Third Meeting, January 13th, 1888.
W. J. Macdonald, Esq., M.A., F.R.S.E., President, in the Chair.

On Stirling's approximation to n ! when n is large.

By R. E. Allardice, M.A.

The approximation is

$$
n!=(n / e)^{n} \sqrt{2 \pi n}
$$

We have

$$
\begin{aligned}
\left(\frac{n}{e}\right)^{n} & =\left(\frac{n-1}{e}\right)^{n-1} \cdot \frac{1}{e} \cdot\left(\frac{n}{n-1}\right)^{n} \cdot[n(n-1)]^{\frac{1}{2}} \cdot\left(\frac{n-1}{n}\right)^{\frac{1}{2}} \\
& =\left(\frac{n-1}{e}\right)^{n-1} \cdot \frac{1}{e} \cdot\left(\frac{n}{n-1}\right)^{n-\frac{1}{2}} \cdot[n(n-1)]^{\frac{1}{2}} .
\end{aligned}
$$

Now assume

$$
\begin{aligned}
& \left(\frac{n}{n-1}\right)^{n-\frac{1}{2}}=e^{x} \\
\therefore x= & \left(n-\frac{1}{2}\right) \log \frac{n}{n-1} \\
= & \left(-n+\frac{1}{2}\right) \log \left(1-\frac{1}{n}\right) \\
= & \left(-n+\frac{1}{2}\right)\left(-\frac{1}{n}-\frac{1}{2} \cdot \frac{1}{n^{2}}-\frac{1}{3} \cdot \frac{1}{n^{3}}-\ldots \ldots\right) \\
= & 1+\frac{1}{12} \cdot \frac{1}{n^{2}}+\frac{\mathrm{B}}{n^{3}}+\ldots \ldots \\
= & 1+\frac{\mathrm{A}}{n^{2}}
\end{aligned}
$$

where A differs from $1 / 12$ by a quantity of the order of $1 / n$, since the above series for x is convergent; and since n is large, A may be taken to be $1 / 12$.

$$
\text { Hence, } \begin{aligned}
\left(\frac{n}{e}\right)^{n} & =\left(\frac{n-1}{e}\right)^{n-1} \cdot \frac{1}{e} \cdot e^{1+\mathrm{A} / n^{2}} \cdot[n(n-1)]^{\frac{1}{2}} \\
& =\left(\frac{n-1}{e}\right)^{n-1} \cdot e^{\mathbf{A} / n^{2}} \cdot[n(n-1)]^{\frac{1}{2}}
\end{aligned}
$$

Substituting for n in succession the values, $2 n, 2 n-1$.... $n+1$, we get

$$
\left(\frac{2 n}{e}\right)^{2 n}=\left[\begin{array}{llllll}
2 n(2 n-1) & \ldots & \ldots & (n+1)(2 n-1) & \ldots & \ldots
\end{array}\right]^{\frac{1}{2}} \cdot\left(\frac{n}{e}\right)^{n} \cdot e^{k}
$$

where

$$
k=\frac{\mathbf{A}}{(2 n)^{2}}+\frac{\mathbf{A}}{(2 n-1)^{2}}+\ldots \ldots+\frac{\mathbf{A}}{(n+1)^{2}}
$$

$$
\therefore \quad \sqrt{ } 2\left(\frac{2 n}{e}\right)^{2 n}=\left(\frac{n}{e}\right)^{n} \cdot \frac{(2 n)!}{n!} \cdot e^{k}
$$

$$
\therefore \quad \sqrt{2}\left(\frac{n}{e}\right)^{n} \cdot 2^{2 n}=\frac{(2 n)!}{n!} \cdot e^{k}
$$

$$
\therefore \quad n!=\left(\frac{n}{e}\right)^{n} \cdot \sqrt{ } 2.2^{2 n} \cdot \frac{(n!)^{2}}{(2 n)!} \cdot e^{-k}
$$

Now, Wallis's formula for π is
or

Hence we may write

$$
\sqrt{ } \pi=\frac{{ }^{2 n}(n!)^{2}}{(2 n)!} \cdot \frac{1}{\sqrt{n}} \cdot\left(1-\frac{1}{4 n}\right)
$$

This result reduces the above equation for $n!$ to

$$
n!=\left(\frac{n}{e}\right)^{n} \cdot \sqrt{ } 2 \cdot \sqrt{\pi n \cdot} \cdot e^{-k} \cdot\left(1+\frac{1}{4 n}\right)
$$

Now, k lies between $n \mathbf{A} /(2 n)^{2}$ and $n \mathbf{A} /(n+1)^{2}$. Hence if we write $n /=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$, the ratio of the error to the value found for $n /$ is of the order of $1 / n$.

It may now be shown that in the above approximation to π, the error made bears to π a ratio of the order of $1 / n$.

In the value assumed for π

$$
\frac{\pi}{2}=\left[\begin{array}{llll}
2.4 .6 & \ldots & \ldots & 2 n \\
1.3 .5 & \ldots & \ldots & 2 n-1
\end{array}\right]^{2} \cdot \frac{1}{2 n+1}
$$

the factor u has been neglected, where

$$
\begin{gathered}
u=\frac{(2 n+2)^{2}}{(2 n+1)(2 n+3)} \cdot \frac{(2 n+4)^{2}}{(2 n+3)(2 n+5)} \cdots \cdots \\
\text { Now, } \frac{(2 n+2)^{2}}{(2 n+1)(2 n+3)}=\frac{4 n^{2}+8 n+4}{4 n^{2}+8 n+3}=1+\frac{1}{(2 n+1)(2 n+3)}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\pi}{2}=\left[\begin{array}{llll}
2.4 .6 & \ldots & \ldots & 2 n \\
1.3 .5 & \ldots & \ldots & 2 n-1
\end{array}\right]^{2} \cdot \frac{1}{2 n+1} \\
& \frac{\pi}{2}=\left[\begin{array}{llll}
2.4 .6 & \ldots & \ldots & 2 n \\
1.3 .5 & \ldots & \ldots & 2 n-1
\end{array}\right]^{2} \cdot \frac{1}{2 n} \cdot\left(1+\frac{1}{2 n}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & u= \\
\therefore \quad & {\left[1+\frac{1}{(2 n+1)(2 n+3)}\right]\left[1+\frac{1}{(2 n+3)(2 n+5)}\right] \ldots \ldots } \\
\therefore & \log u=\frac{1}{(2 n+1)(2 n+3)}+\frac{1}{(2 n+3)(2 n+5)}+\ldots \ldots \\
& -\frac{1}{2} \cdot\left[\frac{1}{(2 n+1)(2 n+3)}\right]^{2}-\frac{1}{2}\left[\frac{1}{(2 n+3)(2 n+5)}\right]^{2}-.
\end{aligned}
$$

Now $\quad \frac{1}{(2 n+1)(2 n+3)}=\frac{1}{2}\left[\frac{1}{2 n+1}-\frac{1}{2 n+3}\right]$.
Hence, neglecting small quantities of a higher order than $1 / n$, we may write

$$
\begin{aligned}
\log u & =1 / 2(2 n+1) \\
\therefore \quad u & =e^{1 / 2(2 n+1)} \\
& =1+1 / 2(2 n+1)+\ldots \ldots ;
\end{aligned}
$$

which shows that the error made in the above approximation to π is of the order stated.
[Another elementary proof of Stirling's theorem, by Mr J. W. L. Glaisher, is given in the Quarterly Journal of Mathematics, vol. xv., p. 57.]

A Device for the Analysis of Intervals and Chords in Music.

By A. Y. Fraser, M.A., F.R.S.E.

§ 1. The device here described has been found to simplify greatly the "somewhat laborious discussion" of the different musical intervals as given, say, in Sedley Taylor's Sound and Music (chap. viii.) or in Helmholtz's Sensations of Tone. It has been found particularly helpful in giving an account, necessarily rapid, of the nature of harmony to classes studying sound as a part of physics, from whom much familiarity with musical terms and notation is not to be expected.
§ 2. The leading idea of the device is that the octave being what may be called a periodic phenomenon, should be represented on a circular or spiral curve, and not, as is usual, on a straight vertical line. Such a representation of four octaves is given in figure 14. (To read this and the other figures, begin at the extreme right and

