction
Starting with the paper [BKL], there has been a growing interest in the possibility of
developing a functional analytic setting allowing the direct study of the transfer operator of
a hyperbolic dynamical system. The papers [GL, GL1, BT, BT1, B1, B2, B3, B4, T1] have
now produced quite satisfactory results for the case of Anosov diffeomorphisms (or, more
generally, for uniformly hyperbolic basic sets). Although the theory is not yet complete,
important results, have been obtained for flows [L, BuL, BuL2, GLP, FT2, DyZ, D17],
group extensions and skew products [F11, AGT]. Moreover, recently, a strong relationship
with techniques used in semiclassical analysis (see, e.g. [FR, FRS, FT1, FT2, DyZ])
has been unveiled. Also, one should mention the recent discovery of a deep relationship
with the theory of renormalization of parabolic systems [GL19]. In addition, such an
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approach has proved to be very effective in the study of perturbations of dynamical
systems [KL1, KL3] and in the investigation of limit theorems [G10]. At the same
time, [KL2, KL4] have shown that this strategy can be extended to a large class of
infinite-dimensional systems (coupled map lattices), but is limited to the case of piecewise
expanding maps. However, there has been no progress in applying it to coupled lattices
of Anosov maps when the coupling introduces discontinuities in the system. (The only
available results are restricted to a special class of interactions that salvage structural
stability [PS].) Moreover, only partial progress has been accomplished in extending such an
approach to partially hyperbolic maps [T2] and to piecewise smooth uniformly hyperbolic
systems [DL, BG1, BG2, DZ1, DZ2, DZ3, BaL, BDL]. The recent book [B5] provides
an extensive account and a thorough illustration of the topic.

The present paper is motivated by the current shortcomings in the applications of
the functional analytic strategy to piecewise smooth hyperbolic maps. Indeed, while in
two dimensions the approach can be applied to a large class of systems [DZ2, DZ3], in
higher dimensions it is limited to the case in which the map is well behaved up to and
including the boundary [BG1, BG2] or some special skew product cases [Ga18, GL18].
In the case of piecewise expanding maps, the latter problems are dealt with by using
different Banach spaces. In particular, a huge class of piecewise expanding maps can be
treated by using the space of functions of bounded variation (BV) or their straightforward
generalizations [Sa00, Li13a, Bu13, Li13b]. It is thus natural to construct Banach spaces
that generalize BV and are adapted to the study of the transfer operator associated with
hyperbolic maps.

BV-like spaces could allow one to extend the known results to higher-dimensional,
possibly infinite-dimensional (coupled Anosov map lattices) systems. Also, they could
allow one to treat higher-dimensional hyperbolic maps with strong singularities (e.g.
billiards). In addition, such spaces should be useful for investigating numerically the
spectrum of the transfer operator via Ulam-type perturbations, which proved to be
very successful when dealing with expanding maps and BV functions [Liv]. Indeed,
previous investigations of Ulam approximations for Anosov systems left several questions
unanswered due to the inadequacy of the Banach spaces used (see, e.g., [BKL]).

Unfortunately, none of the Banach spaces proposed in the literature for the study of the
transfer operator associated with general Anosov diffeomorphisms, or general piecewise
Anosov, reduces exactly to BV when the stable direction is absent.

The purpose of this paper is to correct this state of affairs by introducing a template
for Banach spaces with the above property. We apply it to the case of smooth Anosov
diffeomorphisms. Although, for such examples, this provides limited new information, it
shows that the proposed space is well adapted to the hyperbolic structure, and hence there
is a concrete hope that this space can be adapted to study general piecewise Anosov maps
and Anosov coupled map lattices in a unified setting. A substantial amount of work is
still needed to find out whether or not such a hope has some substance. Nevertheless, the
present arguments are worth presenting since they are remarkably simple and natural.

An additional fact of interest in the present paper is the characterization of invariant
foliations and, more generally, the method used to study the evolution of foliations under
the dynamics. It is well known that the stable foliation is only Hölder, although the leaves of
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the foliations enjoy the same regularity as the map. Nevertheless, a fundamental discovery
by Anosov is that the holonomy associated to the foliation is absolutely continuous and
the Jacobian is Hölder. The establishing of this fact is not trivial and, especially in the
discontinuous case, entails a huge amount of work [KS]. Here we show that the properties
of such foliations can be characterized infinitesimally, which considerably simplifies their
description (see Definition 2.5). In particular, given a foliation F , the Jacobian JF of the
associated holonomy can be seen as a quantity produced by a flow, of which we control the
generator HF . See Lemma B.7 for a precise explanation of this fact. We believe this point
of view will be instrumental in treating discontinuous maps.

The structure of the paper is as follows. Section 2 contains the definition of the Banach
space and the statement of the main theorem (Theorem 2.1). Section 3 contains the usual
Lasota–Yorke estimate, while §4 contains the estimate on the essential spectrum of the
operator. Section 5 contains some comments on the peripheral spectrum. Appendix A
reminds the reader of some convenient properties of C r norms. Appendix B establishes
various properties of the foliations of Anosov maps that should be folklore among experts,
but we could not locate anywhere in the literature (in particular, the smoothness of the
Jacobian of the stable holonomy along stable leaves). Moreover, as previously mentioned,
such properties are expressed totally in local terms, contrary to the usual approach. Finally,
Appendix C contains a few technical estimates on the test functions.

1.1. Notation. In this paper, we will use C� to designate a constant that depends only
on the map T and on the choice of coordinates, but whose actual value is irrelevant to the
tasks at hand. Hence, the value of C� can change from one occurrence to the next and it
is determined by the equation in which it appears. Analogously, we will use Ca,b,..., ca,b,...

for generic constants that depend also on the quantities a, b, . . . .

2. The Banach space
Our goal is to develop a space in the spirit of BV for the study of the statistical properties
of a dynamical system (M , T , μ), where M is a compact C r manifold, T is uniformly
hyperbolic and μ is the Sinai–Ruelle–Bowen (SRB) measure. (Of course, there are many
other functional spaces to analyze such maps (e.g., see [B5]). However, we restrict to this
class of maps to illustrate the construction of the space in the simplest possible form.) Let
us be more precise.

2.1. The phase space. Let r ≥ 2 be an integer and let M be a C r d-dimensional compact
manifold where the differentiable structure is the one induced by the atlas {Vi , φi}Si=1, Vi ⊂
M , S ∈ N. More precisely, we consider a fixed smooth partition of unity {ϑi} subordinated
to the cover {Vi}. We then define a smooth volume form ω by∫

M

h dω =
S∑

i=1

∫
Ui

h ◦ φ−1
i (z) ϑi ◦ φ−1

i (z) dz, (2.1)

where Ui := φi(Vi). From now on, all integrals will be with respect to such a form
although we will not specify it explicitly.
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2.2. The map and the cones. We consider an Anosov diffeomorphism T ∈ Diff r (M).
That is, there exists λ > 1, ν ∈ (0, 1), c0 ∈ (0, 1) and a continuous cone field (stable
cone) C = {C(ξ)}ξ∈M , C(ξ) = C(ξ) ⊂ TξM such that DξT

−1C(ξ) ⊂ int(C(T −1(ξ))) ∪
{0} and (here the norm is defined by some smooth Riemannian structure, and the actual
choice of such a structure will be irrelevant in the following; it will just affect the constants)

inf
ξ∈M inf

v∈C(ξ)
‖DξT

−nv‖ > c0ν
−n‖v‖,

inf
ξ∈M inf

v �∈C(ξ)
‖DξT

nv‖ > c0λ
n‖v‖.

(2.2)

In higher dimensions, a cone may have many geometric shapes. It is convenient, and useful,
to ask that they be subsets K of the Grassmannian. More precisely, we can assume, without
loss of generality, that, for each ξ ∈ Vi and calling M(du, ds) the set of du × ds matrices,

Kθ = {U ∈ M(du, ds) : ‖U‖ ≤ θ},
DφiC(ξ) = {(x, y) ∈ R

du × R
ds = R

d : x = Uy, U ∈ K1} (2.3)

= {(x, y) ∈ R
du × R

ds = R
d : ‖x‖ ≤ ‖y‖},

where U is any du × ds matrix. Then the strict cone field invariance reduces to the
existence of η ∈ (0, 1) such that

DφjDT −1C(ξ) ⊂ {(x, y) ∈ R
du × R

ds = R
d : ‖x‖ ≤ η‖y‖},

Dφj ′DTCc(ξ) ⊂ {(x, y) ∈ R
du × R

ds = R
d : ‖y‖ ≤ η‖x‖},

where Vj � T −1(ξ), Vj ′ � T (ξ) and Cc(ξ) = TξM \ C(ξ).

2.3. Transfer operator. We are interested in studying the statistical properties of the
above systems. One key tool used to such an end is the transfer operator: for each h ∈ C1

we define (by det we mean the density of T ∗ω with respect to ω)

Lh = [h · |det(DT )|−1] ◦ T −1. (2.4)

Accordingly, for each n ∈ N,∫
M

ϕLnh =
∫
M

hϕ ◦ T n.

It is then clear that the behaviour of the integrals on the left-hand side of the above equation
can be studied if one understands the spectrum of L. Obviously, such a spectrum depends
on the space on which the operator is defined. Several proposals have been developed to
have spaces on which L is quasi-compact. Such proposals are extremely effective when
the map is smooth (see [B5] for a review), but are less so for discontinuous systems. Since,
in the case of expanding maps, BV is very effective [Li13b], it is natural to investigate
whether one can construct a space, suitable for the study of invertible maps, that reduces to
BV when the stable direction is absent. In the following sections, we define Banach spaces
B0,q and B1,q that, when the stable direction is absent, reduce to L1 and BV, respectively
(see Remark 2.18). Although we do not discuss discontinuous maps, this is certainly a first
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step towards develop a viable alternative to the current approaches. To show that the space
is potentially well behaved, we prove the following theorem.

THEOREM 2.1. For each q ∈ {1, . . . , r − 2} (note that this condition is non-vacuous only
if r ≥ 3; however, we stress that all the results related to the regularity of foliations in
Appendix B hold true for r ≥ 2), the operator L has an extension (we still call such an
extension L), which belongs to L(B0,q , B0,q) and L(B1,q , B1,q). Moreover:
(1) L : B1,q → B1,q is a quasi-compact operator with spectral radius 1 and essential

spectral radius σess := max{λ−1, ν};
(2) the peripheral spectrum of L consists of finitely many finite groups; in particular, 1

is an eigenvalue; and
(3) setting h∗ := �11, where �1 is the spectral projection of L associated with the

eigenvalue 1, h∗ is canonically associated to a measure whose ergodic decompo-
sition corresponds to the spectral decomposition for the Anosov map and consists of
the physical measures.

Proof. The proof of (1) can be found in Lemma 4.1. The proof of (2) is given in
Lemma 5.1. The canonical correspondence of h∗ with the distribution mentioned in point
(3) is detailed in Lemma 2.16 (see also Remark 2.17 for the use of such a canonical
correspondence in this paper) while, in Lemma 5.1, it is shown that the associated
distribution is, in fact, a measure. Finally, the proof of (3) is provided by Lemma 5.2.

Observe that BV ⊂ B1,q (see Remark 2.19), and hence the above theorem implies
that, for Anosov maps, the spectrum σB1,q (L) determines the decay of correlation for
BV densities. In particular, consider a transitive Anosov map. Then h∗ is ergodic and
corresponds to the unique SRB measure μSRB . Also, Theorem 2.1 implies that, for all
θ > σess , there exists a constant Cθ > 0, finitely many eigenvalues {θj }, |θj | ∈ (θ , 1), and
finite rank operators Bj : B1,1 → B1,1, with spectral radius equal to one, such that, for all
ϕ ∈ C2 and rectifiable sets A (by rectifiable we mean that 1A ∈ BV ),

∣∣∣∣∫
M

ϕ ◦ T n1A −
∫
M

ϕμSRB

∫
M

1A −
∑
j

θnj

∫
M

ϕBn
j 1A

∣∣∣∣ ≤ C‖ϕ‖C2‖1A‖BV θ
n.

Note that a similar estimate could be obtained using the spectral properties on spaces
already existing in the literature and by deducing the behaviour for BV densities using an
approximation argument. However, this would produce a less sharp result (in particular,
it would allow only θ > σα

ess for some α < 1). In addition, the following are direct
consequences of Theorem 2.1.
• The central limit theorem and other statistical properties for observables that are

multipliers of BV hold via the usual spectral approach of analytic perturbation theory
(see, e.g., [G15].

• Statistical aspects of random perturbations: let T0 be a transitive Anosov map. Let BT0

be a sufficiently small neighborhood of T0 in the C1-topology so that condition (2.2) is
satisfied for all T ∈ BT0 with uniform constants. Let � := supl

∑
k ‖[∂l(DT −1

0 )l,k]‖C1
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and define the following family of maps

G� =
{
T ∈ C2(M) : T ∈ BT0 and sup

l

∑
k

‖[∂l(DT −1)l,k]‖C1 ≤ 2�
}

.

One can study, for instance, independent and identically distributed compositions with
respect to some product probability measure P defined on GN

�. Spectral properties of
the annealed transfer operator associated with the above random map follows from this
work and stability results can be obtained using the current setting and the framework
of [KL1].

2.4. Foliations. A fundamental ingredient in the understanding of hyperbolic maps is
the study of dynamical foliations. Hence a small digression is in order.

Definition 2.2. A C r t-dimensional foliation W is a collection {Wα}α∈A, for some set
A, such that the Wα are pairwise disjoint, ∪α∈AWα = M and, for each ξ ∈ Wα , there
exists a neighborhood B(ξ) such that the connected component of Wα ∩ B(ξ) containing
ξ , call it W(ξ), is a C r t-dimensional open submanifold of M . We will call F r the set of
C r ds-dimensional foliations.

Definition 2.3. A foliation W is adapted to the cone field C if, for each ξ ∈ M , TξW(ξ) ⊂
C(ξ). Let F r

C be the set of C r ds-dimensional foliations adapted to C.

Given a ds-foliation adapted to C, we can associate to it local coordinates as follows.
Let δ0 > 0 be sufficiently small so that, for each ξ ∈ M , there exists a chart (Vi , φi) with
ξ ∈ Vi and such that Ui := φi(Vi) contains the ball Bδ0(φi(ξ)). (Here, and in the following,
we use Bδ(x) to designate {z ∈ R

d ′
: ‖x − z‖ ≤ δ} for any d ′ ∈ N.) Also, choose U0 =

U0
u × U0

s ⊂ R
du × R

ds with U0
u = Bδ0/2(0), U0

s = Bδ0/2(0). Next, for each z ∈ Ui , let
W(z) be the connected component of φi(W) containing z. (Refer to Definition 2.2 for the
exact meaning of ‘connected component’. Also note the abuse of notation since we use the
same name for the sub-manifold in M and its image in the chart.) Define the function Fξ :
U0 → R

du by {(Fξ (x, y) + xξ , yξ + y)} = {(w, y + yξ )}w∈Rdu ∩ W(x + xξ , yξ ), where
(xξ , yξ ) = φi(ξ). (The fact that the intersection is non-void and consists of exactly one
point follows trivially from the fact that the foliation is adapted to the cone field. Hence the
two manifolds are transversal.) That is, W(x + xξ , yξ ) is exactly the graph of the function
Fξ (x, ·) + xξ . Moreover,

Fξ (x, 0) = x. (2.5)

In addition, we ask δ0 to be small enough for the expression of DT in the above charts to
be roughly constant. See Lemma B.5 and its proof for the precise condition.

Remark 2.4. The above construction defines the triangular coordinates Fξ (x, y) =
(Fξ (x, y), y), which describe locally the foliation. In fact, (φ−1

i ◦ Fξ (U
0), F−1

ξ ◦ φi)

is a local chart of M in which the foliation is trivial (the leaves are all parallel). In
the following, we will often use such coordinates without mention if it will not create
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confusion. Also, to ease notation, we will confuse Vi with φi(Vi) when not ambiguous. In
addition, we will use F to indicate the collection of maps {Fξ } and also for F . Of course,
F is not unique, since we can chose different charts for the same ξ . However, different
choices are equivalent so we assume that some choice has been made. Clearly, F uniquely
defines W .

Definition 2.5. For each r ∈ N, r ≥ 2 and L > 0, let

F r

C := {W ∈ F r
C : F ∈ C r (U0, Rd)},

W r
L :=

{
W ∈ F r

C : sup
ξ

sup
x∈U0

u

sup
|α|=k

‖∂αy Fξ (x, ·)‖C0(U0
s ,Rdu )

≤ L(k−1)2
, 2 ≤ k ≤ r;

sup
ξ

sup
x∈U0

u

sup
|α|=k

‖∂αy HFξ (x, ·)‖C0(U0
s ,Rds )

≤ L(k+1)2
, 0 ≤ k ≤ r − 2

}
,

where

HFξ (x, y) =
du∑
j=1

[∂xj ([∂y(Fξ )j ] ◦ F
−1
ξ )] ◦ Fξ (x, y)

=
∑
ij

∂xi ∂y(Fξ )j · (∂xFξ )
−1
ij . (2.6)

(Note that equation (2.3), Definition 2.3 and the subsequent description imply that
‖∂yFξ (x, y)‖ ≤ 1. Hence, recalling (2.5), ‖Fξ‖∞ ≤ δ0. Accordingly, in the first line of
the definition of W r

L, the cases k ∈ {0, 1} are superfluous.)

Remark 2.6. Since the invariant foliation is not C r (in general, it is only Hölder, although
it consists of C r leaves) it does not belong to W r

L for any L. However, it belongs to its
closure if L is large enough (see Remark B.3).

Remark 2.7. Note that the functions HF are related to the Jacobian of the stable holonomy
(see Lemma B.7), and hence it does not make sense to require them to be uniformly
smooth. In general, it is possible to control effectively only their Hölder norm, yet,
restricted to the stable direction, they turn out to be smooth. Indeed, this is the whole
content of Appendix B.

Remark 2.8. The role of HF in the definition of W r
L will become apparent in the proof of

the Lasota–Yorke inequality in Proposition 3.2, in particular, in (3.8). Hence, controlling
the supξ supx∈U0

u
‖HFn

ξ (x, ·)‖Ck(U0
s ,Rds )

uniformly in n is essential.

Next, we would like to define the evolution of a foliation W ∈ W r
L under T . Let Wn :=

T −nW := {T −nWα}α∈A. Clearly, Wn ∈ F r

C, but much more is true.

LEMMA 2.9. There exist n0 ∈ N and L > 0 such that, for all n ∈ N, n ≥ n0, L1 ≥ L and
W ∈ W r

L1
, we have Wn ∈ W r

L1/2.
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Remark 2.10. By considering an appropriate power of the map, rather than the map itself,
we can always reduce to the case n0 = 1. We will do exactly this in the following.

Remark 2.11. From now on, L is fixed so that Lemma 2.9 holds true. Since the choice of
L depends only on T and M , in the future we will not make the L dependence explicit in
the constants.

Lemma 2.9 is proved in Appendix B. In fact, we prove the more general Proposition B.1
which implies Lemma 2.9 (see Remark B.2).

2.5. Test functions. Since we will want to be free to work with high-order derivatives,
it is convenient to choose a norm ‖ · ‖Cρ , ρ ∈ N ∪ {0}, equivalent to the standard one, for
which Cρ is a Banach algebra. We thus define the weighted norm in Cρ(M , M(m, n)),
where M(m, n) is the set of the m × n (possibly complex valued) matrices,

‖ϕ‖C0 = sup
x∈M

sup
i∈{1,...,n}

m∑
j=1

|ϕi,j (x)|,

‖ϕ‖Cρ =
ρ∑

k=0

�ρ−k sup
|α|=k

‖∂αϕ‖C0 ,

(2.7)

where, � ≥ 2 is a parameter to be chosen later (see (3.11)), α is a multi-index α =
(α1, · · · , αd) with αi ∈ N ∪ {0}, we denote |α| = ∑d

i=1 αi , and ∂α = ∂
α1
x1 · · · ∂αdxd .

Note that the above definition implies that

‖ϕ‖Cρ+1 = �ρ+1‖ϕ‖C0 + sup
i

‖∂xi ϕ‖Cρ . (2.8)

The next lemma is proved in Appendix A.

LEMMA 2.12. For every ρ, n, m, s ∈ N, ψ ∈ Cρ(M , M(m, n)) and ϕ ∈ Cρ(M , M(m, s)),

‖ϕψ‖Cρ ≤ ‖ϕ‖Cρ‖ψ‖Cρ .

Moreover, if ϕ ∈ Cρ(M , M(m, n)) and ψ ∈ Cρ(M , M), then

‖ϕ ◦ ψ‖Cρ ≤
ρ∑

k=0

(
ρ

k

)
�ρ−k‖ϕ‖Ck

k∏
i=1

‖(Dψ)t‖Cρ−i .

(Cρ(M , M) is defined in the natural manner using the norm (2.7) in the charts (Vi , φi).
Also, we use the charts to identify TxM with R

d . Hence Dψ ∈ M(d, d).)

Definition 2.13. For each ϕ ∈ Cr (M , Cl ) and W ∈ F r
C, let ϕξ ,x(·) = ϕ ◦ φ−1

i ◦ Fξ (x, ·),
q ≤ r , and define (we use the standard notation ϕξ ,x = ((ϕξ ,x)1, . . . , (ϕξ ,x)l))

‖ϕ‖Wq := sup
ξ∈M

sup
x∈U0

u

‖ϕξ ,x‖Cq (U0
s ,Cl ) = sup

ξ∈M
sup
x∈U0

u

l∑
j=1

‖(ϕξ ,x)j‖Cq (U0
s ,C). (2.9)
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Remark 2.14. It is easy to verify that a different choice of the charts produces a uniformly
equivalent class of norms.

2.6. A class of measures. To be precise, we are going to define a Banach space of
distributions. We are interested in measures that belong to such a space. Define

�L,q,l = {(W , ϕ) ∈ W r
L × Cq(M , Cl ) : ‖ϕ‖Wq ≤ 1} (2.10)

and lift the dynamics to �L,q,l by T∗(W , ϕ) = (T −1W , ϕ ◦ T ).

LEMMA 2.15. For each σ ∈ (ν, 1), there exist constants A0, B0 > 0 such that, for each
choice of � ≥ 2, each (W , ϕ) ∈ �L,q,l , q ∈ {0, . . . , r − 1} and n ∈ N,

‖ϕ ◦ T n‖T −nW
q ≤ A0‖ϕ‖Wq ,

‖ϕ ◦ T n‖T −nW
q+1 ≤ A0σ

nq‖ϕ‖Wq+1 + B0‖ϕ‖Wq .

The lemma is proved in Appendix C. Note that Lemmas 2.9 and 2.15 imply that
T∗�L,q,l ⊂ �L,q,l .

It is now time to define the norms. Given a function h ∈ C1(M , C), we define

‖h‖0,q := sup
(W ,ϕ)∈�L,q,1

∣∣∣∣∫
M

h ϕ

∣∣∣∣,
‖h‖∗

1,q := sup
(W ,ϕ)∈�L,q+1,d

∣∣∣∣∫
M

h div ϕ

∣∣∣∣,
‖h‖−

1,q := a‖h‖0,q + ‖h‖∗
1,q ,

(2.11)

for any q ∈ N ∪ {0} and some fixed a > 0 to be chosen later (see Proposition 3.2).
As already remarked, the differential structure and the volume form are defined via the

charts. Thus, to be precise,

∫
M

h div ϕ =
S∑

i=1

∫
Ui

h ◦ φ−1
i (z)ϑi ◦ φ−1

i (z)

d∑
j=1

(∂zj [ϕj ◦ φ−1
i ])(z) dz. (2.12)

We are then ready to define the Banach spaces. The space B0,q is the Banach spaces
obtained by completing C1(M , R) in the ‖ · ‖0,q norm (the completion can be achieved
within the space of distributions of order q). We are not interested in making the same
choice for the norm ‖ · ‖−

1,q since this, in the case when ds = 0, would yield the Sobolev
space W 1,1 rather than the space of functions of BV that we are interested in. Thus, we use
a method analogous to the standard procedure to define BV starting from W 1,1. First, we
define the new norm, for each h ∈ B0,q ,

‖h‖1,q = lim
ε→0

inf{‖g‖−
1,q : g ∈ C1(M , R) and ‖g − h‖0,q ≤ ε}. (2.13)
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We then define B1,q := {h ∈ B0,q | ‖h‖1,q < ∞}. See §2.7 of [BKL] for a brief discussion
of the general properties of such a construction.

The next lemma explains the sense in which B1,q is a space of distributions.

LEMMA 2.16. The spaces Bi,q , i ∈ {0, 1}, are spaces of distributions in the sense that
there exist canonical embeddings ι0,q : B0,q → (Cq)′ and ι1,q : B1,q → (Cq+1)′.

Proof. First, note that there exist Cq > 0 such that, for all ϕ ∈ Cq and W ∈ W r
L, ‖ϕ‖Wq ≤

Cq‖ϕ‖Cq . In addition, for each h ∈ C1(M , C),

∣∣∣∣∫
M

h dω

∣∣∣∣ ≤ ‖h‖0,q ≤ a−1‖h‖1,q ,

which, by density, implies that �(h) = ∫
M

h dω belongs to (B0,q)′ ⊂ (B1,q)′, the duals
of B0,q and B1,q , for each q ≥ 0. Also, one can easily check that, for each ϕ ∈ Cq and
h ∈ B0,q , we have ϕh ∈ B0,q and, for each ϕ ∈ Cq+1 and h ∈ B1,q , we have ϕh ∈ B1,q .
This implies that ι0,q(h)(ϕ) := �(ϕh) is well defined for each ϕ ∈ Cq and h ∈ B0,q . In
addition, for each h ∈ C1(M , C),

|ι0,q(h)(ϕ)| =
∣∣∣∣∫

M

ϕh dω

∣∣∣∣ ≤ ‖h‖0,q‖ϕ‖Wq ≤ Cq‖h‖0,q‖ϕ‖Cq ,

from which, by density, it follows that |ι0,q(h)(ϕ)| ≤ Cq‖h‖0,q‖ϕ‖Cq for all h ∈ B0,q and
ϕ ∈ Cq : that is ι0,q(h) ∈ (Cq)′. Thus ι0,q : B0,q → (Cq)′; it remains to check that it is
injective. Suppose that ι0,q(h0) = ι0,q(h1). Then, for all ϕ ∈ Cq ,

∫
M

(h0 − h1)ϕ = 0,

which, recalling (2.10), implies that ‖h0 − h1‖0,q = 0.
The other embedding is proved similarly.

Remark 2.17. From now on, we will identify, when needed, the spaces Bi,q with the spaces
ιi,q(Bi,q) of distributions without further notice. (In general ιi,q(Bi,q) is not closed in the
(Cq+i )′ topology. To see ιi,q(Bi,q) as a Banach space we have to induce the norm: if h ∈
ιi,q(Bi,q), then ‖h‖ = ‖ι−1

i,q (h)‖i,q . Obviously, in this way ιi,q becomes an isomorphism of
Banach spaces, hence the possibility to identify them.)

To better understand the Bi,q spaces, it is useful to note that, in special cases, they are
simply functions.

Remark 2.18. If T is an expanding map, the ds = 0, and hence the leaves are just
points and ‖ϕ‖Wq = |ϕ|∞. The reader can easily check that B0,q = L1 and B1,q = BV ,
as claimed.
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Remark 2.19. By (2.11), it follows that

sup
(W ,ϕ)∈�L,q,1

∣∣∣∣∫
M

ϕh

∣∣∣∣ ≤ sup
|ϕ|∞≤1

∣∣∣∣∫
M

hϕ

∣∣∣∣ = ‖h‖L1 ,

sup
(W ,ϕ)∈�L,q+1,d

∣∣∣∣∫
M

h div ϕ

∣∣∣∣ ≤ sup
‖ϕ‖∞≤1

∣∣∣∣∫
M

h div ϕ

∣∣∣∣ ≤ ‖h‖BV .

Thus, by (2.11) and (2.13), ‖h‖1,q ≤ Ca‖h‖BV : that is L1 ⊂ B0,q and BV ⊂ B1,q .

Remark 2.20. There is no problem in considering norms with higher smoothness, as in
[GL]. We avoid it since it is not relevant for the issue we are presently exploring.

3. A Lasota–Yorke inequality
Our first goal is to show that L is bounded in the ‖ · ‖0,q , ‖ · ‖1,q norms, and hence L
extends uniquely to a bounded operator on B0,q and B1,q .

To prove our basic proposition (a Lasota–Yorke-type inequality), we first need a small
approximation lemma.

LEMMA 3.1. There exists c� > 1, ε0 > 0 such that, for each q ∈ {1, . . . , r}, (W , ϕ) ∈
�L,q,1 and ε ∈ (0, ε0), there exists ϕε ∈ Cr (M , C) such that (W , c−1

� ϕε) ∈ �L,q,1,
(W , c−1

� εϕε) ∈ �L,q+1,1 and ‖ϕ − ϕε‖Wq−1 ≤ Cq,�ε.

Proof. Let (W , ϕ) ∈ �L,q,1. Consider a mollifier jε(y) = ε−ds j(ε−1y), where j ∈ C∞ is
supported in a fixed ball. Then, for ε ≤ δ0/2, and (x, y) ∈ U0, define (see Remark 2.4 for
the definition of Fξ )

ϕ̂i,ε(x, y) =
∫
Rds

ϕ ◦ φ−1
i ◦ (Fξ (x, y + z))jε(z) dz,

ϕε =
∑
i

ϑi · ϕ̂i,ε ◦ F
−1
ξ ◦ φi . (3.1)

Clearly, ϕε ∈ C r , and hence we only have to verify the other two properties. Note that

ϕε ◦ φ−1
j ◦ Fξ (x, y) =

∑
i

[ϑi · ϕ̂i,ε ◦ F
−1
ξ ◦ φi] ◦ φ−1

j ◦ Fξ (x, y).

By definition, F
−1
ξ ◦ φi ◦ φ−1

j ◦ Fξ (x, y) = (hij (x), gij (x, y)) for some gij (x, ·) ∈ C r .
Moreover, supij supx ‖gij (x, ·)‖C r ≤ C for some constant C > 0. Thus

ϕε ◦ φ−1
j ◦ Fξ (x, y)

=
∑
i

ϑi ◦ φ−1
j ◦ Fξ (x, y)

∫
Rds

ϕ ◦ φ−1
i ◦ Fξ ((hij (x), gij (x, y) + z)jε(z) dz.

Using the above formula and (3.1), we can estimate

‖ϕε ◦ φ−1
j ◦ Fξ (x, ·)‖Cq ≤

∑
i

‖ϑi ◦ φ−1
j ◦ Fξ (x, ·)‖C r‖ϕ̂i,ε(hij (x), gij (x, ·)‖Cq ≤ c�
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for some constant c� . On the other hand, recalling (2.7),

‖ϕε ◦ φ−1
j ◦ Fξ (x, ·)‖Cq+1

≤ C�‖ϕε ◦ φ−1
j ◦ Fξ (x, ·)‖Cq

+
∑

il,|α|=q

C

∥∥∥∥∫
Rds

∂zl ∂
α[ϕ ◦ φ−1

i ◦ Fξ ]((hij (x), z + gij (x, ·))

× ∂yl gij (x, ·)
q∏

k=1

∂yαk gij (x, ·) · jε(z)dz
∥∥∥∥C0

≤ C�c� +
∑

il,|α|=q

C

∥∥∥∥∫
Rds

∂α[ϕ ◦ φ−1
i ◦ Fξ ]((hij (x), z + gij (x, ·))∂yl gij (x, ·)

×
q∏

k=1

∂yαk gij (x, ·)∂zj jε(z)dz
∥∥∥∥C0

≤ C�c� + ‖ϕ‖Wq CC�ε
−1 ≤ c� ε−1,

provided we chose c� > 2CC� and ε0 < (2C�)−1. To verify the last inequality, note that
there exists a constant Cq,� > 0 such that

‖ϕ ◦ φ−1
i ◦ Fξ ((hij (x), z + gij (x, ·))

− ϕ ◦ φ−1
i ◦ Fξ ((hij (x), gij (x, ·))‖Cq−1 ≤ Cq,�‖ϕ‖Wq |z|.

Hence,

‖ϕ − ϕε‖Wq−1 ≤ Cq,�ε.

PROPOSITION 3.2. For each θ ∈ (max{ν, λ−1}, 1), we can chose � > 2 such that there
exist constants a, A, B > 0 such that, for all h ∈ C1(M , C), q ∈ {0, . . . , r − 1},

‖Lnh‖0,q ≤ A‖h‖0,q .

In addition, for all q ∈ {1, . . . , r − 2},

‖Lnh‖0,q ≤ Aθn‖h‖0,q + B‖h‖0,q+1;

‖Lnh‖1,q ≤ Aθn‖h‖1,q + B‖h‖0,q+1.

Proof. Note that if (W , ϕ) ∈ �L,q,1, then, by (2.7) and (2.2) and for A large enough,∣∣∣∣∫
M

Lnhϕ

∣∣∣∣ =
∣∣∣∣∫

M

hϕ ◦ T n

∣∣∣∣ ≤ A‖h‖0,q , (3.2)

from which the first inequality follows.
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For each ε > 0 and (W , ϕ) ∈ �L,q,1, we define ϕε as in Lemma 3.1. Hence,∣∣∣∣∫
M

Lnhϕ

∣∣∣∣ =
∣∣∣∣∫

M

h(ϕ − ϕε) ◦ T n

∣∣∣∣ +
∣∣∣∣∫

M

hϕε ◦ T n

∣∣∣∣
≤ ‖(ϕ − ϕε) ◦ T n‖T −nW

q ‖h‖0,q + ‖ϕε ◦ T n‖T −nW
q+1 ‖h‖0,q+1 .

Then, by Lemmas 2.15 and 3.1,∣∣∣∣∫
M

Lnhϕ

∣∣∣∣ ≤ ‖(ϕ − ϕε) ◦ T n‖T −nW
q ‖h‖0,q + ‖ϕε ◦ T n‖T −nW

q+1 ‖h‖0,q+1

≤ (A0σ
qn‖ϕ − ϕε‖Wq + B0‖ϕ − ϕε‖Wq−1)‖h‖0,q + A0‖ϕε‖Wq+1‖h‖0,q+1

≤ (2c−1
� A0σ

qn + Cq,�B0ε)‖h‖0,q + A0c� ε−1‖h‖0,q+1.

For each θ ∈ (σ , 1), there exists n1 ∈ N and ε such that 2A0σ
qn1 + Cq,�B0ε ≤ θ2n1 .

(Recall that, for this statement, we require q ≥ 1. It is obvious that q = 0 does not lead
to any contraction. This point shows the need to work with a space of distributions
rather than a space of measures.) Thus, taking the sup for (W , ϕ) ∈ �L,q,1, we have, for
n ∈ {n1, . . . , 2n1},

‖Lnh‖0,q ≤ θn‖h‖0,q + C�‖h‖0,q+1.

Iterating yields that there exists A1 > 0 such that

‖Lnh‖0,q ≤ θn‖h‖0,q + B�‖h‖0,q+1 for all n ≥ n1,

‖Lnh‖0,q ≤ A1θ
n‖h‖0,q + B�‖h‖0,q+1 for all n ∈ N.

(3.3)

Next, we prove the third inequality in the statement of the lemma. For each (W , ϕ) ∈
�L,q+1,d , write ∫

M

Lnh div ϕ =
∫
M

h(div ϕ) ◦ T n.

Note that, setting R = φi ◦ T n ◦ φ−1
j and recalling equation (2.12),

div (DR−1 ◦ φj · ϕ ◦ T n) = (div ϕ) ◦ T n +
d∑

l,k=1

∂l[(DR)−1]lkϕk ◦ φj ◦ T n. (3.4)

Set Dn = supl
∑

k ‖[∂l(DR−1)l,k]‖C r .
It is then natural to decompose ϕ into an ‘unstable’ and a ‘stable’ part. More precisely,

consider the ‘almost unstable’ foliation � = {γs}s∈Rds made of the leaves in some chart
φj , γs = {(u, s)}u∈Rdu and its image T n�. The leaves of T n� can be expressed, in some
chart φi , in the form {(x, G̃n(x, y)} for some function G̃n, smooth in the x variable, with
‖∂xG̃n‖ ≤ 1 and the normalization G̃n(F (0, y), y) = y. On the other hand, the leaves
of W , in the same chart, have the form {(F (x, y), y)}. It is then natural to consider the
change of variables (x, y) = �n(x

′, y′), where (x, G̃n(x, y′)) = (F (x′, y), y). Writing
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ϕ = (ϕ1, ϕ2), with ϕ1 ∈ R
du , ϕ2 ∈ R

ds , we consider the decomposition

ϕ ◦ φ−1
i (x, y) = ϕu ◦ φ−1

i (x, y) + ϕs ◦ φ−1
i (x, y)

= (v(x, y), ∂xG̃n(x, y′)v(x, y)) + (∂yF (x′, y)w(x, y), w(x, y)). (3.5)

(Since v and w depend on n, a more precise notation would be vn, wn. We suppress the
subscript n to ease notation and since no ambiguity can arise.) That is, setting ϕ̂ = ϕ ◦ φ−1

i ,

v(x, y) = (1 − ∂yF (x′, y)∂xG̃n(x, y′))−1(ϕ̂1(x, y) − ∂yF (x′, y)ϕ̂2(x, y)),

w(x, y) = (1 − ∂xG̃n(x, y′)∂yF (x′, y))−1(ϕ̂2(x, y) − ∂xG̃n(x, y′)ϕ̂1(x, y)).
(3.6)

Thus, recalling equation (3.4) and Lemma 2.15,∣∣∣∣∫
M

Lnh div ϕ

∣∣∣∣ ≤
∣∣∣∣∫

M

Lnh div ϕs

∣∣∣∣ +
∣∣∣∣∫

M

Lnh div ϕu

∣∣∣∣
≤

∣∣∣∣∫
M

Lnh div ϕs

∣∣∣∣ + A0Dn‖h‖0,q+1

+
∣∣∣∣∫

M

h div ([(DR)−1 ◦ R−1 ◦ φi · ϕu] ◦ T n)

∣∣∣∣. (3.7)

To estimate the above terms, our first task is to compute the norm of div (ϕs), (x, y) =
F(x′, y) := (F (x′, y), y). We start by noticing that∑

i

∂yi [wi ◦ F](x′, y) =
∑
i,j

(∂xj wi)(x, y) · ∂yiFj (x
′, y) +

∑
i

(∂yiw)(x, y)

= div (ϕs)(x, y) −
∑
i,j ,k

[(∂x′
k
∂yiFj · (∂xF )−1

kj ) ◦ F
−1 · wi](x, y).

Accordingly, recalling (2.6),

div (ϕs)(F (x′, y), y)) =
[ ∑

i

∂yi [wi ◦ F] +
∑
i

(HF
i · wi) ◦ F

]
(x′, y),

w ◦ F(x′, y) = (1 − ∂xG̃n(F (x′, y), y)∂yF (x′, y))−1[ϕ2 ◦ F − ∂xG̃nϕ1 ◦ F)](x′, y).
(3.8)

Since, ‖w‖Wq+1 ≤ Cn,� , recalling Definition 2.5 for all |α| ≤ q,

|∂αy [div (ϕs) ◦ φ−1
i ◦ F](x′, ·)| ≤ Cn.

Hence, by (3.2), ∣∣∣∣∫
M

Lnh div ϕs

∣∣∣∣ ≤ Cn‖Lnh‖0,q ≤ CnA‖h‖0,q . (3.9)
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On the other hand, for each |α| = q + 1, using (3.5) and (3.6),

|∂αy {[(DR)−1 ◦ R−1ϕu ◦ φ−1
i ] ◦ F}(x′, y)|

≤
∣∣∣∣(DR ◦ R−1 ◦ F(x′, y))−1

(
1 0
0 ∂xG̃(F(x′, y))

)
∂αy [v ◦ φ−1

i ◦ F](x′, y)
∣∣∣∣+Cn�

−1‖ϕ‖Wq ,

where the last term bounds all the terms with at most q derivatives on v. Since the range
of the matrix in the line above belongs to the image of the unstable cone under R, by (2.2)
(and putting in the remainder all the terms with at most q derivatives of ϕ), we have

|∂αy {[(DR)−1 ◦ R−1ϕu ◦ φ−1
i ] ◦ F}(x′, y)|

≤ 1 + θ

c0
λ−n|∂αy [v ◦ φ−1

i ◦ F](x′, y)| + Cn�
−1‖ϕ‖Wq

≤ (1 + θ2)2

c0(1 − θ)
λ−n‖ϕ‖Wq+1 + Cn�

−1‖ϕ‖Wq .

Accordingly,

‖(DR)−1 ◦ R−1 ◦ φi · ϕu‖Wq+1 ≤ (1 + θ2)2

c0(1 − θ)
λ−n‖ϕ‖Wq+1 + Cn�

−1‖ϕ‖Wq .

Then Lemma 2.15 implies that

‖[(DR)−1 ◦ R−1 ◦ φi · ϕu] ◦ T n‖T −nW
q+1 ≤ A0(1 + θ2)2

c0(1 − θ)λn
‖ϕ‖Wq+1 + Cn

�
‖ϕ‖Wq . (3.10)

We can now chose n2 ∈ N, n2 ≥ n1, such that

A0(1 + θ)2

c0(1 − θ)
λ−n2 ≤ 1

4
θn2 ,

and finally we choose � such that

4 sup
l≤2n2

Clθ
−2n2 ≤ � . (3.11)

Accordingly, for all n ∈ {n2, . . . , 2n2},
‖[(DR)−1 ◦ R−1 ◦ φi · ϕu] ◦ T n‖T −nW

q+1 ≤ 1
2θ

n‖ϕ‖Wq+1.

We can then continue the estimate started in (3.7). Recalling (3.9):∣∣∣∣∫
M

Lnh div ϕ

∣∣∣∣ ≤ ACn‖h‖0,q + 1
2
θn‖h‖∗

1,q + A0Dn2‖h‖0,q+1.

(Note that, in (3.11), we have chosen � and that the choice depends only on T .
Thus we can drop the � dependency from all the constants.) Finally, choose a such
that supl≤2n2

ClAa−1 ≤ 1
2θ

2n2 . Then, taking the sup on ϕ, W , we have, for all n ∈
{n2, . . . , 2n2} and using (3.3),

‖Lnh‖−
1,q ≤ θn‖h‖−

1,q + Bn2‖h‖0,q+1.
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Then, for each n ∈ N, we can write n = kn2 + m, m ≤ n2, and iterating the above
inequality, we have, for all n ∈ N,

‖Lnh‖−
1,q ≤ Aθn‖h‖−

1,q + B‖h‖0,q+1.

Finally, if h ∈ B1,q , then there exist {gk} ∈ C1: gk
B0,q

→ h and ‖gk‖−
1,q → ‖h‖1,q . Since,

Lngk ∈ C1 and Lngk → Lnh in B0,q ,

‖Lnh‖1,q ≤ lim
k→∞ ‖Lngk‖−

1,q ≤ Aθn lim
k→∞ ‖gk‖−

1,q + B lim
k→∞ ‖gk‖0,q+1

= Aθn‖h‖1,q + B‖h‖0,q+1.

This finishes the proof of the second item in the proposition. The proof of the first item of
the proposition follows from (3.3) and (3.11).

4. On the essential spectrum
In the previous section, we saw that L (or rather its extension which, with a slight abuse
of notation, we still call L) belongs both to L(B0,q , B0,q) and L(B1,q , B1,q ). Moreover,
Proposition 3.2 implies that the spectrum of L is contained in the unit disk. Next, we want
to study the essential spectrum (that is, the complement of the point spectrum with finite
multiplicity).

LEMMA 4.1. For q ∈ {1, . . . , r − 2}, the essential spectrum of L on B1,q is contained in
the disk {z ∈ C : |z| ≤ max{λ−1, ν}}.
Proof. By Lemmas 2.9 and 2.15, it follows that it suffices to study the sup of

∫
M

hϕ for
(W , ϕ) ∈ �L/4,q+1,1. Indeed, if B−

1 = {h ∈ B1,q : ‖h‖−
1,q ≤ 1} is relatively compact in the

topology associated to the norm ‖h‖′
0,q+1 = sup(W ,ϕ)∈�L/4,q+1,1

|∫
M

hϕ|, then, by Lemmas
2.9 and 2.15, there exists n0 ∈ N such that ‖Ln0h‖0,q+1 ≤ ‖h‖′

0,q+1. Hence, Ln0B−
1 is

relatively compact in B0,q+1. Thus Ln0 is compact as an operator from B1,q to B0,q+1 and
the lemma follows from Proposition 3.2 and the usual Hennion argument [He] based on
Nussbaum’s essential spectral formula [Nu] (see [L] for details).

Let us prove the relative compactness of B−
1 . Since we can write∫

M

hϕ =
∑
i

∫
M

hϑiϕ

we can assume, without loss of generality, that ϕ is supported in a given chart (Vi , φi).
From now on, we will work in such a chart without further mention.

We define ϕt to be the solution of the heat equation

∂tϕt = �xϕt in R
d × [0, 1],

ϕ0 = ϕ.

That is,

ϕt (x, y) = 1
(4πt)du/2

∫
Rdu

e−(|ζ |2)/4t ϕ(x − ζ , y) dζ . (4.1)
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Then, for each small ε > 0,∫
M

hϕ =
∫
M

hϕε −
∫ ε

0
dt

∫
M

h∂tϕt =
∫
Vi

h ϕε −
∫ ε

0
dt

∫
Vi

h div ∇xϕt (x, y)

=
∫
Vi

h ϕε +
∫ ε

0
dt

1
(4πt)du/2

∫
Vi

dxdy

∫
Rdu

dζ e−(|ζ |2/4t)h div ∇ζ ϕ(x − ζ , y)

=
∫
Vi

h ϕε +
∫ ε

0
dt

1
(4πt)du/2

∫
Rdu

dζ e−(|ζ |2)/4t
∫
Vi

h div
ζ

2t
ϕζ ,

where, in the last line, ϕζ (x, y) := ϕ(x − ζ , y) and we have integrated by parts with
respect to ζ . Next, for each ζ ∈ R

du , we define the foliation Fζ (x, y) := (F (x − ζ , y) +
ζ , y). Note that the foliation Wζ defined by Fζ belongs to W r

L/4. Then ϕζ ◦ Fζ (x, y) =
ϕ(F (x − ζ , y), y), which implies that ‖ϕζ‖Wζ

q+1 ≤ 1. Hence,∫
M

hϕ =
∫
Vi

h ϕε + O(‖h‖−
1,qε). (4.2)

In addition, by (4.1) and integrating r times by parts,

|ϕε(·, y)|C r ≤ Cr

(4πε)du/2

∫
Rdu

e−(|ζ |2)/4ε(ε−(r/2) + ε−r‖ξ‖r )‖ϕ‖C0dζ ≤ Cε−(r/2).

Moreover, recalling (4.1), Definition 2.5 and Lemma B.7,

ϕε ◦ F(x, y) = 1
(4πε)d/2

∫
Rdu

e−(|F(x,y)−ζ |2)/4εϕ(ζ , y)dζ

= 1
(4πε)d/2

∫
Rdu

e−(|F(x,y)−F(ξ ,y)|2)/4εϕ(F (ξ , y), y) det(∂xF )(ξ , y) dξ ,

which readily implies that ‖ϕε‖Wr ≤ Cε−r . This, by [J], implies that |ϕε|C r ≤ Cε−r . Thus,
recalling (4.2), we have, for each ε > 0,

‖h‖0,q+1 ≤ Cε−r‖h‖(C r )′ + C‖h‖−
1,qε. (4.3)

Since (Cq+1)′ embeds compactly in (C r )′ and Lemma 2.16 implies that B−
1 is a bounded

subset of (Cq+1)′, it follows that B−
1 is relatively compact in (C r )′. From this and

equation (4.3), the relative compactness of B−
1 in B0,q+1 readily follows. Hence the lemma

follows.

5. On the peripheral spectrum
The previous section implies that, for each β ∈ (max{λ−1, ν}, 1), the spectral decomposi-
tion is

L =
Lβ∑
j=1

λj�j + R, (5.1)

where �j�k = δjk�
2
k , �jR = R�j = 0, each �j is a finite rank operator, and the

spectral radius of R is bounded by β.
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LEMMA 5.1. One is an eigenvalue of L. Letting h∗ := �11, h∗ is a measure. In addition,
the peripheral spectrum of L consists of finitely many finite groups.

Proof. Since � is an eigenvalue of the dual of L (the Lebesgue measure being the
eigenvector), it must belong to the spectrum of L. Next, we choose β in representation (5.1)
to be large enough so that, for all the eigenvectors, we have |λj | = 1. In this case, since the
operator is power bounded, the �j cannot contain Jordan blocks. Thus �j�k = δjk�k . A
simple computation based on (5.1) shows that

lim
n→∞

1
n

n−1∑
k=0

e−iϑLk =
{

0 if eiϑ /∈ σ(L),
�j if eiϑ = λj =: eiϑj .

(5.2)

For each ϕ ∈ Cq ,

∣∣∣∣∫
M

h∗ϕ
∣∣∣∣ ≤ lim

n→∞
1
n

n−1∑
k=0

∫
M

Lk1|ϕ| = lim
n→∞

1
n

n−1∑
k=0

∫
M

|ϕ ◦ T k| ≤ |ϕ|∞.

In other words, h∗ defines a measure. Then let h ∈ C1 and ϕ ∈ Cq , ϕ ≥ 0.

∣∣∣∣∫
M

�jhϕ

∣∣∣∣ ≤ lim
n→∞

1
n

n−1∑
k=0

∫
M

Lk|h|ϕ = lim
n→∞

1
n

n−1∑
k=0

∫
M

|h|ϕ ◦ T k

≤ |h|∞ lim
n→∞

1
n

n−1∑
k=0

∫
M

Lk1ϕ = |h|∞
∫
M

h∗ϕ.

Moreover, by a similar computation,

∣∣∣∣∫
M

�jhϕ

∣∣∣∣ ≤ lim
n→∞

1
n

n−1∑
k=0

∫
M

Lk|h|ϕ ≤ |ϕ|∞
∫
M

|h|.

This implies that �jh = ∑nj
l=1 ψj ,lh∗

∫
M

hφj ,l , where ψj ,l , φj ,l ∈ L∞(M). Note that
�k�m = δkm�k implies that ∫

M

φk,lψm,l′h∗ = δk,mδl,l′ . (5.3)

Accordingly, for all g, h ∈ C r ,

nj∑
l=1

∫
M

gψj ,lh∗
∫
M

φj ,l ◦ T h =
∫
M

g�jLh = eiϑj

∫
M

g�jh

= eiϑj

nj∑
l=1

∫
M

gψj ,lh∗
∫
M

hφj ,l .
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It follows that φj ,l ◦ T = eiϑj φj ,l , ω almost surely. On the other hand,

nj∑
l=1

∫
M

gLψj ,lh∗
∫
M

φj ,lh =
∫
M

gL�jh = eiϑj

∫
M

g�jh

= eiϑj

nj∑
l=1

∫
M

gψj ,lh∗
∫
M

hφj ,l .

By the arbitrariness of g, h, it follows that

eiϑj ψj ,lh∗ = Lψj ,lh∗ = ψj ,l ◦ T −1Lh∗ = ψj ,l ◦ T −1h∗,

which implies that ψj ,l ◦ T −1 = eiϑj ψj ,l , h∗dω almost surely. Note that this implies that,
for all k ∈ N, ψk

j ,l ◦ T −1 = eiϑj kψk
j ,l . Thus L(ψk

j ,lh∗) = ψk
j ,l ◦ T −1Lh∗ = eiϑj kψk

j ,lh∗.
By an approximation argument, one can prove that ψk

j ,lh∗ ∈ B1,q . But then it follows that
{eiϑj k} ⊂ σ(L) and since the operator is quasi-compact it can have only finitely many
isolated eigenvalues. Thus, we must have ϑj = 2πkj/nj , which concludes the proof.

Lemma 5.1 implies that there exists m̄ ∈ N such that the peripheral spectrum of Lm̄

consists of only the eigenvalue 1 with associated eigenprojector � = ∑N
l=1 ψlh∗

∫
M

hφl ,
where ψl ∈ {ψj ,i} and φl ∈ {φj ,i}. Moreover, (5.3) implies that∫

M

φlψl′h∗ = δl,l′ . (5.4)

Accordingly, the rest of the spectrum will be contained in a disk strictly smaller than
one: that is, Lm̄ = � + Q, where ‖Qn‖1,q ≤ Cσn for some C > 0 and σ ∈ (0, 1). In
addition, note that (5.2) implies that �1 = h∗.

A more precise result can be easily obtained.

LEMMA 5.2. The ergodic decomposition of h∗ corresponds to the spectral decomposition
for the Anosov map and consists of the physical measures.

Proof. Let �
′
h = ∑N

l=1 φl

∫
M

ψlh∗h and recall that φl ◦ T = φl . For each h ∈
Cq(M , R), let ĥ = h − �

′
h. Then

∫
M

∣∣∣∣1
n

n−1∑
k=0

h ◦ T m̄k − �
′
h

∣∣∣∣2

=
∫
M

∣∣∣∣1
n

n−1∑
k=0

ĥ ◦ T m̄k

∣∣∣∣2

=
n−1∑
k,j=0

1
n̄2

∫
M

ĥ ◦ T m̄kĥ ◦ T m̄j

=
n−1∑
k=0

1
n2

∫
M

Lm̄k1ĥ2 + 2
n−1∑

k>j=0

1
n2

∫
M

ĥLm̄k−m̄j ĥLm̄j1
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= O
(

1
n

)
+ 2

n−1∑
j=0

n−j−1∑
l=1

1
n2

∫
M

ĥLm̄l ĥLm̄j1

= O
(

1
n

)
+ 2

n−1∑
j=0

n−j−1∑
l=1

1
n2

∫
M

ĥ�ĥ�1 + C

n−1∑
j=0

n−j−1∑
l=1

1
n2 (σ

l + σ j )

= O
(

1
n

)
+ 2

n−1∑
j=0

n−j−1∑
l=1

1
n2

∫
M

ĥ�ĥ�1.

Next, note that, recalling (5.4),∫
M

ĥ�ĥ�1 =
∫
M

ĥ�ĥh∗

=
N∑
l=1

∫
M

hψlh∗
∫
M

φlĥh∗ −
N∑
l=1

N∑
j=1

∫
M

ψlh∗h
∫
M

φlψjh∗
∫
M

φj ĥh∗ = 0.

It follows that ∫
M

∣∣∣∣1
n

n−1∑
k=0

h ◦ T m̄k − �
′
h

∣∣∣∣2

≤ Chn
−1. (5.5)

By Chebyshev, this implies that

ω

({
x ∈ M :

∣∣∣∣1
n

n−1∑
k=0

h ◦ T m̄k − �
′
h

∣∣∣∣ ≥ ε

})
≤ Ch

ε2n
.

Thus, if we consider α ∈ (0, 1) and the set I = ∪k∈N{2k + j2αk}0≤j<2(1−α)k , each
sequence {nj } ⊂ I will have limit ω almost surely by a standard Borel–Cantelli argument.
On the other hand, since h is bounded, this readily implies that

lim
n→∞

1
n

n−1∑
k=0

h ◦ T m̄k = �
′
h =

N∑
l=1

φl

∫
M

ψlh∗h ω-almost surely.

By an obvious approximation argument, the same can be proved for each h ∈ C0(M , R).
This implies that the ergodic decomposition of h∗ consists of the physical measures. It is
well known that these are the SRB measures of the system.

Remark 5.3. If the map is topologically transitive, then the physical measure is unique and
so are the physical measures of the powers of the map. Hence the map is mixing, and no
other eigenvalue of modulus one exists. Thus, the transfer operator has a spectral gap and
the map is exponentially mixing for BV observables.
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A. Appendix. Norms estimates
We provide a few tools on how to estimate Cq norms of products and compositions of
functions. These are well-known facts, yet it is not easy to find in the literature the exact
statements needed here, so we provide them for the reader’s convenience.

Proof of Lemma 2.12. Let ϕ, ψ ∈ Cρ(M , C). First, we prove, by induction on ρ, that

sup
|α|=ρ

‖∂α(ϕψ)‖C0 ≤
ρ∑

k=0

(
ρ

k

)
sup

|β|=ρ−k

‖∂βϕ‖C0 sup
|γ |=k

‖∂γ ψ‖C0 . (A.1)

Indeed, it is trivial for ρ = 0 and

‖∂xi ∂α(ϕψ)‖C0 = ‖∂α(ψ∂xi ϕ + ϕ∂xiψ)‖C0

≤
ρ∑

k=0

(
ρ

k

)
sup

|β|=ρ−k

‖∂β∂xi ϕ‖C0 sup
|γ |=k

‖∂γ ψ‖C0

+
ρ∑

k=0

(
ρ

k

)
sup

|β|=ρ−k

‖∂β∂xiψ‖C0 sup
|γ |=k

‖∂γ ϕ‖C0

≤
ρ∑

k=0

(
ρ

k

)
sup

|β|=ρ−k+1
‖∂βϕ‖C0 sup

|γ |=k

‖∂γ ψ‖C0

+
ρ+1∑
k=1

(
ρ

ρ + 1 − k

)
sup

|γ |=k

‖∂γ ψ‖C0 sup
|β|=ρ−k+1

‖∂βϕ‖C0 ,

from which (A.1) follows by taking the sup on α, i and since
(
ρ
k

) + (
ρ

ρ+1−k

) = (
ρ+1
k

)
. The

first statement of the lemma readily follows: that is,

‖ϕψ‖Cρ =
ρ∑

k=0

�ρ−k
k∑

j=0

(
k

j

)
sup

|β|=k−j

‖∂βϕ‖C0 sup
|γ |=j

‖∂γ ψ‖C0

=
ρ∑

j=0

ρ∑
k=j

�ρ−k

(
k

j

)
sup

|β|=k−j

‖∂βϕ‖C0 sup
|γ |=j

‖∂γ ψ‖C0

≤
ρ∑

j=0

ρ−j∑
l=0

(
j + l

j

)
�ρ−j−l sup

|β|=l

‖∂βϕ‖C0 sup
|γ |=j

‖∂γ ψ‖C0 ≤ ‖ϕ‖Cρ‖ψ‖Cρ

since
(
j+l
j

) ≤ 2j+l ≤ �ρ . The extension to functions with values in the matrices is trivial
since we have chosen a norm in which the matrices form a normed algebra.

To prove the second inequality of the lemma, we proceed again by induction on ρ. The
case ρ = 1 is trivial from the definition of the norm. We assume that the statement is true
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for every k ≤ ρ and show it for ρ + 1. By the definition of ‖ · ‖Cρ ,

‖ϕ ◦ ψ‖Cρ+1 ≤ �ρ+1‖ϕ‖C0 + sup
i

‖∂xi (ϕ ◦ ψ)‖Cρ . (A.2)

By hypothesis (below, we use the elementary fact that
(

ρ
q−1

) ≤ (
ρ+1
q

)
, q ≤ ρ + 1),

‖∂xi (ϕ ◦ ψ)‖Cρ ≤ sup
j

‖(∂xj ϕ) ◦ ψ‖Cρ‖(Dψ)t‖Cρ

≤
ρ∑

k=0

(
ρ

k

)
�ρ−k‖ϕ‖Ck+1

k∏
i=0

‖(Dψ)t‖Cρ−i

≤
ρ+1∑
q=1

(
ρ + 1
q

)
�ρ+1−q‖ϕ‖Cq

q∏
j=1

‖(Dψ)t‖Cρ+1−j .

Finally, notice that the term with q = 0 in the sum above is exactly the first term of the
right-hand side of (A.2), which gives the result for ρ + 1 and proves the induction.

Remark A.1. Notice that, for ϕ, ψ ∈ Cρ , the definition of the norm and Lemma 2.12 imply
that

‖ϕ ◦ ψ‖Cρ ≤ ‖ϕ‖Cρ
ρ∑

j=0

(
ρ

j

)
�ρ−j‖(Dψ)t‖jCρ−1 . (A.3)

B. Appendix. Foliations: regularity properties
This appendix is devoted to proving Lemma 2.9 and a few other technical lemmas. In
essence, we study the behaviour of foliations under iteration. This is very similar to what
is done in the construction of the invariant foliations and in the study of their regularity
properties, including the regularity of the holonomies. The reason to redo it here without
appealing to the literature is that we need these facts in an unconventional form. In
particular, we could not find anywhere in the literature the infinitesimal characterization of
the holonomy used here, which is a characterization, hopefully, very helpful in the study
of discontinuous hyperbolic maps.

Given such a new twist in the theory, we think it is appropriate to present a more general
result: we will control also the regularity of the leaves, and of their tangent spaces, in the
unstable direction, although this is not needed in the present paper. More precisely, we
will see that the derivatives of the foliation along the leaves vary in a τ0-Hölder manner.
The optimal τ0 is well known to depend on a bunching condition [PSW, HW]. We ignore
this issue since it largely exceeds our present purposes and to investigate it would entail a
lengthier argument. Note that Lemma 2.9 is a special case of Proposition B.1 below when
choosing τ = 0.

Let τ ∈ (0, 1). Given ϕ : M → R, we define, for some δ > 0,

‖ϕ‖Cτ = ‖ϕ‖C0 + sup
ξ∈M

sup
d(ξ ,ξ ′)≤δ 

ξ �=ξ ′

|ϕ(ξ) − ϕ(ξ ′)|
d(ξ , ξ ′)τ

, (B.1)

https://doi.org/10.1017/etds.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.52


Anosov diffeomorphisms and anisotropic BV 2453

where d(·, ·) is the Riemannian distance and δ ∈ (0, 1). Also, for each r ∈ R, r = q + τ

and q ∈ N ∪ {0}, we define

‖ϕ‖r =
q∑

k=0

sup
|α|=k

‖∂αϕ‖C0 + sup
|α|=q

‖∂αϕ‖Cτ .

Note that, for τ = 0, the above corresponds to (2.7) with the choice � = 1. (This choice of
a different equivalent norm, limited to this appendix, is slightly annoying, but convenient.)

Note that ‖ϕ · φ‖Cτ ≤ ‖ϕ‖Cτ ‖φ‖Cτ , so Cτ is a Banach algebra. The same holds for
matrix valued functions.

Although the above norms are all equivalent, they depend on δ . We will choose δ in
(B.11). Let T ∈ Cr and define, for τ ∈ [0, 1),

Wr ,τ
L :=

{
W ∈ F r

C : sup
ξ ;y∈U0

s

‖∂αy Fξ (·, y)‖C0(U0
u ,Rdu )

≤ L(|α|−1)2
, 2 ≤ |α| ≤ r;

sup
ξ

sup
y∈U0

s

‖∂αy Fξ (·, y)‖Cτ (U0
u ,Rdu ) ≤ 2L|α|2 , |α| ≤ r − 1;

sup
ξ

sup
y∈U0

s

‖∂αy HFξ (·, y)‖C0(U0
u ,Rds )

≤ L(|α|+1)2
, |α| ≤ r − 2;

sup
ξ

sup
y∈U0

s

‖∂αy HFξ (·, y)‖Cτ (U0
u ,Rds ) ≤ 2L(|α|+2)2

, |α| ≤ r − 3
}

. (B.2)

Note that, recalling the cone definition (2.3), Definition 2.3 and the subsequent definition
of F , it follows that, for W ∈ Wr ,τ

L , the corresponding F must satisfy ‖∂yF‖ ≤ 1 and
‖F(x, y)‖ ≤ ‖x‖ + ‖y‖.

PROPOSITION B.1. There exist τ0 ∈ (0, 1), δ > 0, n0 ∈ N and L > 0 such that, for all
n ∈ N, n ≥ n0, L1 ≥ L and W ∈ Wr ,τ0

L1
, we have Wn ∈ Wr ,τ0

L1/2.

Remark B.2. Note that, for τ = 0, the conditions in Wr ,τ
L reduce to a control on the sup

norm of the derivatives ∂αy F (·, y) exactly as in the definition of Wr
L in Definition 2.5. The

control stated in Proposition B.1 on ∂αy F (·, y) is known. As for ∂αy H
F (·, y), we are not

aware of this result anywhere in the literature.

Remark B.3. Note that, for each W ∈ Wr ,τ
L , τ > 0, the foliation T nW converges to the

invariant foliation (since the contraction of the cone fields implies that, for all x ∈ M ,
DT nxT

−nTT nxW(T nx) converges to the stable distribution Es). (Here TxV is the tangent
space of the manifold V at the point x and W(x) is the fiber of the foliation passing
through x, while Es(x) is the stable subspace in TxM .) Moreover, if Fn describes T nW ,
then the ∂αy Fn are uniformly Hölder. Accordingly, for each τ ′ < τ , by compactness, T nW

has a convergent subsequence, and hence it converges to the stable foliation, and all the
quantities in the definition of Wr ,τ

L converge as well. It follows that the stable foliations
have C r leaves with derivatives in y that are uniformly τ ′ Hölder in x. Analogously, HF

and its derivatives converge. This implies that the invariant foliation has a holonomy that
is uniformly absolutely continuous (see Lemma B.7 and Remark B.8 for the definitions
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of the holonomy, its Jacobian JF and its properties). Similar results hold also in the case
when τ = 0, but the argument is a bit more involved.

Proof of Proposition B.1. The first step in proving the proposition is to determine, for
each ξ ∈ M and n ∈ N, the functions Fn

T −nξ
associated to Wn. (Since the point ξ in the

present argument is fixed once and for all, in the following, we will often suppress the
subscript ξ . We will also suppress the n dependence if no confusion arises.) Note that it
suffices to compute the norms in (B.2) in a special neighborhood of T −nξ =: ξ ′. Indeed,
if φj (ξ

′) = (x′, y′) and Û0
u = {x ∈ R

du : ‖x‖ ≤ δ }, then it suffices to consider the set
(x′, y′) + Û0

u × U0
s since, setting ζξ ′,x = φ−1

j (x′ + x, y′), a direct computation shows that
Fζξ ′ ,x (u, y) = Fξ ′(x + u, y) − x. Thus

sup
x∈U0

u‖x−x̃‖≤δ 

‖Fξ ′(x, y) − Fξ ′(x̃, y)‖
‖x − x̃‖τ = sup

x∈U0
u

sup
u∈Û0

u

‖Fζξ ′ ,x (0, y) − Fζξ ′ ,x (u, y)‖
‖u‖τ .

While, for |α| > 0,

‖∂αy Fξ ′(·, y)‖Cτ (U0
u ,Rdu ) = sup

x∈U0
u

‖∂αy Fξ ′(x, y)‖ + sup
x∈U0

u‖x−x̃‖≤δ 

‖∂αy Fξ ′(x, y) − ∂αy Fξ ′(x̃, y)‖
‖x − x̃‖τ

= sup
x∈U0

u

{
‖∂αy Fζξ ′ ,x (0, y)‖ + sup

u∈Û0
u

‖∂αy Fζξ ′ ,x (0, y) − ∂αy Fζξ ′ ,x (u, y)‖
‖u‖τ

}
.

Hence, the sup on y and ξ ′ can be computed by taking the sup of the quantity in the
curly bracket (and the same for HF ).

Let (Vi , φi), (Vj , φj ) be the charts associated to ξ and T −nξ , respectively, and consider
the map S = φj ◦ T −n ◦ φ−1

i . By a simple translation, we can assume, without loss
of generality, that φi(ξ) = 0 and φj (T

−nξ) = 0. From now on, we use (x, y) for the
coordinate names at φi(ξ) and (u, s) for the coordinate names at φj (T

−nξ). By a linear
change of coordinates, that leaves {y = 0} and {s = 0} fixed, and we can have ∂yF (0, 0) =
∂sF

n(0, 0) = 0. Such a change of coordinates may affect the norms and yield some extra
(uniformly bounded) constant in the estimates. We will ignore this to simplify the notation
since its effect is trivial. Also, remember that, by construction, F(x, 0) = x, Fn(u, 0) = u.

It follows from the usual graph transform (see [KH, Proof of Theorem 6.2.8
(Hadamard-Perron)]) that

S−1(u, 0) = (β(u), G(β(u)), (B.3)

where β ∈ Cr+τ (Rdu , Rdu) and ‖G‖Cr+τ (Rdu ,Rds ) ≤ c1 for some c1 > 0 depending only on
T . Moreover, ‖DG‖ ≤ η < 1 by the invariance of the cone field and β(0) = 0, G(0) = 0
by construction. Moreover, by (2.2), ‖(Dβ)−1‖C0 ≤ c−1

0 λ−n while, setting λ+ =
max{‖DT ‖, ‖DT −1‖}, we have, for some constant C1 > 0,

‖β(u)‖ ≤ ‖(β(u), G ◦ β(u))‖ ≤ C1λ
n+‖u‖. (B.4)

In addition, {(z, DξG(z))}z∈Rdu is uniformly traversal to {(DξF (ζ ), ζ )}ζ∈Rds .

https://doi.org/10.1017/etds.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.52


Anosov diffeomorphisms and anisotropic BV 2455

Hence, setting

D(x,y)S =
(
A B

C E

)
, (B.5)

we have

A(x, G(x)) = (Dxβ)
−1 − B(x, G(x))DxG,

C(x, G(x)) = −E(x, G(x))DxG; B(0, 0) = 0,
(B.6)

where the last equality follows by the choice of the coordinates.
For each x, the manifold {(F (x, y), y)}y∈Rds intersects the manifold {(z, G(z))}Rdu in

a unique point determined by the equation

(F (x, y), y) = (z, G(z)),

which is equivalent to L(z, x) := z − F(x, G(z)) = 0. Since L(0, 0) = 0, we apply the
implicit function theorem and obtain a function � : U0

u ⊂ R
du → R

du such that

�(x) = F(x, G ◦ �(x)). (B.7)

Note that the implicit function theorem yields a uniform domain D(�), of �. Hence, we
can take δ0 small enough so that D(�) ⊃ U0

u .
Since ‖∂yF‖ ≤ 1 and recalling that ‖DG‖ ≤ η < 1, 1 − ∂yFDG is invertible. Hence,

D� = (1 − ∂yFDG)−1∂xF .

Note that, remembering (2.5), D0� = 1. Moreover, � is invertible since, recalling (B.7),
�(x) = �(x′) implies that

(F (x, G ◦ �(x)), G ◦ �(x)) = (F (x′, G ◦ �(x′)), G ◦ �(x))

= (F (x′, G ◦ �(x)), G ◦ �(x)),

which forces x = x′ since the leaves of the foliation are disjoint by hypothesis.
By definition, for each u ∈ R

du small enough, {(F n(u, s), s)}s∈Rds is the graph of the
leaf of Wn passing through (u, 0), and hence of the image of the leaf of W passing through
(�−1 ◦ β(u), 0). In other words, {(F n(u, s), s)}s∈Rds coincides with the leaf {S(F (�−1 ◦
β(u), y), y)}y∈Rds .

To continue, we need some estimates on DS. But, before that, it is convenient to make
some choices and definitions whose meaning will become clear later in the proof. Let
τ0 ∈ (0, 1) be such that

σ1 := max{ν, λ−1} · λ
8τ0+ < 1. (B.8)

Next, let σ1 < σ < 1, fix C > 0 to be chosen later (see equations (B.16), (B.20) and
(B.25)) and let n be the smallest integer such that

C σ
n 
1 = σn < (1/8)r , νn ≤ 2−2r . (B.9)

Remark B.4. Up to now, δ0 was arbitrary provided we chose it small enough: the
requirements are in §2.4, where we fix the charts just after (B.7). In the following, we will
have also a condition in equation (B.12) to apply the implicit function theorem, and we
will use δ0 < 1/8 in equation (B.14). All such choices can be summarized by the condition
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δ0 ≤ δ1 for some δ1 ∈ (0, 1/8) depending only on T . However, in the next lemma, we will
have a requirement depending on n.

LEMMA B.5. There exists η, σ0 ∈ (0, 1) and C0 ≥ max{2, 6c−1
0 } such that, for each n ∈

N, du × ds matrix U , ‖U‖ ≤ 1,

‖CU + E‖ ≥ C−1
0 ν−n ; ‖E−1C‖ ≤ η ; ‖(AU + B)(CU + E)−1‖ ≤ η.

In particular, ‖E−1‖ ≤ C0ν
n. Moreover, there exists a constant C! > 0 such that if

we choose δ0 = min{δ1, C0C
−1
! λ

−4n + /3}, then, for all n ∈ {n , . . . , 2n }, ‖A‖ + ‖B‖ ≤
C0λ

−n.

Proof. By the strict invariance of the cone field (see §2.2) and the Anosov property
(2.2), it follows that, for each U , there exist matrices U1, H , with ‖U1‖ ≤ η and ‖H‖ ≥
(c0

√
2)/(

√
1 + η2)ν−n, such that

(U1Hv, Hv) = DS

(
Uv

v

)
= ([AU + B]v, [CU + E]v).

Thus, H = CU + E and U1 = (AU + B)(CU + E)−1 from which the first and third
inequalities readily follow. Analogously, for each V , there exists Ṽ , H̃ , ‖Ṽ ‖ ≤ η, ‖H̃‖ ≤
c−1

0

√
2λ−n, such that

DS

(
v

Ṽ v

)
= (H̃ v, V H̃v),

which implies the second inequality and, for V = 0, yields ‖E−1C‖ = ‖Ṽ ‖ ≤ η. Note that

∂xpDT −n = D(DT −n+1xT
−1 · · · DxT

−1)

=
n−1∑
k=0

d∑
j=1

DT −n+1xT
−1 · · · DT −k−1xT

−1∂xj (DT −kxT
−1)DT −k+1xT

−1 · · · DxT
−1

× (DxT
−k)jp.

Recalling that λ+ = max{‖DT ‖, ‖DT −1‖}, it follows that there exists a constant C! > 0,
depending only on T and on the coordinate changes {φi}, such that ‖DB‖ ≤ C!λ

2n + . Then,
since B(0, 0) = 0 (see (B.6)), it follows that

‖B‖ ≤ δ0‖DB‖ ≤ C0λ
−2n + /3 ≤ C0λ

−n/3

and

‖A‖ ≤ ‖H̃‖ + ‖BṼ ‖ ≤ ‖H̃‖ + ηC0λ
−n/3 ≤ (c−1

0

√
2λ−n + C0λ

−n/3) ≤ 2C0

3
λ−n,

from which the last assertion of the lemma readily follows.

We are now ready to study Fn. Let us consider the function

�(v, s, u, y) = (v, s) − S(F (�−1 ◦ β(u), y), y).
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It is convenient to set ϒ(u) = �−1 ◦ β(u). Note that (B.7) implies that

‖x‖ = ‖F(�−1(x), G(x))‖ ≥ ‖F(�−1(x), 0)‖ − η‖x‖ = ‖�−1(x)‖ − η‖x‖,

that is

‖�−1(x)‖ ≤ (1 + η)‖x‖. (B.10)

We want to ensure that ‖ϒ(u)‖ ≤ δ0. Recalling (B.4), this is implied by

C1(1 + η)δ λ
2n + ≤ δ0. (B.11)

Note that

�(u, 0, u, G(β(u))) = (u, 0) − S(F (ϒ(u), G(β(u))), G(β(u)))

= (u, 0) − S(β(u), G(β(u))) = 0.

To study the zeros of �, we apply the implicit function theorem. Since

det
(
∂v� ∂y�

) = det
(
1 A∂yF + B

0 C∂yF + E,

)
we can compute

det
(
∂v�(u, 0, u, G(β(u))) ∂y�(u, 0, u, G(β(u)))

)
= det

(
E(β(u), G(β(u)))

)
det

(
1 − DG(β(u))∂yF (ϒ(u))

) �= 0,

where we have used (B.6) and ‖DG∂yF‖ ≤ η. Thus there exists a uniform (in n)
neighborhood of (u, G(β(u)) where the implicit function theorem can be applied. Thus,
we can choose δ0 small enough so that, for each n ∈ N, there exist Fn, # ∈ C r , and

v = Fn(u, s),

y = #(u, s).
(B.12)

Moreover, defining the change of coordinates �(u, s) = (�−1 ◦ β(u), #(u, s)) = (x, y),

F
n(u, s) = S ◦ F ◦ �(u, s) . (B.13)

Note that

‖Fn(u, s)‖ ≤ ‖Fn(u, s) − F
n(u, 0)‖ + ‖Fn(u, 0)‖ ≤ ‖s‖ + ‖u‖ ≤ 2δ0 ≤ 1

4 . (B.14)

Differentiating (B.13) with respect to s, we obtain(
∂uF

n ∂sF
n

0 1

)
=

(
A B

C E

) (
∂xF ∂yF

0 1

) (
∂uϒ 0
∂u# ∂s#

)
,

which yields

∂s# = (E ◦ F ◦ � + C ◦ F ◦ � · ∂yF ◦ �)−1,

∂sF
n = (A ◦ F ◦ � · ∂yF ◦ � + B ◦ F ◦ �)∂s#.

(B.15)
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Then, provided C ≥ (C2
0/(1 − η)), Lemma B.5 yields

‖∂s#‖ ≤ ‖E−1‖‖(1 + [E−1C] ◦ F · ∂F )−1‖ ≤ C0

1 − η
νn ≤ 1

8r
,

‖∂sF n‖ ≤ C2
0

1 − η
νnλ−n ≤ 1

8r
.

(B.16)

We now study ∂αs F
n when |α| ≥ 2. Differentiating (B.15) and setting �− = (1 +

(E−1C) ◦ F · ∂yF )−1 and �+ = (A ◦ F · ∂yF + B ◦ F), we obtain

∂s2∂s1F
n =

ds∑
i1,i2=1

H(DS ◦ F , ∂yF , ∂yi2 ∂yi1F) ◦ � · ∂s1#i1∂s2#i2

+ $1(DS ◦ F , D2S ◦ F , ∂yF ) ◦ �, (B.17)

where $1 is a rational function of its arguments and, for an arbitrary matrix R,

H(DS ◦ F , ∂yF , R) := {A ◦ F · R · �− · E−1 ◦ F}
− {�+�− · (E−1C) ◦ F · R · �− · E−1 ◦ F}.

Note that Lemma B.5 implies that

‖H(DS ◦ F , ∂yF , R)‖ ≤ C2
0

(1 − η)2 λ−nνn‖R‖. (B.18)

Differentiating further (B.17) we can prove, by induction, that, for all l ≤ r ,

∂sjl
· · · ∂sj1Fn =

ds∑
i1,...,il=1

H(DS ◦ F , ∂yF , ∂yil · · · ∂yi1F) ◦ � · ∂sj1
#i1 · · · ∂sjl #il

+ $l−1(DS ◦ F , . . . , DlS ◦ F , ∂yF , . . . , ∂l−1
y F ) ◦ �, (B.19)

where the $l are sums of functions kj -multilinear in ∂
j
y F , for j ∈ {2, . . . , l}, such that∑l

j=2 kj (j − 1) ≤ l. Indeed, we have seen that this is true for l = 2. On the other hand,
if it is true for l − 1, then differentiating (B.19) we produce several terms. Let us analyze
them one by one. The term proportional to H, when differentiated with respect to ∂lyF ,
yields the correct term proportional of H. When differentiated with respect to DkS ◦ F , it
yields a function of Dk+1S ◦ F multiplied by ∂yF · ∂s# so the multilinearity with respect
to ∂

j
y F , for j ∈ {2, . . . , l}, is unchanged. When differentiating with respect to ∂yF , the

term gets multiplied by ∂2
yF . (Recall that a dependence from ∂yF is contained in ∂s# (see

(B.15)).) Thus, calling k′
j the multilinearities of the term obtained, we have k′

l = 1, k′
2 = 1

and all the other k′
j are zero: that is,

∑l
j=2 k′

j (j − 1) = l − 1 + 1 = l.
Next we must differentiate $l−1. Again the only change in the multilinearity occurs

when differentiating with respect to a ∂my F , m ∈ {1, . . . , l − 1}. If j = 2, then we have
(again, calling the new multilinearities k′) k′

2 = k2 + 1 and k′
j = kj for j > 2: that is,∑l−1

=2 k′
j (j − 1) = l − 1 + 1 = l. If m > 1, then k′

m = km − 1, k′
m+1 = km+1 + 1 and

k′
j = kj for j �∈ {m, m + 1}: that is,

∑l
j=2 k′

j (j − 1) = l − 1 − (m − 1) + m = l, which
proves our claim.
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Using equations (B.16) and (B.18) to estimate (B.19) yields, for all l ∈ {2, . . . , r},

‖∂lsF n‖ ≤ dl
s

C2+l
0

(1 − η)2+l
λ−nνn(l+1)‖∂lsF‖ + ‖$l−1‖∞

≤ dl
s

C2+l
0

(1 − η)2+l
λ−nνn(l+1)L

(l−1)2

1 + CnL

∑l−1
j=2 kj (j−1)2

1

≤
[
dl
s

C2+l
0

(1 − η)2+l
λ−nνn(l+1) + CnL

−(l−1)
1

]
L
(l−1)2

1 .

Choosing

C ≥ dr
s

C2+r
0

(1 − η)2+r
,

L1 > max{1, 2r
2

max{Cn , . . . , C2n }},
(B.20)

equation (B.9) implies, as claimed, that

‖∂lsF n‖ ≤ [L1/2](l−1)2
. (B.21)

Next, we estimate the Hölder norms of ∂αs F
n for |α| ≤ r − 1. We first treat the case |α| = 0.

By strict cone field invariance and the continuity of the cone field, it follows that, for all s,

S−1
F
n(u, s) = (F ◦ �(u, s), Gs(F ◦ �(u, s))) (B.22)

with ‖DGs‖ ≤ η < 1. Notice that (B.13), (B.22) and (B.3) imply that

(F ◦ �(u, 0), #(u, 0)) = (F ◦ �(u, 0), G0(F ◦ �(u, 0)))

= S−1
F
n(u, 0) = S−1(u, 0) = (β(u), G(β(u))),

that is G0 = G and

#(u, 0) = G(β(u)). (B.23)

Analogously, by (B.13), S−1
F
n(u, s) = (F ◦ �(u, s), #(u, s)). Hence

‖#(u, s) − #(u′, s)‖ = ‖Gs(F ◦ �(u, s)) − Gs(F ◦ �(u′, s))‖
≤ η‖F ◦ �(u, s) − F ◦ �(u′, s)‖
≤ η‖F(ϒ(u), #(u, s)) − F(ϒ(u′), #(u, s))‖ + η‖#(u, s) − #(u′, s)‖,

where we have used ‖∂yF‖ ≤ 1. Accordingly,

‖#(u, s) − #(u′, s)‖ ≤ η

1 − η
‖F(ϒ(u), #(u, s)) − F(ϒ(u′), #(u, s))‖. (B.24)

Next, we prove an auxiliary lemma, which will be used repeatedly in the following.

LEMMA B.6. Let G : U0 → R
d ′

, d ′ ∈ N. Assume that supy∈U0
s

‖G(·, y)‖C0(U0
u ,Rd′

)
≤ D0,

supy∈U0
s

‖G(·, y)‖Cτ (U0
u ,Rd′

)
≤ D′ with τ ∈ [0, τ0] and ‖∂yG‖C0 ≤ D̃. Then, for all n ∈

{n , . . . , 2n },
c−1

0 max{νn, λ−n}‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ 1
8 [(1 − η) max{D0, D′} + 2ηD̃]‖u‖τ .
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Proof. Let θ = max{ν, λ−1}. We start by analyzing ‖ϒ(u)‖ ≤ δ . By (B.24), we get

‖#(u, s) − #(0, s)‖ ≤ 2η
(1 − η)

‖ϒ(u)‖τ0 .

Hence, by (B.10) and (B.4),

c−1
0 θn‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ c−1

0 θn[D′‖ϒ(u)‖τ + D̃‖#(u, s) − #(0, s)‖]

≤ θn(1 + η)τ

c0

[
D′ + 2D̃η

1 − η

]
‖β(u)‖τ ≤ θn(1 + η)τ

c0

[
D′ + 2D̃η

1 − η

]
Cτ

1 λτn+ ‖u‖τ .

Consequently, provided that C in (B.9) satisfies (see Remark B.4 for the definition of δ1;
also we consider a C larger than what is needed at this stage for later purposes in this
proof)

C ≥ 2(1 + η)τCτ
1 (δ

−τ0
1 + Cτ

! )

c0(1 − η)
, (B.25)

we have

c−1
0 θn‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ [C (1 − η)D′ + 2ηC D̃]σn

1 ‖u‖τ
≤ 1

8 [(1 − η)D′ + 2ηD̃]‖u‖τ , (B.26)

where, in the last line, we have used (B.9). We are left with the analysis of the case when
‖ϒ(u)‖ ≥ δ . By (B.10), (B.11), (B.4) and (B.8),

c−1
0 θn‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ c−1

0 θn2D0 ≤ c−1
0 θn(1 + η)τ2D0δ

−τ
 ‖β(u)‖τ

≤ c−1
0 θn(1 + η)τ2D0δ

−τ
0 λ

2τn + Cτ
1 λτn+ ‖u‖τ .

Thus, if δ0 = δ1, then

c−1
0 θn‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ (1 − η)D0

8
‖u‖τ .

Otherwise, recalling Lemma B.5 and equation (B.9),

c−1
0 θn‖G ◦ �(u, s) − G ◦ �(0, s)‖ ≤ (1 − η)3τCτ

! C 

Cτ
0

δ−τ
0 θn λ

4n τ+ D0‖u‖τ

≤ (1 − η)C θ
n λ

8n τ+ D0‖u‖τ ≤ (1 − η)D0

8
‖u‖τ ,

(B.27)

from which the lemma follows.
Note, for future use, that the above computation also implies that

c−1
0 θn‖#(u, s) − #(0, s)‖ ≤ 1

2‖u‖τ0 . (B.28)

We now estimate ‖Fn(u, s) − F
n(0, s)‖. By (2.2) and (B.13),

‖Fn(u, s) − F
n(0, s)‖ ≤ c−1

0 λ−n‖(F ◦ �(u, s), #(u, s)) − (F ◦ �(0, s), #(0, s))‖.
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Recalling (B.28), we can apply Lemma B.6 with G = F , τ = τ0, D0 = 1, D′ = 2 and
D̃ = 1 to obtain, for all n ∈ [n , 2n ],

‖Fn(u, s) − F
n(0, s)‖ ≤ 1

4‖u‖τ0 . (B.29)

From this, and recalling (B.14), the required estimate follows: that is,

sup
s

‖Fn(·, s)‖Cτ0 ≤ 1
2 . (B.30)

Next, we discuss the case when |α| > 0. We start by estimating ‖∂s#‖Cτ0 . To simplify the
notation in the expression below, let a = (u, s) and b = (0, s). Using (B.15), (B.16) and
Lemma B.5, notice that

‖∂s#(a) − ∂s#(b)‖ ≤ ‖E−1 ◦ F ◦ �(b)

− E−1 ◦ F ◦ �(a)‖ · ‖(1 + E ◦ F ◦ �(b)−1C ◦ F ◦ �(b) · ∂yF ◦ �(b))−1‖
+ ‖(E−1 ◦ F ◦ �(a))‖ · ‖(1 + E ◦ F ◦ �(a)−1C ◦ F ◦ �(a) · ∂yF ◦ �(a))−1‖
× ‖E ◦ F ◦ �(a)−1C ◦ F ◦ �(a) · ∂yF ◦ �(a)

− E ◦ F ◦ �(b)−1C ◦ F ◦ �(b) · ∂yF ◦ �(b)‖
× ‖(1 + E ◦ F ◦ �(b)−1C ◦ F ◦ �(b) · ∂yF ◦ �(b))−1‖

≤ ‖E−1 ◦ F ◦ �(b) − E−1 ◦ F ◦ �(a)‖
× ‖(1 + E ◦ F ◦ �(b)−1C ◦ F ◦ �(b) · ∂yF ◦ �(b))−1‖
+ C0ν

n

1 − η
‖E ◦ F ◦ �(a)−1C ◦ F ◦ �(a) · ∂yF ◦ �(a)

− E ◦ F ◦ �(b)−1C ◦ F ◦ �(b) · ∂yF ◦ �(b)‖
≤ C0ν

n

1 − η
‖∂yF ◦ �(a) − ∂yF ◦ �(b)‖ + Cnν

n‖F ◦ �(b) − F ◦ �(a)‖.

We apply Lemma B.6 with G = ∂yF , D̃ = L1, D0 = 1, D′ = 2L1 and with G = F with
D̃ = 1, D0 = 1, D′ = 2. Recalling (B.28), we obtain

‖∂s#(a) − ∂s#(b)‖ ≤
[

C0c0

(1 − η)4
L1 + Cnc0

4

]
‖u‖τ . (B.31)

Next, by (B.15),

‖∂sF n(a) − ∂sF
n(b)‖ ≤ ‖[A ◦ F · ∂yF + B ◦ F] ◦ �(b)

− [A ◦ F · ∂yF + B ◦ F] ◦ �(a)‖ · ‖∂s#‖C0

+ ‖[A ◦ F · ∂yF + B ◦ F] ◦ �‖C0 · ‖∂s#(b) − ∂s#(a)‖.

Using Lemma B.5 again,

‖A◦F◦�(a) · ∂yF ◦�(a)+B ◦F◦�(a)−A◦F◦�(b) · ∂yF ◦�(b)−B ◦F◦�(b)‖
≤ ‖A ◦ F ◦ �(a)‖‖∂yF ◦ �(a) − ∂yF ◦ �(b)‖ + Cn‖F ◦ �(b) − F ◦ �(a)‖
≤ C0λ

−n‖∂yF ◦ �(a) − ∂yF ◦ �(b)‖ + Cnν
n‖F ◦ �(b) − F ◦ �(a)‖.
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Arguing as above and remembering (B.16), (B.8) and (B.9), we obtain, for all n ∈
{n , . . . , 2n },

‖∂sF n‖Cτ ≤ 1 + σn
1 C

2
0c0L1 + c0Cn < 2L1, (B.32)

provided

L1 > max{1, 2c0 max{Cn , . . . , C2n }}. (B.33)

For estimating the Hölder constant of ∂αs F
n, |α| ∈ {2, . . . , r − 1}, we can use (B.19).

(Since the argument uses a bound on ∂
β
s F

n for |β| = |α| + 1, we stop at |α| ≤ r − 1.)
Indeed, recalling (B.16) and (B.18) and arguing similarly to before yields

‖∂αs F n(a) − ∂αs F
n(b)‖ ≤

{[
C0

1 − η
θn

]|α|+2

L
|α|2
1 +

|α|−1∑
j=0

C�L
(|α|−1)2−(j−1)2

1 L
j2

1

}
‖u‖τ

≤
{[

C0

1 − η
θn

]|α|+2

+ C�L
−2

}
L

|α|2
1 ‖u‖τ ≤ (L1/2)|α|2‖u‖τ ,

(B.34)

provided L1 has been chosen large enough. To obtain the estimate for all n ∈ N, it suffices
to write k = kn + m, with m ∈ {n , . . . , 2n }, and then iterate the inequalities.

We are left with the study of HF . Recalling (B.5), (B.6) and (B.15) and differentiating
(B.13) with respect to u yields

∂u# = −(E ◦ F ◦ � + C ◦ F ◦ � · ∂yF ◦ �)−1C ◦ F ◦ � · ∂xF ◦ � · Dϒ

∂uF
n = [A◦F− (A ◦ F · ∂yF +B ◦F)(E ◦F + C ◦F · ∂yF )−1C ◦F] ◦� · ∂xF ◦� ·Dϒ

= [A ◦ F ◦ � − ∂sF
n · C ◦ F ◦ �] · ∂xF ◦ � · Dϒ =: [% · ∂xF ◦ �] · Dϒ .

(B.35)

We can now compute

HFn

l ◦ (Fn)−1 =
∑
i

∂ui [(∂slF
n
i ) ◦ (Fn)−1] =

∑
i,k

[∂sl ∂ukF
n
i · (∂uFn)−1

k,i ] ◦ (Fn)−1

= Trace([∂sl ∂uF
n](∂uFn)−1) ◦ (Fn)−1.

Thus, using (B.35),

HFn

l = Trace[(∂sl%) · ∂xF ◦ � · Dϒ(∂uF
n)−1

+ % · (∂sl {∂xF ◦ �}) · Dϒ(∂uF
n)−1]

= Trace[(∂sl%)%−1] +
∑
k

∂sl#k{Trace[(∂yk ∂xF (∂xF )−1]} ◦ �

= HF ◦ � · ∂sl# + Trace[(∂s%)%−1]. (B.36)

Moreover, note that Trace[(∂sl%)%−1](0) = ∑
k{Trace[∂ykA · A−1] · [E−1]kl}(0). Hence,

using (B.16), we obtain, for all n ∈ {n , . . . , 2n },

‖HFn‖C0 ≤ ‖HF · ∂sl#‖C0 + cn ≤ C0

1 − η
νn‖HF ‖C0 + cn ≤ L1/2, (B.37)
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provided L1 is large enough. Differentiating (B.36) yields, for each 0 < l ≤ r − 2,

∂sjl
· · · ∂sj1HFn =

∑
i1,...,il

[∂yil · · · ∂yi1HF ] ◦ � · ∂s# · ∂sj1
#si1

· · · ∂sjl #il

+ $l(DS ◦ F ◦ �, . . . , Dl+2S ◦ F ◦ �, ∂l+1
s F n, . . . , ∂sF n, ∂lyF ◦ �, . . .

· · · ∂yF ◦ �, HF ◦ �, . . . , [∂l−1
y HF ] ◦ �), (B.38)

where $l is a sum of terms that either do not depend on ∂
p
s H

Fn
, for all p < l, or are

linear in a ∂
p
s H

Fn
, for some p < l, kp,j -multilinear in ∂

j
y F , for j ∈ {2, . . . , l + 1}, and

qp,j multilinear in ∂
j
s F

n, for j ∈ {2, . . . , l + 2}, such that (we use the convention that
qp,l+2 = 0 and ∂−1

s HFn = 1)

sup
p∈{−1,...l−1}

[
p +

l+2∑
j=2

(kp,j + qp,j )(j − 1)
]

≤ l.

Let us verify this. Equation (B.36) shows that it is true for l = 0. Let us assume that it
true for l − 1. Then, by differentiating the first term, we obtain the correct term linear in
∂lHF . The other terms are linear in ∂l−1HF and linear in ∂2F ◦ � (see equation (B.15))
and hence p′ = l − 1, kl−1,2 = 1 and all the other degrees are zero, so p′ + kl−1,2 ≤ l.
Differentiating $l−1 with respect to DmS ◦ F ◦ � does not change the multilinearity
indices. Differentiating with respect to ∂

j
s F

n yields, for each p, a term with p′ = p,
q ′
p′,j = qp,j − 1 multilinear in ∂

j
s F

n and q ′
p′,j+1 = qp,j+1 + 1 multilinear in ∂

j+1
s F n.

Thus p′ + ∑l+2
j=2(k

′
p′,j + q ′

p′,j )(j − 1) ≤ l. The same happens if one differentiates with

respect to ∂
j
y F ◦ � for j ≥ 2. On the other hand, differentiating with respect to ∂yF ◦ �

yields a term in which p′ = p, kp′,2′ = kp,2 + 1, and thus p′ + ∑l+2
j=2(k

′
p′,j + q ′

p′,j )(j −
1) ≤ l. Finally, if we differentiate with respect to ∂

j
yH

F ◦ � for 0 ≤ j < l − 1, we have a
term with p′ = p + 1 and k′

p′,j = kp,j , q ′
p′,j = qp,j , and thus, again, p′ + ∑l+2

j=2(k
′
p′,j +

q ′
p′,j )(j − 1) ≤ l, which proves the claim.

Remembering (B.16), definition (B.2) and equation (B.21), it follows that, for all l ∈
{1, . . . , r − 2},

‖∂lsHFn‖ ≤ 8−r(l+1)L
(l+1)2

1 + sup
p∈{−1,...,l−1}

C�L
(p+1)2+∑l+2

j=2(kp,j+qp,j )(j−1)2

1

≤ 8−(l+1)2
L
(l+1)2

1 + sup
p∈{−1,...,l−1}

C�L
(p+1)2+[

∑l+2
j=2(kp,j+qp,j )(j−1)](l+1)

1

≤ 8−(l+1)2
L
(l+1)2

1 + sup
p∈{−1,...,l−1}

C�L
(p+1)2+(l−p)(l+1)
1

≤ [8−(l+1)2 − C�L
−l
1 ]L(l+1)2

1 ≤
(
L1

2

)(l+1)2

, (B.39)

provided L1 is chosen large enough.
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To prove the bound on the Hölder semi-norm, we use (B.38) and (B.31) and proceed as
in (B.34). For each l ≤ r − 3,

‖∂lsHFn

(a) − ∂lsH
Fn

(b)‖ ≤ ‖∂lyHF ◦ �(a) − ∂lyH
F ◦ �(b)‖Cl+1

 ν(l+1)n

+ C�L
(l+1)2+1
1 ‖u‖τ0 + ‖$l(a) − $l(b)‖,

where we have used (B.16), (B.31) and (B.32). Next, we use Lemma B.6, with G = ∂lyH
F ,

D0 = L
(l+1)2

1 , D′ = D̃ = L
(l+2)2

1 and τ = τ0, to write

‖∂lsHFn

(a) − ∂lsH
Fn

(b)‖ ≤ Clν
lnL

(l+2)2

1 ‖u‖τ0

+ C�L
(l+1)2+1
1 ‖u‖τ0 + ‖$l(a) − $l(b)‖.

The claim then follows by induction and using the known structure of $l .

We conclude the section by clarifying the relationship between the function HF and the
holonomy associated with the foliation F. The next lemma shows that the Jacobian of the
holonomy can be seen as a flow of which HF is the ‘generator’.

LEMMA B.7. If W ∈ Wr ,0
L , then there exists C > 0 and ρ0 > 0 such that, for each ξ ∈ M ,

0 < ρ < ρ0 and ‖(x′, y′)‖ ≤ ρ, we have ‖det(∂xFξ )(x
′, ·)‖Cq ≤ C. More precisely, setting

JF
ξ (x, y) = det(∂xFξ )(x, y), we have

∂yJ
F
ξ = JF

ξ · HF
ξ ◦ F,

JF
ξ (x, 0) = 1.

(B.40)

Proof. Let (x′, y′) be as in the lemma’s assumption. First, note that, for each vector ei ∈
R

d ,

∂yi det(∂xFξ )(x
′, y′) = det(∂xFξ ) lim

h→0

det((∂xFξ )(x
′, y′)−1 · ∂xFξ (x

′, y′ + hei)) − 1
h

= det(∂xFξ ) lim
h→0

eTrace(ln(1+(∂xFξ )(x
′,y′)−1∂yi ∂xFξ (x

′,y′)h)) − 1
h

= det(∂xFξ )(x
′, y′)Trace((∂xFξ )(x

′, y′)−1∂x(∂yiFξ )(x
′, y′)).

Thus

∂y det(∂xFξ )(x
′, y′) = det(∂xFξ )(x

′, y′) · HF
ξ ◦ F(x′, y′),

which immediately implies the lemma since det(∂xFξ )(x
′, 0) = 1 by construction.

Remark B.8. Lemma B.7 implies that, for each measurable set B ⊂ R
du and |β| ≤ r − 1,

|∂βy |F(B, y)|| =
∣∣∣∣∂βy ∫

F(B,y)
dx

∣∣∣∣ =
∣∣∣∣∫

B

∂βy det(∂xF )(x, y) dx
∣∣∣∣ ≤ C|B|.

Note that the first and last term of the above inequality do not involve ∂xF , and hence
it holds also for F non-differentiable with respect to x, provided they are the limits of
foliations Fk (in the sense that the ∂

β
y Fk converge) that satisfy the inequality uniformly.

The same remark holds also for equation (B.40). In other words, if we consider the true
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invariant foliation, where ∂xF may make no sense, HF is still well defined (see Remark
B.3 for details), and so, by (B.40), is the Jacobian of the holonomy JF .

C. Appendix. Test functions
Proof of Lemma 2.15. By (B.13), it follows that

ϕ ◦ T n ◦ φ−1
i ◦ F

n(u, s) = ϕ ◦ φ−1
j ◦ S−1 ◦ F

n(u, s) = ϕ ◦ φ−1
j ◦ F(�(u, s))

= ϕ ◦ φ−1
j ◦ F(ϒ(u), #(u, s)). (C.1)

Accordingly, ‖ϕ ◦ T n‖T −nW

C0 ≤ ‖ϕ‖WC0 and

∂s[ϕ ◦ T n ◦ φ−1
i ◦ F

n](u, s) =
∑
l

∂zl [ϕ ◦ φ−1
j ◦ F](�(u, s))∂s#l(u, s).

Then, by differentiating further, the above computation yields, for some C∗ > 0,

� |∂qs [ϕ ◦ T n ◦ φ−1
i ◦ F

n](u, s)| ≤ ‖ϕ‖Wq ‖∂s#l‖qC0 + �−1C∗‖ϕ‖Wq−1. (C.2)

By (B.16), ‖∂s#‖C0 ≤ C�σ
n, while there exists A0 > 1 such that ‖∂is#‖C0 ≤ A0 for all

i ≤ r .
From this and recalling the definition (2.7), it follows that

‖ϕ ◦ T n‖T −nW
q ≤ A0‖ϕ‖Wq .

On the other hand, recalling (2.8), there exists B0 > 0 such that

‖ϕ ◦ T n‖T −nW
q+1 = ‖∂sϕ ◦ T n‖T −nW

q + �q+1‖ϕ ◦ T n‖T −nW
C0

≤ A0σ
qn‖ϕ‖Wq+1 + (1 + �−1C∗)‖ϕ‖WCq

≤ A0σ
qn‖ϕ‖Wq+1 + B0‖ϕ‖WCq .
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