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Abstract

In this paper we study groups in which every subgroup is subnormal of defect at most 3. Let G be a group
which is either torsion-free or of prime exponent different from 7. We show that every subgroup in G is
subnormal of defect at most 3 if and only if G is nilpotent of class at most 3. When G is of exponent
7 the situation is different. While every group of exponent 7, in which every subgroup is subnormal of
defect at most 3, is nilpotent of class at most 4, there are examples of such groups with class exactly 4.
We also investigate the structure of these groups.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20F19, 20F45; secondary 20F18.

1. Introduction

Let G be a group. A subgroup H in G is said to be subnormal, if there exists a finite

series H = Ho, H\,... , Hn_i, Hn = G, such that

H = Ho < Hx < • • • < / / „ = G.

The length of the shortest such series is called the subnormal defect of H in G. Now

let H be an arbitrary subgroup of G. We define the series, ( # ( G 0 ) ~ , , of successive

normal closures by induction as follows:

H(G.O) = G HiC.i+i) = HH^>

where HK denotes as usual the normal closure of H in K. It is easy to see that H is

subnormal in G if and only if / / ( G r) = H for some r, and the smallest integer n such

that H(C-n) = H is the subnormal defect of H in G.
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An element x in G is called a left Engel element if for each g e G there exists a
positive integer n(g) such that

(1) [•••[[g,*],*L • • • , * ] = !•

If n = n(g) in (1) can be chosen independently of g, then we say that x is a /e/f
n-Engel element. We define right Engel elements similarly. An element x in G is
called a ng/zf £nge/ element if for each g e G there exists a positive integer n (g) such
that

(2) [•••[[x,glg],---,g] = l.

nig)

If n = n(g) in (2) can be chosen independently of g, then we say that x is a Wg/tf
n-Engel element. If every JC e G is a left Engel element, we say that G is an Engel
group and if furthermore every x e G is a left «-Engel element, we say that G is a
n-fnge/grow/?.

It is a well known fact that for a finite group G the following are equivalent:

(1) G is nilpotent.
(2) Every subgroup of G is subnormal.
(3) Every cyclic subgroup of G is subnormal.
(4) G is an Engel group.

The only difficult part is that the first statement follows from the last. This was proved
originally by Zorn [19].

For infinite groups these properties need not be equivalent although it is easy to see
that (1)=^(2)=K3)=K4). It is known that no two of these properties are equivalent.
An example of a non-nilpotent group satisfying (2) was constructed by Heineken
and Mohamed in 1968 [10]. It is much easier to find an example of a group G
satisfying (3) but not (2). One could for example take G to be the standard wreath
product of the group of order 2 with the countably infinite elementary abelian 2-
group A. This group satisfies (2) but A is not subnormal. By Golod's example
[4] we have finitely generated Engel groups that are not nilpotent. However every
group satisfying property (3) is locally nilpotent (every subnormal locally nilpotent
subgroup is contained in the Hirsch-Plotkin radical and since every cyclic subgroup
is subnormal, the Hirsch-Plotkin radical is the whole group) so (4) does not imply (3).

The groups satisfying (3) are called Baer groups. If every cyclic subgroup in G is
subnormal of defect at most n then we say that G is an n-Baer group or a Bn-group.
Under the stronger hypothesis that every subgroup of G is subnormal of defect at most
n, we say that G is a £/„-group. By a theorem of Roseblade [14], every Un-group
is nilpotent and the nilpotency class is bounded by a function only depending on n.
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This function is however still not well understood. It is easy to see that every group
of class n is a Un -group and of course every Un -group is a Bn -group. It is also not
difficult to see that every Bn -group is an (« + 1)-Engel group.

Much is known about these classes for some small values of n. It is obvious that a
group is a B\ -group if and only if it is a U\ -group. These groups are called Dedekind
groups and their structure is well known [2, 3]. A group G is a Dedekind group if and
only if G is either abelian or the direct product of a quaternion group of order 8 and
an abelian torsion group without elements of order 4.

2-Engel groups are also well understood. A group is a 2-Engel group if and only
if the normal closure xc of an arbitrary element is abelian. Moreover every 2-Engel
group is nilpotent of class at most 3 [12]. 2-Baer groups are closely related to 2-Engel
groups. It follows from Levi's result that every 2-Engel group is a 2-Baer group.
Furthermore Heineken [9] and Mahdavianary [13] have shown that if G is a Z?2-group
then G is centre-by-2-Engel and nilpotent of class at most 3.

3-Engel groups are much harder. Heineken [8] has proved that a 3-Engel group is
nilpotent of class at most 4 if it has no element of order 2 or 5. There are 3-Engel
2-groups and 5-groups that are not nilpotent. In fact there is a 3-Engel 5-group that
is not soluble [1], whereas Gupta [5] has shown that 3-Engel 2-groups are soluble.
In 1972 Kappe and Kappe [11] gave a characterisation of 3-Engel groups which is
analogous to Levi's theorem on 2-Engel groups. They showed that the following are
equivalent:

(1) G is a 3-Engel group.
(2) xG is a 2-Engel group for all x e G.
(3) For all x € G we have that xG is nilpotent of class at most 2.

Property (3) implies that a 3-Engel group with r generators has nilpotency class at
most 1r. Gupta and Newman [7] have shown that 2r — 1 is the best upper bound when
r > 3. It also follows from property (3) that every 3-Engel group is a 3-Baer group.

Relatively little is known about 4-Engel groups. It is even still an open question
whether they are locally nilpotent. Some partial results can be found in [16] and [17].
In this paper we will be looking at the class of f/3-groups. In general, the class of
£/3-groups is contained in the class of 4-Engel groups. We will however see later that
if one adds the further restriction on a f/3-group that it is either torsion free or of prime
exponent, then the group is a 3-Engel group. Our main results are the following.

THEOREM 1. Let G be a 2-torsionfree 3-Engel group in t/3. Then G is nilpotent of
class at most 4.

THEOREM 2. Let G be a group in f/3 that is either torsion free or of exponent p
where p is a prime not equal to 1. Then G is nilpotent of class at most 3.
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Since every group that is nilpotent of class at most 3 is in £/3, these two conditions
are actually equivalent. The prime 7 turns out to be exceptional. For this prime we
get the following structure theorem.

THEOREM 3. Let G be a group of exponent 1 and nilpotency class 4 in £/3. Then G
is a 3-Engel group which satisfies the following properties:
(1) y$(G) is cyclic of order 1.
(2) The left 2-Engel elements of G/y4(G) form a subgroup H/y4(G) of index 1.

Furthermore H is a characteristic subgroup subgroup and nilpotent of class 2.
(3) The left 2-Engel elements of G form a characteristic subgroup which is equal to

Z\G).

Conversely we have that every 3-Engel group of exponent 1 that satisfies (1), (2) and
(3) is in U3.

The groups of exponent 7 can also be described in terms of certain groups G(r, 1)
in U3 that will be constructed later.

THEOREM 4. Let r > 3 and let Gbeanr generator group of exponent 1 in i/3 that
is nilpotent of class 4. Then G is a homomorphic image ofG(r, 7).

When r = 3 we will see that the situation is quite simple.

THEOREM 5. There is exactly one group of exponent 1 in £/3 that has 3 generators
and nilpotency class 4. This is the group G(3, 7).

We will also give a complete classification of all groups G of exponent 7 in f/3
that are nilpotent of class 4 and which are minimal with respect to that property in
the following sense: every proper quotient of G is nilpotent of class at most 3. In
particular we will see that there are no such groups of even rank and for an odd integer
n > 3 there are exactly (n — l)/2 such groups of rank n.

2. Upper bounds for nilpotency classes

As we pointed out in the introduction, every 3-Engel group is a 3-Baer group. The
converse holds when G is either torsion free or of prime exponent.

LEMMA 1. Let G be a n-Baer group which is either torsion free or of prime expo-
nent. Then G is a n-Engel group.

PROOF. Let us first introduce some notation. Let x, y e G. We define the com-
mutators [x,n y] and [yn, x] inductively as follows: [x,0 y] = [yo, x] = x, [x,n+l y] =
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[[x,H y], y] and [yn+ux] = [y, [yn, x]]. The commutator [x,n y] 6 <y)(G•">. Since G
is a n-Baer group, we have (y}(C•"' = (y) and hence [x,n y] = yr for some integer r.
Since every n-Baer group is a (n + 1)-Engel group, we can then infer that

[*,„_! y, [x,ny]] = yr\

and by induction that
y'm = [[-«,n-iy]m,y].

But Baer groups are locally nilpotent and as a consequence we must have yr" = 1
for some positive integer m. Since G is either torsion free or of prime exponent this
implies that yr = 1. Hence [*,„ y] = 1.

In this section we will be looking at U3 -groups which are either torsion free or of
prime exponent. By Lemma 1 we have that these groups are 3-Engel groups.

LEMMA 2. Let G be a 3-Engel group. Ifu € Z4(G), the 4th term of the upper
central series, then for all v,c e G:

[u,c,v,c]6 = [u,[v,c,c]T2

[u, c, c, v]4 = [u, [v, c, c]]4.

PROOF. From the 3-Engel identity, we have

1 = [u, vc, vc, vc][u, DC~\ vc~x, uc"1]

= [u, v, c, c]2[u, c, v, c]2[u, c, c, v]2

and

1 = [v, uc, uc, uc][v, uc~l, uc~\ uc~l]

= [v, u, c, c]2[v, c, u, c]2[v, c, c, u]2

= [u, v, c, c]~6[u, c, v, c]6[u, c, c, v]~2.

Also
[u, [v, c, c]] = [u, v, c, c][u, c, v, c]~2[u, c, c, v].

We can now derive the lemma from these three equations.

LEMMA 3. Let G be a 3-Engel group that is nilpotent of class at most 4 and has no
element of order 2 or 3. If [v, c, c] e Z(G) then every commutator [xt, x2, JC3, x4] of
weight 4 with v occurring at least once and c at least twice, is trivial.

https://doi.org/10.1017/S1446788700039240 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039240


402 Gunnar Traustason [6]

PROOF. The proof follows immediately from Lemma 2.

The next lemma is crucial for later arguments.

LEMMA 4. Let G bea group in t/3 which is either torsion free or of prime exponent.
Ifu e Z4(G) and [u, [v, c, c]] ^ I for some v,c € G, then

[u, [v, c, c]] = [v, c, c]P[c, v, v]r

for some integers ft and y where [c, v, v]y ^ 1. Furthermore, if we let u, = c~^vY

then
[u, [v, c, c]]y = [u,[vi,c,c]] = [c, ui .u,] .

When G is of prime exponent then we can take our power indices from Zp. If we let
v2 = c~^lYv then

[u, [v, c, c]] = [u, [v2, c, c]] = [c, v2, v2]
y.

PROOF. We have that

[u, [v, c, c]] = [u, v, c, c][u, c, v, c]~2[u, c, c, v].

Since all the factors on the right hand side are in (u,c) ( C 3 ) , the same is true for
[M, [V, C, C]]. But since G is in U3, (v, c)(Ci3) = (v, c) and we conclude that
[u, [v, c, c]] e {v, c). Since (v, c) is a 2-generator 3-Engel group without involu-
tions it is nilpotent of class at most 3 [8]. Therefore

[u, [v, c, c]] = vrcs[v, cf[v, c, cf[c, v, v]Y

for some integers r, s, a, p\ y. Since [u, [v, c, c]] e Z(G),

1 = [u, [v, c, c], c, c] = [v, c, c]r

and
1 = [M, [V, C, C ] , v, c] = [v, c, c]~5.

As [u, [v, c, c]] ^ 1, we must have r = s = 0 (modulo p when G is of exponent p).
Therefore

1 = [II, [V, C, C], C] = [V, C, Cf

which implies as before that a = 0. So

[u, [v, c, c]] = [v, c, c]p[c, v, v]y.

If y = 0 then fi ^ 0 (modulo p when G is of exponent p) and 1 = [u, [v, c, c], u] =
[u, [v, c, c]]~p which would imply that [u, [v, c, c]] = 1. Hence we must have y ^ O .
Simple calculations give the rest of the lemma.
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PROPOSITION 1. Let G be a group in f/3 that is either torsion free or of prime
exponent. Then G is nilpotent of class at most 4.

PROOF. The proposition is obviously true when G is of exponent 2. It is also well
known that all groups of exponent 3 are nilpotent of class at most 3. We can thus
assume that G is not of exponent 2 or 3. Since G is locally nilpotent it is sufficient to
show that y5(G) < y6(G). We can thus assume that G is nilpotent of class at most 5.

We first reduce the problem to showing that [x, t, [y, z, z]] = 1 for all*, t, y, z e G.
So suppose we have already established this. We calculate modulo Y6(G). Let
a, b,c,d e G. Since G is a 3-Engel group by Lemma 1, we have from Lemma 2 that

(3) [x, t, y, z, z] = [x, t, z, y, z] = [x, t, z, z, y] = 1

for all x, t, y, z G G. In particular we have

(4) 1 = [x, z, tz, tz, y] = [x, z, t, z, y][x, z, z, t, y].

Interchanging x and t in this last identity, using (3), gives

1 = [t,z,x,z,y][t,z,z,x,y]

= [x, t, z, z, yV[x, z, t, z, y][x, t, z, z, y]~l[x, z, t, z, y?[x, z, z, t, y]"1

= [x,z,t,z,y]3[x,z,z,t,y]~*.

F r o m t h i s a n d ( 4 ) w e d e d u c e t h a t [x, z , t, z, y] = [x, z, z, t, y ] = 1 f o r a l l x , t,y,z e

G. From (3) we also have 1 = [JC, Z, zy, t, zy] = [x, z, z, t, y][x, z, y, t, z]. We
have seen that [x, z, z, t, y] = 1, hence [x, z, y, f, z] = 1 and we have shown that all
commutators of weight 5 with repeated entry are trivial. Thus

1 = [x, yz, yz, u, v] = [x, y, z, u, v][x, z, y, u, v],

which implies that [x, y, z, u, v] = [z, x, y, u, v]. Similarly [z, x, y, u, v] = [y, z,
x, u, v]. From the Hall-Witt identity we then have

1 = [x, y, z, u, v][y, z, x, u, v][z, x, y, u, v]

= [x, y, z, u, u]3.

Therefore ys(G) < y6(G) and G is nilpotent of class at most 4. It now only remains

to show that G satisfies the identity [x, t, [y, z, z]] = 1 for all x, t,y,z € G. We

argue by contradiction and assume that [a, b, [c, d, d]] ^ 1 for some a, b,c,d e G.

By Lemma 4 we can assume that c has been chosen such that

(5) [a,b,[c,d,d]] = [d,c,c].
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We see next that [b, [c, d, d]] € Z(G). We apply Lemma 4 again for H —
G/Z{G). From that lemma we would have that [b, [c, d, d}} $ Z(G) implies that
[d, c, c] g Z{G). But this contradicts (5). Hence [b, [c, d, d]] e Z(G) and similarly
[a, [c, d, d]] e Z(G). Finally

[c, d, d, [a, b]] = [c, d, d, a, b][c, d, d, b, a]~l e [Z(G), G] = 1

which is the contradiction we were looking for. So [x, t, [y, z, z]] = 1 for all
x, t, y, z e G and the proposition has been proved.

REMARK. From Heineken [8] we already know that every {2, 5}-torsion free 3-
Engel group is nilpotent of class at most 4. The proof of Proposition 1 is thus only
needed for groups of exponent 5.

All the groups in Proposition 1 are 3-Engel groups. As a corollary we get the
following generalisation.

THEOREM 1. Let G be a 1-torsion free 3-Engel group in f/3. Then G is nilpotent of
class at most 4.

PROOF. By Gupta and Newman [7], every 2-torsion free 3-Engel group G has the
property that ysiG) fl G5 = {1}. So any 2-torsion free 3-Engel group is a subdirect
product of a nilpotent 3-Engel group of class at most 4 and a 3-Engel group that
is of exponent 5. Now let G be a 2-torsion free 3-Engel group in U3. It follows
from Proposition 1 that ys(G) < G5 and since y5(G) (1G5 = {1}, we deduce that
Ys(G) = {1}.

REMARK. It is interesting that while the prime 5 is exceptional for 3-Engel groups
in general [1], this is no longer the case when we are in the subclass of 3-Engel groups
inf/3.

When G is not of exponent 7 more can be said. We will see in the next section that
7 is exceptional.

THEOREM 2. Let G be a group in U3 that is either torsion free or of exponent p
where p is a prime not equal to 1. Then G is nilpotent of class at most 3.

PROOF. AS we noted in the proof of Proposition 1, this follows easily if G is of
exponent 2 or 3. We therefore exclude those possibilities as well as exponent 7. Since
2-Engel groups without elements of order 3 are known to be nilpotent of class at most
2 [12], we only need to show that G satisfies [y, z, z, x] = 1 for all x, y, z e G.
Proposition 1 tells us that G is nilpotent of class at most 4. As in the proof of
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Proposition 1, we argue by contradiction and assume that [a, [b, c, c]] ^ 1 for some
a,b,c e G. By Lemma 4 we can choose a, b, c such that

(6) [a,[b,c,c]] = [c,b,b]^l.

By Lemma 4 it is also true for all integers r that

[a, [b, c, c]] = [a, [b[a, c]r, c, c]] = [b[a, c]r, c, c]fi[c, b[a, c] r , b[a, c]r]r

for some integers /3 and r where r ^ 0 (modulo p when G is of exponent p). This
time ft must be trivial. Otherwise we would have

1 = [a, [b, c, c], a] = [c, b, b, a]r[b, c, c, af

and since, by (6), [c, b, b] e Z(G) we would get the contradiction that [a, [b, c, c]] =
1. So £ = 0 and it follows that [a, [b, c, c]] G ([c, b[a, c]r, b[a, cf]) for all r. In
particular

1 # [c, b[a, c]r, b[a, cY] = [c, b, b][c, b, [a, c]]r[c, [a, c], bY

for all r. But

([c, b, [a, c]][c, [a, c], b])6 = [a, c, b, cf[a, c, c, b]~n

which by Lemma 2 is [a, [b, c, c]]~14. Hence

for all integers r. Since the group is not of exponent 7 this gives a contradiction when
G is of prime exponent. In the case when G is torsion free, we argue similarly. As

[a,[b,c,c]f e([a,[b,c,c]f-lAr)

for all r, we conclude that 6 — 14r divides 6 for all integers r which is absurd.

3. Groups of exponent 7 in t/3

In the previous section we saw that groups of prime exponent p in f/3 are nilpotent
of class at most 3 when p ^ 7. In this section we will see that there are groups of
exponent 7 that are nilpotent of class 4 and we will investigate their structure. Let G
be a group of exponent 7 in U3 that is nilpotent of class 4. Since 2-Engel groups of
exponent 7 are nilpotent of class at most 2 there must exist elements c, ax, b\ € G such
that[ai,[fci,c,c]] ^ 1. LetT = ([au[buc,c]]). (We will see later that T =
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LEMMA 5. There exist a,b e («i, bx, c)[G, G] such that:

(1) ([a,[b,c,c]]) = T;
(2) [c,h,h] e Tforallh e {a,b)[G,G]and[c, h, h] = 1 ifandonlyifh e [G,G];

From (1) and (2) it follows in particular that [c, a, a], [c, b, b] and [c, a, b][c, b, a]
are in T.

PROOF. Lemma 2 gives us that [b\, [at, c, c]] = [at, [£>,, c, c]]" ' . We can then
apply Lemma 4 twice to find a,b e (a\, b\, c)[G, G] such that [a,[b, c, c]] =
[fli, [b\, c, c]] and that [c, a, a], [c, b, b] are nontrivial elements in T. As a con-
sequence of this and Lemma 3, every commutator [xx, x2, x3, x4] with c occurring at
least once and either a or b occurring at least twice is trivial. Therefore [c, h, h, k] = 1
for all h,ke {a, b)[G, G]. Now let h e (a, b)[G, G] \ [G, G] and choose k e {a, b)
which is linearly independent from h modulo [G, G]. Then [k, [h, c, c]] is a nontrivial
multiple of [a, [b, c, c]]. Lemma 4 tells us further that

[k, [h,c,c]] = [h,c,c]p[c,h,hY

for some /3, y e Z7 where [c, h, h]y ^ 1. Taking the commutator with k on both
sides and using the fact that [c, h, h, k] = 1 we get [k, [h, c, c]]fi = 1. Therefore
jg = 0 which implies that [c,h,h] e T. This proves (2). Since [c,ab,ab] =
[c, a, a][c, b, b][c, a, b][c, b, a], it is now clear from (2) that [c, a, b][c, b, a] e T.

LEMMA 6. Let dx e G\ (c, a, b)[G, G]. Then there is an element d € dx {a, b, c)

such that:

(1) ([a,[d,c,c]]) = {[b,[d,c,c]]) = T;
(2) [c, d, d] is a nontrivial element in T and [c, a, d][c, d, a], [c, b, d][c, d, b] e T.

PROOF. Since [a, [b, c, c]] ^ 1 there are some r, s e Z7 such that [a, [d\arbs, c,
c]] ^ 1 and [ft, [diarbs, c, c]] ^ 1. Lemma4 implies that there is some d 6 dta

rbs (c)
such that [c, d, d] = [a, [d, c, c]]y where K # 0. G is a 3-Engel group, so clearly
[a, [d, c, c]\ and [b, [d, c, c]] are nontrivial. From Lemma 4 we have

[a, [d, c, c]] = [d, [a, c, c]]~l = [a, c, c f [c, a, a]y',

for some /J(, y\ 6 Z7 with y\ ^ 0. By taking the commutator with d on both sides, we
see that £, = 0. So ([a, [d, c, c]]) = ([c, a, a]) = T, and similarly ([b, [d, c, c]]) =
{[c, b, b]) = T. We now repeat the second part in the proof of Lemma 5 with b
replaced by d and conclude that [c, a, d][c, d, a] € {[a, [d, c, c]]) — T. Similarly we
get [c, b, d][c, d, b] e ([b, [d, c, c]]> = T.
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Now let a and b satisfy the conditions given in Lemma 5 and add to them elements
di, i € I, such that {c, a, b, dl• : i e 1} is a minimal set of generators for G with each
d, having the same properties as d in Lemma 6. Let H = (a, b, dt : i e /)[G, G].
The next proposition contains some of the essential properties which will be needed
for our first structure theorem.

PROPOSITION 2. H is a 2-Engel group and the following properties are satisfied for
allh € H andu e [G,G]:

(1) [c,h,h]eT;
(2) [c,hu,hu] = [c,h,h].

PROOF. We know from Lemma 5 and Lemma 6 that [c, e,e] e T for all e e
{a, b, di : i e /} and that [c, a, b][c, b, a], [c, a, dt][c, dt,a] and [c, b, dj][c, dt, b] are
in T for all i e / . If we can prove that [c, di, dj][c, dj, dt] e T for all i, j e / and
that [c, hi,h2, h3] = 1 for all huh2, h3 e H, then (1) is true.

As a preliminary step we show that [c, dt, dj][c, dj, dt] e Z(G) for all i, j € / .
Since [d,, [a, c, c]] ^ 1, there is some r € 27 such that [d,, [J,-ar, c, c]] ^ 1. Applying
Lemma 4 we conclude that

[di,[dja
r,c,c]] = [di,[didja

r,c,c]]

= [didjar, c, cf[c, didjar, d^a'Y,

for some j3,y e 17 with y ^ 0. We know that [c, rf,-, d,] and [c, df,-a|P, rf/flr] are in
T. From this and Lemma 3 we infer that [c, djdjar, djdjar, dj] = 1. So if we take
the commutator with dt on both sides in the equation above we see that we must have
/3 = 0. Therefore [c, did}a

r, djdjar] is in ([di, [djar, c, c]]>. Similarly we see that
([di, [djar, c, c]]> = ([c, di, di]) = T. We conclude from this that

(7) [cdidja^didja^eT.

By expanding this commutator and using what we have established so far we see that
[ c , 4 , 4 ] [ c , 4 , 4 ] € TyA{G) < Z(G).

It follows from the previous paragraph that [c, h, h] is in Z(G) for all h e H.
We will now use this fact to prove that H is a 2-Engel group and thus nilpotent
of class at most 2. We consider a few cases. First assume that h,k e H satisfy
[h, [k, c, c]] ^ 1. Since [c, h, h] e Z(G) we have by Lemma 3 that every commutator
[xi, x2, x3, x4], with c occurring once and h or k occurring twice, is trivial. Therefore
[h, [k, chr, chr]] = [h, [k, c, c]] for all r e Z7. We can then apply Lemma 4 to see
that

[h, [k, c, c]] = [h, [k, chr, chr]] = [k, chr, chr]Pr[chr, k, k]y'

https://doi.org/10.1017/S1446788700039240 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039240


408 Gunnar Traustason [12]

where yr / 0. Taking the commutator with h on both sides gives as before that
fir = 0. Therefore the expression becomes

[h,[k,c,c]] = [c,k,kY'[h,k,k]ry'.

Hence [c, k, k] and [h, k, k] are both in {[h, [k, c, c]]). If [h, k, k] ^ 1 then we
could choose r such that [c, k, k][h, k, k]r = 1 and we would get the contradic-
tion that [h, [k, c, c]] = 1. This means that we must have [h, k,k] = I whenever
[h, [k, c, c]] ^ 1. Let us now assume that [h, [k, c, c]] = 1 but that [a, [k, c, c]] ^ 1.
Then [ah, [k, c, c]] is also nontrivial and by the previous case we get that

[a,k,k] = [ah,k,k] = 1.

Now Lemma 3 gives us that [a,k,h,k] = 1 and thus

[h,k,k] = [ah,k,k] = 1.

Next suppose that [h, [k, c, c]] - 1 but that [h, [b, c, c]]^\. Then [h, [bk, c, c]] and

[h, [b~lk, c, c]] are nontrivial as well and by the first case we can deduce that

[h, b, b] = [h, bk, bk] = [h, b~xk, b~lk] = 1.

Then from Lemma 3 we also know that [h, b, k, b] = [h, k, b, b] = 1. Therefore

1 =[h,bk,bk][h,b~lk,b-]k]

=[h, k, k][h, k, b][h, b, k][h, k, b, k][h, b, k, k]

[h, k, k][h, k, b]~l[h, b, k]~{[h, k, b, k]~l[h, b, k, k]~l

=[h,k,kf.

Finally we are left with the situation when [h, [k, c, c]] = [a, [k, c, c]] = [h, [b, c,
c]] = 1. But [a, [b, c, c]] ̂  1 and since [a, [k, c, c]] = 1 we can infer from this and
our previous case that [a, k, k] = 1. Since [ah, [b, c, c]] ̂  1 and [ah, [k, c, c]] = 1,
we similarly deduce that [ah,k,k] = 1. Lemma 3 gives us as before that [a,k, h,k] =
1 and thus

1 = [h, k, k] = [ah, k, k][a, k, k]~l = 1.

We have therefore shown that H is a 2-Engel group and thus nilpotent of class at
most 2. It follows in particular that [c, h\, h2, h^\ = 1 for all h\, h2, h3 e H. Hence
we can derive from equation (7) that [c, dj,dj][c, dj, d:] € T for all /, j e /. We can
conclude from this that statement (1) holds.

We now turn to the second statement. Let e G [a, b, d: : i € /} and u e [G, G].
By Lemma 6 we have that [e, c, c] is not in Z(G). It follows that [eur, c, c] is not
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in Z(G) for all r e Z7. Lemma 4 then tells us that [c, eur, eur] is nontrivial for all
r € 27 and by the first part of the proposition we see that [c, eur, eur] e T for all
r € Z7. In particular [c, eu, eu] = [c, e, e]a for some a e Z7 which implies that
[c, e, u][c, u, e] = [c, e, e]a~l. If a ^ 1 then a — 1 would have an inverse r in Z7

and then [c, ew~r, eu~r] = [c, e, e][c, e, e]"1 = 1 which gives a contradiction. Hence
a = 1 and [c, e, u][c, u,e] = 1. Since this is true for all e e [a, b, d( : i e /}
we conclude that [c,h,u][c,u,h] = 1 for all h e H. The second statement clearly
results from this.

We are now ready to state and prove the first structure theorem of this section.

THEOREM 3. Let G be a group of exponent 1 and nilpotency class 4 in t/3. Then G
is a 3-Engel group which satisfies the following properties:

(1) y4(G) is cyclic of order 7.
(2) The left 2-Engel elements of G/y4(G) form a subgroup H/y4(G) of index 7.

Furthermore H is a characteristic subgroup and nilpotent of class 2.
(3) The left 2-Engel elements of G form a characteristic subgroup which is equal to

Z\G).

Conversely we have that every 3-Engel group of exponent 1 that satisfies (1), (2) and
(3) is in U3.

PROOF. From Lemma 1 G must be a 3-Engel group. Let {c,a,b,dt : i € /}
be a minimal set of generators. Suppose furthermore that c is chosen such that
[au [b\, c, c]] ^ 1 for some ai,b\; that a and b are then chosen as in Lemma 5
and that all the dt are chosen with the same properties as d in Lemma 6. Let
H = {a, b, dt : / e I)[G, G]. By Proposition 2 we have that H is a 2-Engel group
and thus nilpotent of class at most 2 by Levi [12]. We also have from Proposition 2
that [c, h, h] e j/4(G) for all h e H and therefore H/y4(G) is a set of left 2-Engel
elements in G/y4(G). Clearly H is of index 7. Also since H is nilpotent of class at
most 2, [a, ch, ch, b] = [a, c, c, b] # 1 for all h e H. Then H/y4(G) is the set of all
left 2-Engel elements and we have proved (2).

Consider some commutator of weight 4 in the generators. If c occurs three times
then the commutator is trivial since G is a 3-Engel group. If c occurs at most once
then the commutator is again trivial because y^{H) = 1. So if the commutator is
nontrivial c occurs necessarily exactly twice. So we have a commutator of c, huh2

with c occurring twice and where h\,h2 are in H. By Lemma 2, the commutator is in
{[hi, [h2,c, c]). If [hi, [h2,c, c]] jt 1 then Lemma 4 tells us that

where [c,h2,h2]
Y ^ 1. Taking the commutator with ht on both sides and using

the fact that y3(//) = 1, we see that [hu [h2, c, c]\~p = 1. Therefore yS = 0 and
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[hi, [h2, c, c]] e {[c, h2, h2]) which is contained in ([a, [b, c, c]]) by Proposition 2.
So we have proved that y^G) = {[a, [b, c, c]]), and it is thus cyclic of order 7.

To prove (3) we apply Proposition 2 again. We define a map qc from H/[G, G] to
y4(G) as follows:

qc{h[G,G]) = [c,h,h].

By Proposition 2 this is well defined and since y*{G) is cyclic, this gives a quad-
ratic form on the vector space H/[G, G]. We first choose an orthogonal basis for
{a, b)[G, G]/[G, G] with respect to qc and then expand it to an orthogonal basis
for the whole vector space H/[G, G]. Without loss of generality we can assume
that a = a[G, G] and b = b[G, G] are orthogonal. We use additive notation for
the group operations in H/[G, G] and y^G). Since —1 is a non-square in Z7 and
since by Lemma 5 we know that (a, b)[G, G]/[G, G] is a regular subspace, we can
furthermore choose a and b such that qc(b) is equal to either qc(a) or — qc{a). But
by Lemma 5 qc(x) = 0 if and only if x = 0, and this can only happen in the first
case. So we can assume that qc(b) = qc(a). Let [a,b, d{ = J,[G, G] : i e /}
be the orthogonal basis for H/[G, G]. Our next step is to prove that qc(dj) = 0
for all i e / . Since every element in Z7 can be written as a sum of two squares,
we can find r,seZ-, such that qc(ra + sb + dt) = qc{ra + sb — J,) = 0. Then
[c, a'b*dt, a'bsdt] = [c,arbsdfl,arbsd^i] = 1 and by Lemma 4 we must have
[arbsdi, c, c], [arbsdfl, c, c] e Z(G). We multiply these elements together and see
that [arbs, c, c] e Z(G). But this can only happen when (r, s) = (0, 0) and thus
qc(di) = 0 . In other words we have shown that D = (dt : i e I)[G, G] consists of left
2-Engel elements in G. We next show that there are no other left 2-Engel elements in
G. Suppose* = crasb' is a left 2 Engel element in G. Since [a, JC, x, b] = [a,c, c, b]r,
we must have r = 0. Then 0 = qc{sd + tb) = (s2 + t2)qc(a) which implies that
(s, t) = (0, 0). Therefore D is the set of all left 2-Engel elements of G. Finally let
[d, xi,x2, x3] be a commutator such that xt, x2, x3 are in {c} U H and d g D. Since
[c, d, d] = 1 it follows from Lemma 4 that [d, c, c] e Z(G) and thus we have from
Lemma3that[d, xu x2,X3] = 1 ifc occurs at least twice. Since y3(//) = 1, this is also
true if c occurs at most once. Hence d e Z3(G). Clearly {a, b, c) n Z3(G) < [G, G]
so D — Z3(G) and we have proved (3).

Now suppose that G is a 3-Engel group of exponent 7 satisfying (1), (2) and (3).
We know from Heineken [8] that G is nilpotent and from (1) that G is nilpotent of
class 4. To show that G is in f/3 we need to show that [G, K, K, K] < K for every
subgroup K of G. Since G is nilpotent of class 4 this is equivalent to

[U,VUV2,V3] € (VUV2, V3)

for all M, Vi, v2, v3 e G. Suppose [u, vt, v2, v3] / 1. Since H is nilpotent of class at
most 2 it is necessary that at least one of vu v2, v3 is not in H. Call this element c.
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Then (vu v2, v3) = (c)(H n (vu v2, v3)). Since [u, c, c, c] = 1 we cannot have that
H n (vuv2, v3) c Z3(G). Let h e H D (u,, u2) u3) \ Z3(G). By (3) we have that h
is not a left 2-Engel element in G and since y3(H) = 1 this is equivalent to saying
that [c, h, h] ^ 1. From (1) and (2) we conclude that ([c, h, h]) = y4(G). Therefore
[u, vu v2, v3] e {[c, h, h]) c (vu v2, v3).

REMARK. Let G be as in Theorem 3. It is not difficult to see that Z3(G)/Z(G) is
the set of right 2-Engel elements of G/Z(G) and that Z2(G) is the set of right 2-Engel
elements of G. Notice also that the proof tells us that Z3(G) has index 49 in H.

Our next result will establish the existence of groups with the properties given in
Theorem 3. We will see that for each cardinal r > 3, there is an r-generator group
G(r, 7) of exponent 7 in U3 that is nilpotent of class 4 and has the further property that
every r-generator group of exponent 7 in U3 that is nilpotent of class 4 is a quotient
of G(r, 7).

Let r be a cardinal greater than 2. Let £(r, 7) be the relatively free r-generator
3-Engel group of exponent 7 with nilpotency class at most 4 and let the free generators
be {z, x, v, t( : i e 1} where the cardinal of / is r — 3. Let Ho = {x, y, tt : i e /}
and Do = {*,-: i e / } . We define N(r, 7) as the normal closure of the set of following
elements:

(8) [z, * ,*] [* , [v ,z ,z] ]" ' [z, y, y][x, [y, z,z]]~l;

(9) [t,z,z,u], [z,t,t] teD0,ueH0;

(10) [z,u,v][z,v,u] u,veHoandu^v;

(11) [z,u,v, w] u,v,weH0;

(12) [u, v, w] u, v, w e HQ.

Finally we let G(r, 1) = E(r, 7)/N(r, 7).

THEOREM 4. G(r, 7) is in U3 and is nilpotent of class 4. Furthermore, if G is
an r-generator group of exponent 1 in U3 that is nilpotent of class 4 then G is a
homomorphic image ofG(r, 7).

PROOF. Let G be an r-generator group of exponent 7 in U3 that is nilpotent of class
4. Then G is a 3-Engel group and we saw in the proof of Theorem 3 that G has a
set of generators [c, a, b, dt : i e /} with all dt in Z3(G) and such that the following
properties hold:

(13) [c, a, a] - [c, b, b] e {[a, [b, c, c]]);

(14) [c, dt, dt] = 1 for all i e I;

(15) [c, M, v][c, v, u] = 1 for all u, v e {a, b, dx : i e 1} where u / j .
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Let H = (a, b, dt : i e /)[G, G]. The proof of Theorem 3 implies that y3(//) = 1.
Therefore we have:

(16) [c,u,v,w] = l for all M, v, w e [a,b, d,• : i e / } ;

(17) [u, v, w] = 1 for all u,v,w e {a, b, d{ : i € / } .

Suppose that [c, a, a] = [c, b, b] = [a, [b, c, c]]r. Then

[cr,a,a] = [cT,b,b] = [a,[b,c\cr]].

We define a homomorphism from E{r, 7) to G by mapping (z, x, y) to (cr, a, b) and
each tt to dt. Since N(r, 7) is the normal closure of the elements (8)—(12) it follows
from the relations above that N(r, 1) is in the kernel of this homomorphism and thus
G is a homomorphic image of G(r, 7). So it only remains to show that G(r, 7) has
the properties in the statement of the theorem.

Let c = zN(r,l), a = xN{r,l), b = yN(r,7) and 4 = r,-N(r,7) for all
i € /. Then let H = {a,b,dt : i e I)[G(r, 7), G(r, 7)] and D = (4 : i e
I)[G(r, 7), G(r, 7)]. It clearly results from relations (8)-(12) and Lemma 2 that H
is nilpotent of class at most 2, and that Y4(G(r, 7)) = {[a, [b, c, c]]>. It is also clear
from these relations that the elements of H/y4(G(r, 7)) are left 2-Engel elements in
G/y4(G(r, 7)) and that the elements of Dare left 2-Engel elements of G(r, 1). Lemma
2, (9) and (11) also give that D < Z3(G). To finish the proof we need to establish
two things. That [a, [b, c, c]] ^ 1 and that all left 2-Engel elements in G(r, 7) are
contained in D. From [a, [b, c, c]] ^ lwe deduce then that Z3(G) < D and Theorem
3 implies that G{r, 7) has the claimed properties. It will follow from the next theorem
that [a, [b, c, c]] ^ 1. We will now assume this and show that D contains all the left
2-Engel elements. Let

g = cuasb'[c, a]'[c, b]m[a, b]nd

where d e {dt : i e I){G{rJ)y3(G(r,7)). Clearly every element in G(r, 1) can be
written in this form. Suppose that g is a left 2-Engel element then

1 = [*>, g, g, a] = [b, c, c, a]u

and thus u = 0 (since we are assuming that [a, [b, c, c]] ̂  1). From this and the fact
thaty3(//) = 1 we can infer that g is a left 2-Engel element if and only if [c, g, g] = 1.
Now

[c, g, g] =[c, a, af[c, b, bf[c, a, [c, b]]sm

[c,[c,b],aYm[c,b,[c,a]]"[c,[c,alb]".
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But [c, b, [c, a]][c, [c, a], b] = [a, c, b, c][a, c, c, b]~2 which is, by Lemma 2, equal
to [a, [b, c, c]]"7/3 = 1. Similarly we have that [c, a, [c, b]][c, [c, b], a] = 1 (it is
here that we need the exponent to be 7). Therefore we have

1 = [c, a, af[c, b, bf = [a, [b, c, c]f2+'2\

and since —1 is not a square in Z7 we must have that (s, t) = (0, 0). Hence g =
[c, a]'[c, b]m[a, b]nd e D and we have shown that every left 2-Engel element is in D.
It remains to be proved that y*(G(r, 7)) ^ 1. Since G(3, 7) is a quotient of G(r, 7) for
all cardinals r > 3 it is sufficient to show that y4(G(3, 7)) ^ 1. This is a consequence
of our next result.

THEOREM 5. There is exactly one group of exponent 1 in f/3 that has 3 generators
and nilpotency class 4. This is the group G(3, 7).

PROOF. Let a = xN(3,1), b = yN(3,1) and c = zN(3, 7). Then it is clear from
the relations (8M12) that

[c,a,a] = [a,[b,c,c]],

[c, b, b] = [a, [b, c, c]],

[c,a,b][c,b,a] = 1

[a,b,b] = l,

[b,a,a] = 1.

From the Hall-Witt identity and Lemma 2 we have:

1 = [a,b,ca][c,a,bc][b,c,ab]

= [a,b,c][c,a,b][b,c,a][c,a,[b,c]]

= [a,b,c][c,a,b]2[a,[b,c,c]]-1.

It follows that

(18) [a,b,c] = [c,a,b]-2[a,[b,c,c]].

From Lemma 2 we have the extra relations

(19) [a,b,c,c] = [a,[b,c,c]T3

(20) [a,c,b,c] = [a,[b,c,c]]2

(21) [a,c,c,b] = [a,[b,c,c]].
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Let ax = a, a2 = b, a3 = c, a4 = [b, a], a5 = [c, a], a6 = [c, b], a7 = [c, a, b],

a% = [a, c, c], a9 = [b, c, c] and ai0 = [a, [b, c, c]]. We can deduce from the relations
above that G(r, 3) has a power-commutator presentation with generators a , , . . . , a10

and the following relations:

\a2,ax] = a4, [a3,«i] = a5, [a3,a2]=a6,

[a4, ax] = 1, [a4, a2] = 1, [a4, a3] = a^a^,

[a5,ax] = aXQ, [a5,a2]=a1, [a5,a3]=a^,

[ a 5 , a 4 ] = l , [06,^] = ^ , [a6<a2]=aw,

[a6, a3] = a\, [a6, a4] = 1, [a6, a5] = a6
i0,

[a7, a3] = a5
l0, [a-,, at] = 1 if i\ + 3

\a%, a2] = aw, [as, at] = 1, if / ^ 2

[ag, a}] = a6
l0, [ag, at] = 1 if i ^ 1

[al o,a,] = 1 for alii.

We refer to [18] for a discussion of power-commutator presentations. One can check
that this power commutator-presentation is consistent so G(3, 7) has order 710 and
class 4. It is also easy to see that Z(G) = y4(G) = (al0). This implies that every
quotient of G(3, 7) is nilpotent of class at most 3. By Theorem 4 we have that every
3-generator group of exponent 7 in f/3 that is nilpotent of class 4 is a quotient of
G(3, 7), therefore G(3, 7) is the only such group.

When r > 4 the situation is much more complicated and we will not attempt here
to obtain a detailed classification of the r -generator groups of exponent 7 in f/3. We
will however proceed a bit further and analyse closely a certain subclass. The group
G (3, 7) has the property that every proper quotient is nilpotent of class at most 3. Our
next result gives a complete classification of all finitely generated groups of exponent
7 in U3 with this property.

We let r and s be some nonnegative integers and as before we let E(3 + 2r + 2s,7)
be the relatively free (3 + 2r + 2s)-generator 3-Engel group of exponent 7 with
nilpotency class at most 4 and with free generators {z, x, y, f, : 1 < i <2r + 2s}. We
recall that G(3 + 2r + 2s, 7) was defined as £(3 + 2r + 2s, 7)/W(3 + 2r + Is, 7),
where N(3 + 2r + 2s,7) was the normal closure of the relations (8)—(12). We rename
the generators t\,t2,... , hr+2s as follows:

fi — *•"> Sj — tj+2r,

for 1 < i < 2r and 1 < j < 2s. We extend AT (3 + 2r + 2s, 7) to a normal subgroup
N(r,s, 7) which is defined to be the normal closure of the set of elements (8)—(12)
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together with the set of following elements:

(22)
[ f , , x ] , [ f , , y ] , [ f , z , z ] l < i < 2 r

(23)

(24)

(25)

(26)

(27)

(28)

[gt,x], [gi,y

[gi, g2s+\-i][X, I

], [gi,Z]

[x,y,z]^

y,z,z]Tl

Ifi, fj]

[gi,gj]
[f,g]

1
1

1

1

1

1

< i < 2s
< i < r

<i<s

<i<j<2r and / +

S i < j <2s and i +

<i<2r and 1 < / <

j # 2r + 1

j # 2s + 1
25.

We define G(r, s, 7) as £(3 + 2r + 2s, 7)/N(r, s, 1).

THEOREM 6. For each pair of integers r,s > 0, the group G(r, s, 7) is nilpotent of
class 4 and has the property that every proper quotient has class at most 3. Conversely,
ifG is a finitely generated group of exponent 1 in f/3 which is nilpotent of class 4 and
of which every proper quotient has class at most 3 then G is isomorphic to G(r, s, 7)
for some integers r, s > 0.

PROOF. Let G be a group of exponent 7 in C/3 that is nilpotent of class 4 but of
which every proper quotient has class at most 3. This clearly happens if and only
if Z(G) = y4(G), since we have seen that y4(G) has order 7. Let H be as in
Theorem 3 and D = Zi{G). Choose some c e G \ H and a,b e H \ D such that
[c, a, a] = [c, b, b] = [a, [b, c, c]]. We then have that Z(G) = ([a, [b, c, c]\).

We define a map / from D/[G, G] x D/[G, G] to Z{G) as follows:

f(d[G,G],e[G,G]) = [c,d,el

We can think of / as an antisymmetric bilinear form on the vector space V —
D/[G, G]. According to the classical theory of antisymmetric bilinear forms, we
can find a basis £/, = dx [G, G],... , U2r = d^G, G], Vx = ex[G, G],... , V, =
e,[G, G] such that (with additive notation)

Ua,[b,c,c]] i f i + y = 2r + 1 and / <j
Uj) — \ .

[0 otherwise,

and such that

for all 1 < i < 2r and 1 < j,k < t. It follows that [dt,dj] commutes with c when
i + j ^ 2r + 1 and that [e,, dj] and [eit ej] commute with c for all i and j . Since
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y3(H) = 1, all these elements are in Z(G). Suppose

[d, ,dj] = [c, d2r+i-j, dj]2"-' when i + j^2r + l;

[et, dj] = [c, dir+i-j, dj]Si> 1 < / < t and 1 < j < 2r.

If we let

2r

<?, = e t

then one easily computes that ej commutes with J, for all i and j . One also has

= 1.

Without loss of generality we can thus assume that all the indices r, j and sLj are
0. By the choice of basis with respect to the antisymmetric form / it is also true
that [dj, d2r+\-i, c] is a nontrivial element of Z(G) for all 1 < i < r. Suppose that
[dj,d2r+\-i, c] = [a, b, c, c]n• Let f, be the inverse of r, modulo 7. By replacing dt

with d?, we can assume that [J,, d2r+\-i, c] = [a, b, c, c]. Then [dt, d2r+x_,-][a, b, c]~]

is in Z(G). Suppose

[dj,d2r+l-j] = [a, b, c][c, dt, d2r+X-i]~li.

Then [d,[c, djf, d2r+l-j] = [a, b, c]. We can thus choose dt such that [dh d2r+\-i] =
[a, b, c).

Let us summarise: We can choose d\,... ,d2r,e\,... , e, in D such that d\ [G, G],

. . . , d2r[G, G], ei[G, G],..., e,[G, G] form a basis for D/[G, G] and such that

(29) [et,dj] = l for all ij;

(30) [di,dj] = l wheni + j ^ 2r + 1;

(31) [dj, djr+i-,] = [a, b, c] for i = 1 , . . . , r.

Let g 6 D \ [G, G]. Since D = Zi{G), [g, a, c], [g, b, c] and [g, c, c] are in Z(G).
Suppose

[g,a,c] = [c,b,a,c]~r, [g, b, c] = [c,a, b, c]~s, [g, c, c] = [a, b, c, c]~'.
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Theng, = g[c, b]r[c, a]s[a, b]' satisfies [g,, a, c] = [gub, c] = [gi,c,c] = 1. By
Theorem 3, y^{H) = 1 and we conclude that [gi,a] and [gi,b] are in Z(G). Suppose

[gi,a] = [b, c, c, a]'1", [gu b] = [a, c, c, ft]"".

Then g2 = gi[b, c, c]m[a, c, c]n satisfies [g2,a\ = [g2,b] = 1. Since [g2,a,c] =
[g2, c, a]2, we also see that [g2, c, a] = 1. Similarly [g2, c, b] = 1.

The previous paragraph allows us furthermore to assume that the generators
d\,... , d2r can be chosen such that we also have

(32) [d, , a ] = [ d l , b ] = [ d l , c , a ] = [d, , c , b ] = [ d , , c , c ] = I .

We can suppose that the same equations hold for the e,. Since we have seen that [e,, ej\
commutes with c for all i and j , it follows from (29) and (32) that [eit c] e Z(G).
Suppose that

[et, c] = [a, b, c, c]~n.

Then et [a, b, c]n commutes with c. It is now clear that we can choose ex,... , e, such
that:

(33) [ e i , a ] = [ e i , b ] = [ e i , c ] = l .

Let E = Z2(G). From (29)-(33) we can infer that E = (eu ... ,e,)[D,G] so
e,[D, G ] , . . . , e,[D, G] is a basis for E/[D, G]. We define a map g from E/[D, G]x
E/[D, G] to Z(G) by:

g(e[D,G],h[D,G]) = [e,h].

We can think of g as an antisymmetric bilinear form on the vector space E/[D, G].
As before we apply the classical theory of antisymmetric forms and get a basis
W, = jfe,[D, G],... , W2s = k2s[D, G], X, = A,[D, G ] , . . . , X, = h,[D, G] for
E/[D, G] such that

w = f la, [b, c, c]] iii + j = 2s + l and i < j

JO otherwise,

and such that

for all i and j . But now we must have / = 0: each /i, e Z(G) = K4(G) and thus
cannot be in E \ [D, G]. Sot = 2s and without loss of generality we can assume that
kj = e, for 1 < i < 2s. So we can choose et such that

(34) [ehe2s+i-i] = [a,[b,c,c]] for / = 1 , . . . , s;

(35) [eh ej] = 1 when i+j^2s + l.
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Comparing (29)-(35) with (22)-(28), we see that G is a homomorphic image of

We finish the proof by showing that G(r,s, 7) has the claimed properties stated in
the theorem. Leta = xN(r, s, 1), b = yN(r, s, 7), c = zN(r, s, 7), d, = fiN(r, s, 7),
et = gjN(r, s, 7). Then it is clear from the relations that {a, b, c) is isomorphic to
G(3, 7). Therefore G{r,s, 7) has nilpotency class 4. It now only remains to be shown
that every proper quotient is nilpotent of class at most 3.

Let H and D be as before. Let N be a proper normal subgroup of G(r,s,l). We
want to show that [a, [b, c, c]] e N. We argue by contradiction and assume this is not
the case. Suppose first that N is not contained in H. Then crh e N for some r / 0
and some h e H. But then [a, b, c, cf2 = [a, b, crh, crh] e N, and we arrive at the
contradiction that [a, [b, c, c]] e N. Thus N must be contained in H. Similarly it is
easy to see that N must be contained in D. Suppose that

x = <[a,bnc,aY[c,b]'Y\d?)u € N

for some u e Z2(G). Then [a,b,c,c]r = [x,c,c], [c,a,c,b]s = [x,c,b] and
[c, b, c, a]' = [x, c, a] are in N so we must haver = s = t = 0. Also[c, dj, dir+x-jY'
= [c,x,d2r+i-j]- Therefore [a, [b,c,c]YJ € N for all 1 < j < 2r and we must
have that all these indices are 0. Hence N must be contained in Z2(G). Clearly
Z2(G) = ( « , , . . . , e2s, [c, d{\,... ,[c, d2r])y3(G). Suppose that

2s Ir

1=1 j=\

for some u e y3(G). Then [a, [b, c, c]Y' = [ej, e^+i-;]0 = [x, e^+i-J € N which
implies that r} = 0 for all 1 < j < 2s. Also [a, [b, c, c]YJ = [c, dh d2r+i_jY' -
[x, d2r+\-j] € N and this necessarily implies that Sj = 0 for all 1 < j < 2r.
Therefore N C y3(G). So if x is a nontrivial element in N it must be of the form

x = [c, a, b]u[a, c, c]"[b, c, c]w[a, [b, c, c]]'

for some u, v,w,l G Z7. But then [c, a, b, c]" = [x, c], [a, c, c, bY = [x, b] and

[b, c, c, a]w = [x,a] are in N and thus u = v = w = 0. Hence we must have
N = {[fl. [b, c, c]]) which contradicts our assumption that [a, [b, c, c]] g N.

REMARKS. (1) Every element* in G(r, s, 1) can be written uniquely in the form

x=cuavbw[c,a]'[c,b]m[a,b]n

[a, b, c]a[a, c, cflb, c, c]y[a, [b, c, c]]r

2r 2s

1=1
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Therefore G(r, s, 7) has rank 3 + 2r + 2s and order 710+4r+2j.

(2) Notice that G(r, s, 7) always has odd rank. For a given odd integer n > 3 there

are exactly (n — l ) /2 groups of exponent 7 in f/3 which have rank n, are nilpotent of

class 4 and of which every proper quotient is of class at most 3. These groups have

orders 77+", 7 9 + n , . . . ,T+2n.

(3) Suppose that n > 3. Let N be a maximal element in

{U < G(n, 7) : G(n, 1)/U is nilpotent of class 4 and has rank n}.

It follows from Theorem 6 that G(n,7)/N = G(r,s,7) x M{t) where 3 + 2r +

2s + t = n and M(?) is an elementary abelian group of exponent 7. We have that

Z3(G(n,7)) = (tt,... ,fn_3)[G(w,7), G(n, 7)]. By the proof of Theorem 6 there are

elements / , , . . . , / 2 r , g , , . . . , g2s, ku ... , k, e Z3(G) \ [G(«, 7), G(n, 7)] such that

N is the normal closure of the union of the set of the elements in (8)-(12),(22)-(28)

and following set of elements:

{[*„ km], [k,, dj], [kh e,l [k,,a], [*,-, b], [ki, c] : i, j , I, m)

where 1 < i, m < t, 1 < j < 2r and 1 < / < 2s.
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