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Abstract

This work is a continuation of the author’s previous paper [Greatest lower bounds on the
Ricci curvature of toric Fano manifolds, Adv. Math. 226 (2011), 4921–4932]. On any
toric Fano manifold, we discuss the behavior of the limit metric of a sequence of
metrics which are solutions to a continuity family of complex Monge–Ampère equations
in the Kähler–Einstein problem. We show that the limit metric satisfies a singular
complex Monge–Ampère equation. This gives a conic-type singularity for the limit
metric. Information on conic-type singularities can be read off from the geometry of
the moment polytope.

1. Introduction

Let (X, J) be a Fano manifold, that is, K−1
X is ample. Fix a reference Kähler form ω ∈ 2πc1(X).

In local coordinates {zi} we can write

ω =
√
−1

n∑
i,j=1

gij̄ dz
i ∧ dz̄j ,

where g = (gij̄) is positive definite and defines a Kähler metric on X. For simplicity, we will just
call ω the Kähler metric. Its Ricci curvature Ric(ω) is defined by the formula

Ric(ω) =−
√
−1

n∑
i,j=1

∂2

∂zi∂z̄j
log det(gkl̄) dz

i ∧ dz̄j .

The (1, 1)-form Ric(ω) represents the cohomology class 2πc1(X). By the ∂∂̄-lemma in Kähler
geometry, there exists hω ∈ C∞(X) such that

Ric(ω)− ω =
√
−1 ∂∂̄hω and

∫
X
ehωωn =

∫
X
ωn. (1)

In order to solve for the Kähler–Einstein metric, we consider the following family of Monge–
Ampère equations in the continuity method:

(ω +
√
−1 ∂∂̄φ)n = ehω−tφωn. (∗t)

Note that when t= 1 this is equivalent to the Kähler–Einstein equation

Ric(ω +
√
−1 ∂∂̄φ) = ω +

√
−1 ∂∂̄φ.
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Figure 1. BlpP2.

Define S = {t : (∗t) is solvable}. Then one can prove that: (i) 0 ∈ S (see [Yau78a]); (ii) S is
open in [0, 1] (see [Tia87]); and (iii) S is closed if and only if 1 ∈ S, i.e. there is a Kähler–Einstein
metric.

Now define
R(X) = sup{t : (∗t) is solvable}.

Tian [Tia92] first showed that, on certain manifolds, one cannot solve (∗t) for t sufficiently close
to 1. Equivalently, for such a Fano manifold, R(X)< 1. More recently, Székelyhidi proved the
following result.

Proposition 1 [Szé11]. We have the following characterization of R(X):

R(X) = sup{t : ∃ a Kähler metric ω ∈ 2πc1(X) such that Ric(ω)> tω}.

In particular, R(X) is independent of the reference metric ω. In [Li11], we determined R(X)
for any toric Fano manifold.

A toric Fano manifold X4 is determined by a reflexive lattice polytope 4 (for details on toric
manifolds see [Oda88]). For example, let BlpP2 denote the manifold obtained by blowing up one
point on P2. Then BlpP2 is a toric Fano manifold and is determined by the polytope shown in
Figure 1.

Any such polytope 4 contains the origin O ∈ Rn. We denote the barycenter of 4 by Pc. If
Pc 6=O, the ray Pc + R>0 ·

−−→
PcO intersects the boundary ∂4 at point Q.

Theorem 1.1 [Li11]. If Pc 6=O, then

R(X4) =
|OQ|
|PcQ|

.

Here |OQ| and |PcQ| are the lengths of the line segments OQ and PcQ. If Pc =O, then there is
a Kähler–Einstein metric on X4 and R(X4) = 1.

The next natural question is what the limit metric looks like as t→R(X). For the special
example X = BlpP2, which is also the projective compactification of the total space of the
line bundle O(−1)→ P2, Székelyhidi [Szé11] constructed a sequence of Kähler metrics ωt with
Ric(ωt) > tωt and ωt converging to a metric with conic singularity along the divisor D∞ of conic
angle 2π × 5/7, where D∞ is the divisor at infinity added in projective compactification. Shi
and Zhu [SZ11] proved that rotationally symmetric solutions to the continuity equations (∗t)
converge to a metric with conic singularity of conic angle 2π × 5/7 in the Gromov–Hausdorff
sense, which seems to be the first strict result on the limit behavior of solutions to (∗t).
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Limit behavior of metrics in Kähler–Einstein problem

Note that by the theory of Cheeger et al. [CCT02], the limit metric in the Gromov–Hausdorff
sense should have complex codimension-one conic-type singularities since we only have the
positive lower Ricci bound.

For the more general toric case, if we use a special toric metric, which is just the Fubini–
Study metric in the projective embedding given by the vertices of the polytope, then, after
transforming by some biholomorphic automorphism, we can prove that there is a sequence of
Kähler metrics which solve the equation (∗t) and converge to a limit metric satisfying a singular
complex Monge–Ampère equation (see also the equivalent real version in Theorem 3.1). This
generalizes the result of [SZ11] for the special reference Fubini–Study metric.

To be precise, let {pα : α= 1, . . . , N} be all the vertex lattice points of 4, and let {sα : α=
1, . . . , N} be the corresponding holomorphic sections of K−1

X4
. Then we take the reference metric

to be

ω = ωFS :=
√
−1 ∂∂̄ log

N∑
α=1

|sα|2,

which is the pull-back of the Fubini–Study metric of CPN−1 under the Kodaira embedding
induced by {sα}. Now, with the same notation as in Theorem 1.1, let F be the minimal face of
4 containing Q. Let {pFk } be the vertex lattice points of F ; then they correspond to a sublinear
system LF of |−KX4 |. We let Bs(LF ) denote the base locus of this sublinear system. Also, let∑

α
′ denote the sum

∑
pF
k

. Then we have the following theorem.

Theorem 1.2. After some biholomorphic transformation σt :X4→X4, there is a subsequence
ti→R(X) such that the σ∗tiωti converge to a Kähler current ω∞ = ω +

√
−1 ∂∂̄ψ∞, with

ψ∞ ∈ L∞(X4) ∩ C∞(X4\Bs(LF )), which satisfies a complex Monge–Ampère equation of the
form

(ω +
√
−1 ∂∂̄ψ∞)n = e−R(X)ψ∞

(∑
α

′bα‖sα‖2
)−(1−R(X))

Ω. (2)

Here Ω = ehωωn is a smooth volume form. For each vertex lattice point pFα of F , bα is a constant
satisfying 0< bα 6 1, and ‖ · ‖= ‖ · ‖FS is (up to constant multiplication) the Fubini–Study
metric on K−1

X4
. In particular,

Ric(ωψ∞ ) =R(X)ωψ∞ + (1−R(X))
√
−1 ∂∂̄ log

(∑
α

′bα|sα|2
)
. (3)

The above equation reveals the conic-type singularities for the limit metric. We can read off
the location of conic singularities and conic angles from the geometry of the polytope. See § 3.3
for the method and discussions. In particular, this can provide a toric explanation of the special
case BlpP2 mentioned earlier (see Example 1).

Note that although we can prove that the limit metric is smooth outside the singular locus,
to prove geometrically that it is a conic metric along codimension-one strata of the singular set,
we need to establish a more delicate estimate, which we will discuss in the future. There are also
difficulties in studying the behavior of the limit metric around higher-codimensional strata (see
Remark 4 and Example 2).

Finally, we remark that, in view of the special case BlpP2 in [SZ11] and the results in [LS12],
we expect the following statement to be true: the Gromov–Hausdorff limit of (X4, ωti) is the
metric completion of (X4\ Bs(LF ), ω∞).
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2. Consequence of estimates of Wang and Zhu

The proof of Theorem 1.1 is based on the methods of Wang and Zhu [WZ04].

For a reflexive lattice polytope4 in Rn = Zn ⊗Z R, we have a Fano toric manifold X4 ⊃ (C∗)n
with a (C∗)n action. In the following, for simplicity we will sometimes just write X for X4 .

Let (S1)n ⊂ (C∗)n be the standard real maximal torus. Let {zi} be the standard coordinates
of the dense orbit (C∗)n, and let xi = log |zi|2. We have a standard lemma about the toric Kähler
metric, whose proof we omit; see, for example, [WZ04].

Lemma 1. Any (S1)n-invariant Kähler metric ω on X has a potential u= u(x) on (C∗)n, i.e.
ω =
√
−1 ∂∂̄u. The potential u is a proper convex function on Rn and satisfies the momentum

map condition

Du(Rn) =4.
Also,

(
√
−1 ∂∂̄u)n/n!

(dz1/z1) ∧ (dz̄1/z̄1) ∧ · · · ∧ (dzn/zn) ∧ (dz̄n/z̄n)
= det

(
∂2u

∂xi∂xj

)
=: det(uij). (4)

Let {pα : α= 1, . . . , N} be all the vertex lattice points of 4. Each pα corresponds to a
holomorphic section sα ∈H0(X4, K−1

X4
). We can embed X4 into PN using {sα}. Let us first

find the appropriate potential on (C∗)n for the pull-back of the Fubini–Study metric (see [Li11,
§ 2] or [WZ04]).

Recall that for any section s of K−1
X , the Fubini–Study metric as a Hermitian metric on K−1

X

is defined, up to multiplication by a positive constant, as

‖s‖2FS = e−C̃
|s|2∑
β |sβ|2

. (5)

The right-hand side is well-defined by means of local trivializations; C̃ is some normalizing
constant, which we choose so as to simplify the computations later.

First, let s̃0 be the section corresponding to the origin 0 ∈4. On the open dense orbit (C∗)n,
by standard toric geometry we can assume that

sα
s̃0

=
n∏
i=1

z
pα,i
i . (6)

So the Fubini–Study norm of s̃0 is

‖s̃0‖2FS = e−C̃
|s̃0|2∑N
α=1 |sα|2

= e−C̃
( N∑
α=1

n∏
i=1

|zi|2pα,i
)−1

= e−C̃
( N∑
α=1

e〈pα,x〉
)−1

=: e−ũ0 .

In other words, we define

ũ0 = log
( N∑
α=1

e〈pα,x〉
)

+ C̃. (7)

Now we can choose C̃ by the normalization condition:∫
Rn
e−ũ0 dx= Vol(4) =

c1(X4)n

n!
=

1
(2π)n

∫
X4

ωn

n!
. (8)
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Limit behavior of metrics in Kähler–Einstein problem

On the other hand, Ric(ω) is the curvature form of the Hermitian line bundle K−1
M with

Hermitian metric determined by the volume form ωn. Note that we can take s̃0 = z1(∂/∂z1) ∧
· · · ∧ zn(∂/∂zn). Since ∂/∂ log zi = (∂/∂ log |zi| −

√
−1 ∂/∂θi)/2 = ∂/∂ log |zi|2 = ∂/∂xi when

acting on any (S1)n-invariant function on (C∗)n, we have

‖s̃0‖2ωn =
∥∥∥∥z1

∂

∂z1
∧ · · · ∧ zn

∂

∂zn

∥∥∥∥2

ωn
= det

(
∂2ũ0

∂ log zi ∂ log zj

)
= det

(
∂2ũ0

∂ log |zi|2 ∂ log |zj |2

)
= det(ũ0,ij).

It is easy to see from the definition of hω in (1) and the normalization condition (8) that

ehωωn/n!
(dz1/z1) ∧ (dz̄1/z̄1) ∧ · · · ∧ (dzn/zn) ∧ (dz̄n/z̄n)

= ehω‖s̃0‖2ωn = ‖s̃0‖2FS = e−ũ0 . (9)

Remark 1. We use only vertex lattice points because, roughly speaking, later in Lemma 5
vertex lattice points alone help us to determine which sections become degenerate when doing a
biholomorphic transformation and taking the limit; see Remark 3. We expect results similar to
Theorem 1.2 to hold for general toric reference Kähler metrics.

So, divide both sides of (∗t) by the meromorphic volume form n! ((dz1/z1) ∧ (dz̄1/z̄1) ∧ · · · ∧
(dzn/zn) ∧ (dz̄n/z̄n)), We can rewrite the equations (∗t) as a family of real Monge–Ampère
equations on Rn,

det(uij) = e−(1−t)ũ0−tu, (∗∗t)

where u is the potential for ω +
√
−1 ∂∂̄φ on (C∗)n and is related to φ in (∗t) by

φ= u− ũ0.

For simplicity, let

wt(x) = tu(x) + (1− t)ũ0.

Then wt is also a proper convex function on Rn satisfying Dwt(Rn) =4. Thus it has a unique
absolute minimum at a point xt ∈ Rn. Let

mt = inf{wt(x) : x ∈ Rn}= wt(xt).

Then the main estimate of Wang and Zhu [WZ04] is as follows.

Proposition 2 ([WZ04]; see also [Don08]). (i) There exists a constant C, independent of
t < R(X4), such that

|mt|<C.

(ii) There exists κ > 0 and a constant C, both independent of t < R(X4), such that

wt > κ|x− xt| − C. (10)

Proposition 3 [WZ04]. Existence of a uniform bound on |xt|, for any 0 6 t6 t0, is equivalent
to being able to solve (∗∗t) or, equivalently, (∗t) for t up to t0. More precisely, this condition is
equivalent to obtaining uniform C0 estimates for the solution φt in (∗t) for t ∈ [0, t0].
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By the above proposition, we have the following lemma.

Lemma 2. If R(X4)< 1, then there exists a subsequence {xti} of {xt} such that

lim
ti→R(X4)

|xti |= +∞.

By the properness of ũ0 and the compactness of 4, we immediately get the following result.

Lemma 3. If R(X4)< 1, then there exists a subsequence of {xti}, which we still denote by
{xti}, and y∞ ∈ ∂4 such that

lim
ti→R(X4)

Dũ0(xti) = y∞. (11)

To determine R(X4), we use the key identity

1
Vol(4)

∫
Rn
Dũ0e

−w dx=− t

1− t
Pc. (12)

Remark 2. This identity is a toric form of a general formula for solutions of equations (∗t):

− 1
V

∫
X

divΩ(v)ωnt =
t

1− t
F2πc1(X)(v).

Here Ω = ehωωn, v is any holomorphic vector field, divΩ(v) = LvΩ/Ω is the divergence of v with
respect to Ω, and

F2πc1(X)(v) =
1
V

∫
X
v(hω)ωn

is the Futaki invariant in class 2πc1(X) (see [Fut83]).

By the uniform linear growth of wt in (10), the left-hand side of (12) is roughly Dũ0(xt). As
long as this is bounded away from the boundary of the polytope, we can control the point xt.
So, as t goes to R(X4), since xt goes to infinity in Rn, the left-hand side goes to a point on
∂4, which is roughly y∞. To make a precise statement, assume that the reflexive polytope 4 is
defined by inequalities

λr(y) >−1, r = 1, . . . , K, (13)
where the λr(y) = 〈vr, y〉 are fixed linear functions. We also identify the minimal face of 4 where
y∞ lies:

λr(y∞) = −1 for r = 1, . . . , K0, (14)
λr(y∞) > −1 for r =K0 + 1, . . . , K.

Then Theorem 1.1 follows from the next proposition.

Proposition 4 [Li11]. If Pc 6=O, then

−
R(X4)

1−R(X4)
Pc ∈ ∂4.

More precisely,

λr

(
−

R(X4)
1−R(X4)

Pc

)
>−1, (15)

with equality holding if and only if r = 1, . . . , K0. So −(R(X4)/(1−R(X4)))Pc and y∞ lie on
the same faces defined by (14).
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Limit behavior of metrics in Kähler–Einstein problem

3. Discussion of conic-type limit metrics

3.1 Equation for the limit metric
We first fix the reference metric to be the Fubini–Study metric

ω =
√
−1 ∂∂̄ũ0 =

√
−1 ∂∂̄ log

(∑
α

|sα|2
)
.

We seek the limit of ωt as t→R(X) under a suitable transformation, where

ωt = ω +
√
−1 ∂∂̄φt

is the solution to the continuity equation (∗t). We use notation from the previous section. So, in
toric coordinates,

ωt =
∂2u

∂ log zi ∂ log zj
d log zi ∧ d log zj =−

√
−1 uij dxi dθj ,

where u= ut is the solution to the real Monge–Ampère equation (∗∗t).
Let σ = σt be the holomorphic transformation given by

σt(x) = x+ xt.

Assume xt = (x1
t , . . . , x

n
t ); then in complex coordinates we have

σt({zi}) = {exit/2zi}.

By the analysis of the previous section, we perform the following transformation:

U(x) = σ∗t u(x)− u(xt) = u(x+ xt)− u(xt),
Ũt(x) = σ∗t ũ0(x)− ũ0(xt) = ũ0(x+ xt)− ũ0(xt). (16)

Note that wt(x) = tu+ (1− t)ũ0. Then U = Ut(x) satisfies the Monge–Ampère equation

det(Uij) = e−tU−(1−t)Ũ−w(xt). (∗∗′t)

By Proposition 4, we know that Q=−(R(X4)/(1−R(X4)))Pc lies on the boundary of 4.
Let F be the minimal face of 4 which contains Q. Now we make the following observation.

Proposition 5. There is a subsequence ti→R(X) such that the Ũti converge locally uniformly
to a convex function of the form

Ũ∞ := log
(∑
pα∈F

bαe
〈pα,x〉

)
, (17)

where 0< bα 6 1 are some constants. For simplicity, we will use
∑

α
′ =
∑

pα∈F to denote the
sum over all the vertex lattice points contained in F .

Proof. By (7) and (16), we have

Ũ(x) = log
(∑

α

e〈pα,x+xt〉
)
− log

(∑
α

e〈pα,xt〉
)

= log
(∑

b(pα, t)e〈pα,x〉
)
, (18)

where

b(pα, t) =
e〈pα,xt〉∑
β e
〈pβ ,xt〉

.
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Since 0< b(pα, t)< 1, we can assume that there is a subsequence ti→R(X) such that for any
vertex lattice point pα,

lim
t→R(X)

b(pα, t) = bα. (19)

We need to prove that bα 6= 0 if and only if pα ∈ F . To do this, we first note that

Dũ0(xt) =
∑

α pαe
〈pα,xt〉∑

β e
〈pβ ,xt〉

=
∑
α

b(pα, t)pα. (20)

By Lemma 3, Dũ0(xt)→ y∞. So, upon letting t→R(X) in (20) and using (19), we get

y∞ =
∑
α

bαpα.

By Proposition 4, y∞ ∈ ∂4 lies on the same faces as Q does, i.e. F is also the minimal face
containing y∞, so we must have bα = 0 if pα /∈ F . Therefore we only need to show that if pα ∈ F ,
then bα 6= 0.

If dim F = k, then there exist k + 1 vertex lattice points {p1, . . . , pk+1} of F such that the
corresponding coefficients bi, i= 1, . . . , k + 1, are nonzero, i.e. limt→R(X) b(pi, t) = bi > 0.

Remark 3. Here is why we need to assume that the pα are all vertex lattice points.

Let p be any vertex point of F ; then

p=
k+1∑
i=1

cipi where
k+1∑
i=1

ci = 1.

It follows that

b(p, t) =
e〈

∑k+1
i=1 cipi,xt〉∑
β e
〈pβ ,xt〉

=
k+1∏
i=1

(
e〈pi,xt〉∑
β e
〈pβ ,xt〉

)ci
=
k+1∏
i=1

b(pi, t)ci
t→R(X)−−−−−−→

k+1∏
i=1

bcii > 0. 2

We can now state a real version of Theorem 1.2.

Theorem 3.1. There is a subsequence ti→R(X) such that the Uti(x) converge to a smooth
entire solution of the equation

det(Uij) = e−R(X)U(x)−(1−R(X))Ũ∞(x)−c (∗∗′∞)

on Rn, where c= limti→R(X) w(xti) is some constant.

3.2 Transformation to a complex Monge–Ampère equation
The proof of Theorem 3.1 could be done using the theory of real Monge–Ampère equations,
but here we take a different approach and rewrite (∗∗′t) as a family of complex Monge–Ampère
equations. This will allow us to apply some standard estimates from the theory of complex
Monge–Ampère equations.

We rewrite the formula for Ũ(x) in (18) as

eŨ =
∑

α b(pα, t)e
〈pα,x〉∑

β e
〈pβ ,x〉

∑
β

e〈pβ ,x〉 =
∑

α b(pα, t)|sα|2∑
β |sβ|2

e−C̃+ũ0 =
(∑

α

b(pα, t)‖sα‖2
)
eũ0 , (21)

where sα is the holomorphic section of K−1
X corresponding to the lattice point pα. Here and

in what follows, ‖ · ‖ := ‖ · ‖FS is the Fubini–Study metric on K−1
X . Recall that, by (5), for any
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Limit behavior of metrics in Kähler–Einstein problem

section s we have

‖s‖2FS = e−C̃
|s|2∑
β |sβ|2

.

The second equality in (21) holds because e〈pα,x〉 = |sα/s̃0|2 by (6). We also used the definition
of ũ0 in (7).

Equation (∗∗′t) can then be rewritten as

det(Uij) = e−tψe−ũ0

(∑
α

b(pα, t)‖sα‖2
)−(1−t)

e−w(xt)

where
ψ = ψt = U − ũ0. (22)

By (4) and (9), (∗∗′t) can finally be written as the complex Monge–Ampère equation

(ω +
√
−1 ∂∂̄ψ)n = e−tψ

(∑
α

b(pα, t)‖sα‖2
)−(1−t)

ehω−w(xt)ωn. (∗∗∗t)

Similarly, for Ũ∞ in (17) we write

eŨ∞ =
∑

α
′bαe

〈pα,x〉∑
β e
〈pβ ,x〉

∑
β

e〈pβ ,x〉 =
(∑

α

′bα‖sα‖2
)
eũ0 ,

and the limit equation (∗∗′∞) becomes:

(ω +
√
−1 ∂∂̄ψ)n = e−R(X)ψ

(∑
α

′bα‖sα‖2
)−(1−R(X))

ehω−cωn. (∗∗∗∞)

Therefore, we reformulate Theorem 3.1 as Theorem 1.2 stated in the introduction.

3.3 Discussion of the conic behavior of limit metrics
For any lattice point pα ∈4, let Dpα = {sα = 0} be the zero divisor of the corresponding
holomorphic section sα. By toric geometry, we have

Dpα = {sα = 0}=
K∑
i=1

(〈pα, vi〉+ 1)Di.

Here vi is the primitive inward normal vector to the ith codimension-one face, and Di is the
toric divisor corresponding to this face.

Recall that F is the minimal face containing Q. Let {pFk } be all the vertex lattice points
of F . They correspond to a sublinear system LF of |K−1

X |. The base locus of LF is given by the
schematic intersection

Bs(LF ) =
⋂
k

DpF
k
.

The fixed components in Bs(LF ) are

DF =
r∑
i=1

aiDi, (23)

where
N 3 ai = 1 + min

k
〈pFk , vi〉> 0 for i= 1, . . . , r.
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For i= 1, . . . , K, we always have ai = 1 + mink〈pFk , vi〉> 0. In (23), the coefficients ai are the
ones with ai 6= 0.

Pick any generic point p on DF ; then p lies on only one component of DF . Without loss of
generality, assume p ∈D1, and in a neighborhood Up of p choose local coordinates {zi} such that
D1 is defined by z1 = 0. Then the singular Monge–Ampère equation (2) locally becomes

(ω +
√
−1 ∂∂̄ψ)n = |z1|−2a1(1−R(X))Ω, (24)

with Ω being a nonvanishing smooth volume form in Up.
So, locally around a generic point p, we have

Ric(ωψ) = 2π(1−R(X))a1({z1 = 0}) + Ric(Ω), (25)

where {z1 = 0} is the current of integration along divisor {z1 = 0}.
Note that we have the following singular conic metric in Up:

η =
dz1 ∧ dz̄1

|z1|2α
+

n∑
i=2

dzi ∧ dz̄i.

This metric η has conic singularity along {z1 = 0} with conic angle 2π(1− α), and it satisfies

ηn

n!
=
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

|z1|2α
and Ric(η) = 2πα({z1 = 0}).

Comparing this with (24) and (25), we would expect the limit Kähler metric around p to have
conic singularity along D1 with conic angle equal to 2π(1− (1−R(X))a1), and we would expect
the same to hold for generic points on Di, i.e. the limit metric should have conic singularity
along Di of conic angle equal to 2π(1− (1−R(X))ai).

Remark 4. At present, it seems difficult to speculate on the behavior of limit metrics around
higher-codimensional strata of DF . See the discussion in Example 2. We hope to return to this
problem in the future.

4. Proof of Theorem 1.2

We are now in the general setting of complex Monge–Ampère equations: (∗∗∗∞) is a
complex Monge–Ampère equation with poles in the right-hand side; the (∗∗∗t) can be seen
as regularizations of (∗∗∗∞). We ask whether the solutions of (∗∗∗t) converge to a solution
of (∗∗∗∞). Beginning with Yau’s work [Yau78a], similar problems have been considered by many
people. Owing to the considerable progress made by Ko lodziej [Ko l98], complex Monge–Ampère
equations can be solved with very general, usually singular, right-hand sides. Ko lodziej’s result
was also proved by first regularizing the singular Monge–Ampère equation and then taking the
limit back to get a solution of the original equation.

We will derive several a priori estimates to prove Theorem 1.2. For the C0 estimate, the
upper bound follows from how we transform the potential function in (16). The lower bound
follows from a Harnack estimate for the transformed potential function, which we will prove using
Tian’s argument from [Tia89]. For the proofs of partial C2 estimates, higher-order estimates and
convergence of solutions, we will use arguments similar to those used by Ruan and Zhang [RZ11]
and Demailly and Pali [DP10].
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4.1 C0 estimate

We first derive the C0 estimate for ψ = U − ũ0. Let v̄ = v̄(x) be a piecewise linear function defined
by

v̄(x) = max
pα
〈pα, x〉.

Then u0 is asymptotic to v̄ and it is easy to see that |v̄ − ũ0|6 C. So we only need to show that
|U(x)− v̄(x)|6 C. Here and in the following, C is some constant independent of t ∈ [0, R(X)).

One side is easy. Since DU(Rn) =4 and U(0) = 0, for any x ∈ Rn we have that U(x) =
U(x)− U(0) =DU(ξ) · x6 v̄(x) where ξ is some point between 0 and x. So

ψ = (U − v̄) + (v̄ − ũ0) 6 C.

To prove the lower bound for ψ, we only need to prove a Harnack inequality.

Proposition 6. For ψ and t as above, we have

sup
X

(−ψ) 6 n sup
X

ψ + C(n)t−1. (26)

For this, we use the same idea of proof as in [Tia89]. First, we rewrite (∗∗∗t) as

(ω +
√
−1 ∂∂̄ψ)n = e−tψ+F−Btωn, (27)

where

Bt = (1− t) log
(∑

α

b(pα, t)‖sα‖2
)
, F = hω − w(xt).

Now consider a new continuous family of equations

(ω +
√
−1 ∂∂̄θs)n = e−sθs+F−Btωn. (27s)

Define S = {s′ ∈ [0, t] : (27s) is solvable for s ∈ [s′, t]}. We want to prove that S = [0, t]. Since
(27) has a solution ψ, we have that t ∈ S and so S is nonempty. It is therefore sufficient to show
that S is both open and closed.

For openness, we begin by estimating the first eigenvalue of the metric gθ associated with the
Kähler form ωθ = ω +

√
−1 ∂∂̄θ for the solution θ of (27s):

Ric(ωθ) = s
√
−1 ∂∂̄θ −

√
−1 ∂∂̄F +

√
−1 ∂∂̄Bt + Ric(ω)

= s
√
−1 ∂∂̄θ + ω + (1− t)(σ∗ω − ω) = s(

√
−1 ∂∂̄θ + ω) + (t− s)ω + (1− t)σ∗ω

= sωθ + (t− s)ω + (1− t)σ∗ω. (28)

In particular, Ric(ωθ)> sωθ. So, by Bochner’s formula, the first nonzero eigenvalue λ1(gθs) is
greater than s. This gives invertibility of the linearization operator (−∆s)− s of equation (27s),
and the openness of the solution set S follows.

To prove closedness, we need to derive an a priori estimate. First, define the functionals

I(θs) =
1
V

∫
X
θs(ωn − ωnθs), J(θs) =

∫ 1

0

I(xθs)
x

dx.
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Then we have the following estimates.

Lemma 4 [BM87, Tia89]. For the functionals I(θs) and J(θs) introduced above, the following
estimates hold:

(i) (n+ 1)J(θs)/n6 I(θs) 6 (n+ 1)J(θs); (29)

(ii)
d

ds
(I(θs)− J(θs)) =− 1

V

∫
X
θs(∆sθ̇s)ωnθs .

Using λ1(gθs)> s, Lemma 4(ii) gives the following consequence.

Lemma 5 [BM87, Tia87]. The difference I(θs)− J(θs) is monotonically increasing.

Let us recall Bando and Mabuchi’s estimate for Green functions.

Proposition 7 [BM87]. For every m-dimensional compact Riemannian manifold (X, g) with
diam(X, g)2Ric(g) >−(m− 1)α2, there exists a positive constant γ = γ(m, α) such that

Gg(x, y) >−γ(m, α) diam(X, g)2/Vg. (30)

Here the Green function Gg(x, y) is normalized to satisfy∫
M
Gg(x, y) dVg(x) = 0.

Bando and Mabuchi used this estimate to prove the key estimate below.

Proposition 8 [BM87]. Let

Hs = {θ ∈ C∞(X) : ωθ = ω +
√
−1 ∂∂̄θ > 0, Ric(ωθ) > sωθ}.

Then, for any θ ∈Hs, we have

(i) sup
X

(−θ) 6
1
V

∫
X

(−θ)ωnθ + C(n)s−1, (31)

(ii) Osc(θ) 6 I(θ) + C(n)s−1. (32)

Proposition 9. Equation (27s) is solvable for 0 6 s6 t.

Proof. From (27s), there exists xs ∈X such that −sθs(xs) + F (xs)−Bt(xs) = 0, so |θs(xs)|=
|F −Bt|(xs)/s6 Cts

−1. By (32) and the fact that I 6 (n+ 1)(I − J) (from (29)), we get that

sup
X

θs 6 Osc(θ) + θ(xs) 6 (n+ 1)(I − J)(θ) + C(n)s−1 + Cts
−1.

By Lemma 5, for any δ > 0 we get a uniform estimate for supX θs and hence also for infX θs, when
s ∈ [δ, t]. So ‖θs‖C0 6 Cδ−1. We can use Yau’s estimate to get C2 and higher-order estimates.
Thus we can solve (27s) for s ∈ [δ, t], for any δ > 0.

On the other hand, by Yau’s theorem, we can solve (27s) for s= 0. Moreover, by the implicit
function theorem, we can solve (27s) for s ∈ [0, τ) for τ sufficiently small. We can pick δ such
that δ < τ , so we get a solution of (27s) for s ∈ [δ, τ) in two ways. These two results must
coincide by the recent work of Berndtsson [Ber11] on the uniqueness of solutions for the twisted
Kähler–Einstein equation (28). Thus the proof is complete. 2
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One can then use the same argument as in [Tia87, Tia89] to prove the following proposition.

Proposition 10 [Tia89]. For the solution θ to (27s), we have

− 1
V

∫
X
θωnθ 6

n

V

∫
X
θωn 6 n sup

X
θ. (33)

Proof. First, by taking derivatives of equation (27s), we get

∆sθ̇ =−θ − sθ̇.

So

d

ds
(I − J)(θs) = −

∫
X
θ
d

ds
ωnθ =− d

ds

(∫
X
θωnθ

)
+
∫
X
θ̇ωnθ

= − d

ds

(∫
X
θωnθ

)
− 1
s

∫
X
θωnθ =−1

s

d

ds

(
s

∫
X
θωnθ

)
and hence

d

ds
(s(I − J)(θs))− (I − J)(θs) =− d

ds

(
s

∫
X
θωnθ

)
. (34)

By Proposition 9, θs can be solved for s ∈ [0, t], and θt = ψ = ψt, so we can integrate to get

t(I − J)(ψ)−
∫ t

0
(I − J)(θs) ds=−t

∫
X
ψ ωnψ.

Divide both sides by t to get

(I − J)(ψ)− 1
t

∫ t

0
(I − J)(θs) ds=−

∫
X
ψ ωnψ.

By Lemma 4(i), we obtain

n

n+ 1

∫
X
ψ(ωn − ωnψ) =

n

n+ 1
I(ψ) >−

∫
X
ψ ωnψ.

Equation (33) follows from this inequality immediately. 2

Combining (33) with Bando and Mabuchi’s estimate (31) when s= t, we then prove the
Harnack estimate (26). So we can derive the lower bound on ψ from the upper bound on ψ, and
hence the C0 estimate is obtained.

Remark 5. Professor Jian Song showed me that, by modifying the above argument, one can prove
Harnack’s inequality using a weaker statement than the one in Proposition 9, namely that (27s)
can be solved for s ∈ (0, t]. In this way, one can avoid having to use Berndtsson’s uniqueness
result. We present his nice argument here for comparison. First, by the concavity of the log
function and using (27)s, we have

1
V

(
−s
∫
X
θsω

n +
∫
X

(F −Bt)ωn
)

6 log
(

1
V

∫
X
e−sθs+F−Btωn

)
= log

(
1
V

∫
X
ωnθS

)
= 0.

So

− s
∫
X
θsω

n 6
∫
X

(Bt − F )ωn 6 C, (35)
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where C is a constant independent of both s and t. Now we integrate (34) from any s to t, to get

t(I − J)(ψ)− s(I − J)(θs)−
∫ t

s
(I − J)(θs) ds=−t

∫
X
ψωnψ + s

∫
X
θs(ωnθs − ω

n) + s

∫
X
θsω

n.

Using positivity of I − J , (35), and Lemmas 4 and 5, we get

t(I − J)(ψ) > −t
∫
X
ψωnψ − sI(θs)− C

> −t
∫
X
ψωnψ − s(n+ 1)(I − J)(θs)− C

> −t
∫
X
ψωnψ − s(n+ 1)(I − J)(ψ)− C.

Now, letting s→ 0, we obtain

(I − J)(ψ) >−
∫
X
ψωnψ −

C

t
,

and we can argue as before to get the Harnack inequality.

4.2 Partial C2 estimate
Equation (∗t) is equivalent to

Ric(ωφ) = tωφ + (1− t)ω.
From our transformation (16), we get

Ric(ωψ) = tωψ + (1− t)σ∗ω. (36)

In particular, Ric(ωψ)> tωψ. We will use an argument similar to that in [RZ11, proof of
Lemma 5.2].

Let f = trωψω and let ∆′ be the complex Laplacian associated with the Kähler metric ωψ.
As in [Yau78b], we can calculate

∆′f = g′il̄g′kj̄R′kl̄gij̄ + g′ij̄g′kl̄Tαi,kT
β

j̄,l̄
gαβ̄ − g′ij̄g′kl̄Sij̄kl̄.

Here the tensor Tαi,j = Γ̃αij − Γαij is the difference of the Levi-Civita connections Γ̃ and Γ associated
with gω and g′ = gωψ , respectively, R′

kj̄
is the Ricci curvature of ωψ, and Sij̄kl̄ is the curvature of

the reference metric ω. Let ∇′ be the gradient operator associated with gωψ ; then

∆′ log f =
∆′f
f
−
|∇′f |2ωψ
f2

=
g′il̄g′kj̄R′

kl̄
gij̄

f
−
g′ij̄g′kl̄Sij̄kl̄

f
+
g′ij̄g′kl̄Tαi,kT

β

j̄,l̄
gαβ̄

f
−
g′pq̄g′ij̄g′kl̄TαipT

β̄

l̄q̄
gαj̄gkβ̄

f2

=
∑

i µ
−2
i Rīi∑
i µ
−1
i

−
∑

i,j µ
−1
i µ−1

j Sīijj̄∑
i µ
−1
i

+

∑
i,k,α µ

−1
i µ−1

k |T
α
ik|2∑

i µ
−1
i

−
∑

p µ
−1
p |
∑

i µ
−1
i T iip|2

(
∑

i µ
−1
i )2

> t− C
∑
i

µ−1
i = t− Cf. (37)

In the third equality in (37), for any fixed point P ∈X we choose a coordinate near P such that
gij̄ = δij and ∂kgij̄ = 0. We can assume that g′ = gωψ is also diagonalized so that

g′ij̄ = µiδij with µi = 1 + ψīi.
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For the last inequality in (37), we used Ric(ωψ)> tωψ and the inequality∑
p

µ−1
p

∣∣∣∑
i

µ−1
i T iip

∣∣∣2 =
∑
p

µ−1
p

∣∣∣∑
i

µ
−1/2
i T iipµ

−1/2
i

∣∣∣2
6

(∑
p,i

µ−1
p µ−1

i |T
i
ip|2
)(∑

i

µ−1
i

)

6

(∑
p,i,α

µ−1
p µ−1

i |T
α
ip|2
)(∑

i

µ−1
i

)
.

So

∆′(log f − λψ) > t− Cf − λ trωψ(ωψ − ω) = (λ− C)f − (λn− t) = C1f − C2

for some constants C1 > 0 and C2 > 0, if we choose λ to be sufficiently large. So at the maximum
point P of the function log f − λψ, we have

0 > ∆′(log f − λψ)(P ) > C1f(P )− C2.

Therefore,

f(P ) = trωψ(ω)(P ) 6 C3.

So, for any point x ∈X,

trωψω(x) 6 C3e
λ(ψ(x)−ψ(P )) 6 C3e

λ(osc(ψ)).

By the C0 estimate for ψ, we get the estimate trωψω 6 C4. Hence ωψ > C4ω, i.e. µi > C4.
Now, by (27), ∏

j

µj =
ωnψ
ωn

= e−tψ+F−B

with F = h− w(xt) and B = (1− t) log
(∑

α b(pα, t)‖sα‖2
)
. So, by the C0 estimate of ψ, we get

µi =

∏
j µj∏
j 6=i µj

6
e−tψ+F−B

Cn−1
4

6 C5e
−B.

In conclusion, we have the partial C2 estimate

C4ω 6 ωψ 6 C5e
−Bω. (38)

Remark 6. The partial C2 upper bound ωψ 6 C5e
−Bω can also be proved by the maximum

principle. In fact, let

Λ = log(n+ ∆ψ)− λψ +B, (39)

where ∆ = ∆ω is the complex Laplacian with respect to the reference metric ω. Then, by standard
calculations as in Yau [Yau78a], we obtain

∆′Λ >

(
inf
i6=j

Sīijj̄ + λ

)∑
i

1
1 + ψīi

+
(

∆F −∆B − t∆ψ − n2 inf
i6=j

Sīijj̄

)
1

n+ ∆ψ
− λn+ ∆′B

=
(

inf
i6=j

Sīijj̄ + λ

)∑
i

1
1 + ψīi

+
(

∆F + nt− n2 inf
i6=j

Sīijj̄

)
1

n+ ∆ψ

+
∑
i

Bīi

(
1

1 + ψīi
− 1
n+ ∆ψ

)
− (λn+ t). (40)
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Since 1/(n+ ∆ψ) 6 1/(1 + ψīi) for each i, we have 1/(n+ ∆ψ) 6 (1/n)
∑

i 1/(1 + ψīi). So
the second term on the right of (40) is bounded below by −C0

∑
i 1/(1 + ψīi) for some positive

constant C0 > 0.
For the third term, observe from (16) and (21) that

√
−1 ∂∂̄B = (1− t)(σ∗ω − ω) >−(1− t)ω.

So, since again 1/(n+ ∆ψ) 6 1/(1 + ψīi), we have that

Bīi

(
1

1 + ψīi
− 1
n+ ∆ψ

)
>−(1− t)

(
1

1 + ψīi
− 1
n+ ∆ψ

)
>−(1− t) 1

1 + ψīi
.

By the above discussion, at the maximal point Pt of Λ we have

0 > ∆′Λ >

(
λ+ inf

i6=j
Sīijj̄ − C0 − (1− t)

)∑
i

1
1 + ψīi

− (λn+ t) = C2

∑
i

1
1 + ψīi

− C3 (41)

for some constants C2 > 0 and C3 > 0, upon choosing λ sufficiently large.
Now we use the following inequality from [Yau78a]:∑

i

1
1 + ψīi

>

(∑
i(1 + ψīi)∏
j(1 + ψjj̄)

)1/(n−1)

= (n+ ∆ψ)1/(n−1) exp
(
B − F + tψ

n− 1

)
= exp

(
Λ

n− 1

)
exp
(
−F + (t+ λ)ψ

n− 1

)
. (42)

By (41) and (42), we get the bound

eΛ(Pt) 6 C4e
−(t+λ)ψ(Pt).

So for any x ∈X =X4 we have the estimate

(n+ ∆ψ)e−λψeB 6 eΛ(Pt) 6 C4e
−(t+λ)ψ(Pt).

Since we have a C0 estimate for ψ, we get a partial C2 upper estimate

(n+ ∆ψ)(x) 6 C4e
−(t+λ)ψ(Pt)eλψ(x)e−B 6 C5

(∑
α

b(pα, t)‖sα‖2
)−(1−t)

. (43)

In particular,
1 + ψīi 6 C5e

−B,

which is same as ωψ 6 C5e
−B.

4.3 Higher-order estimates and completion of the proof of Theorem 1.2
For any compact set K ⊂X\D, we first get the gradient estimate by an interpolation inequality:

max
K
|∇ψ|6 CK

(
max
K

∆ψ + max
K
|ψ|
)
. (44)

Next, by the complex version of Evans–Krylov theory [Tia88], we have a uniform C2,K > 0 such
that ‖ψ‖C2,α(K) 6 C2,K for some α ∈ (0, 1). Now take the derivative of the equation

log det(gij̄ + ψij̄) = log det(gij̄)− tψ + F −B

to get
g′ij̄ψij̄,k =−tψk + Fk −Bk + gij̄gij̄,k − g′ij̄gij̄,k. (45)
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By (38), (44) and the inequality ‖ψ‖C2,α(K) 6 C2,K , (45) is a linear elliptic equation with
Cα coefficients. By Schauder’s estimate, we get ‖ψk‖C2,α 6 C, i.e. ‖ψ‖C3,α 6 C. Then we can
iterate in (45) to get ‖ψ‖Cr,α 6 C for any r ∈ N. So we see that (ψ = ψ(t))t<R(X) ⊂ C∞(X\D)
is precompact in the smooth topology.

Now we can finish the proof of Theorem 1.2 by using an argument from [DP10].

Proof of Theorem 1.2. The uniform estimate ‖ψ‖L∞ implies the existence of a L1-convergent
sequence (ψj = ψtj )j , tj ↑R(X), with limit ψ∞ ∈ PSH(ω) ∩ L∞(X). We can assume that a.e.-
convergence holds too. The precompactness of the family (ψj)⊂ C∞(X\D) in the smooth
topology implies the convergence of the limits over X\D:

(ω +
√
−1 ∂∂̄ψ∞)n = lim

tj→R(X)
(ω +

√
−1 ∂∂̄ψj)n

= lim
tj→R(X)

e−tjψtj
(∑

α

b(pα, tj)‖sα‖2
)−(1−tj)

ehω−w(xtj )ωn

= e−R(X)ψ∞

(∑
α

′bα‖sα‖2
)−(1−R(X))

ehω−cωn.

The fact that ψ∞ is a bounded potential implies that the global complex Monge–Ampère
measure (ω +

√
−1 ∂∂̄ψ∞)n does not carry any mass on complex analytic sets. This follows from

pluripotential theory [Kli91] because complex analytic sets are pluripolar. We conclude that ψ∞
is a global bounded solution of the complex Monge–Ampère equation (∗∗∗∞), which belongs to
the class PSH(ω) ∩ L∞(X) ∩ C∞(X\D). 2

5. Example

Example 1. X4 = BlpPn. The polytope 4 is defined by

xi >−1 for i= 1, . . . , n,
∑
i

xi >−1 and −
∑
i

xi >−1.

Using the symmetry of the polytope, we can calculate that

Vol(4) =
1
n!

((n+ 1)n − (n− 1)n),

Pc =
(
xi =

2(n− 1)n

(n+ 1)((n+ 1)n − (n− 1)n)

)
, Q=

(
xi =− 1

n

)
.

So

R(X4) =
|OQ|
|PcQ|

=
(

1 +
|OPc|
|OQ|

)−1

=
(n+ 1)((n+ 1)n − (n− 1)n)
(n+ 1)(n+1) + (n− 1)(n+1)

.

Here F is the (n− 1)-dimensional simplex with vertices

Pi = (−1, . . . ,
ith place
n− 2 , . . . ,−1), i= 1, . . . , n.

Let ej be the jth coordinate unit vector; then 〈Pi, ej〉=−1 for i 6= j, 〈Pi, ei〉= n− 2,
and 〈Pi,±(1, . . . , 1)〉=∓1. So Pi corresponds to a holomorphic section si with {si = 0}=
(n− 1)Di + 2D∞, where Di is the toric divisor corresponding to the codimension-one face with
inward normal ei and D∞ is the toric divisor corresponding to the simplex face with vertices
Qi = (−1, . . . , n, . . . ,−1).
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Figure 2. Blp,qP2.

It is easy to see that Bs(LF ) = 2D∞. If we view X4 as the projective compactification of
O(−1)→ Pn−1, then D∞ is just the divisor added at infinity. So the limit metric should have
conic singularity along D∞ with conic angle

θ = 2π × (1− (1−R(X))× 2) = 2π
(n+ 1)n+1 − (3n+ 1)(n− 1)n

(n+ 1)n+1 + (n− 1)n+1
.

In particular, if n= 2, i.e. X4 = BlpP2, which is the case of Figure 1 in the introduction, then

R(X4) = 6
7 , θ = 2π × 5

7 .

This agrees with the results of [Szé11, SZ11]. In fact, the results in [Szé11, SZ11] can easily be
generalized to BlpPn, giving the same results as obtained here.

Example 2. X4 = Blp,qP2, Pc = 2
7(−1

3 ,−
1
3) and −21

4 Pc ∈ ∂4, so R(X4) = 21
25 . The polytope

determining Blp,qP2 is depicted in Figure 2.
Here F =Q1Q2, where Q1 corresponds to the holomorphic section s1 with {s1 = 0}=

2D1 +D2 and Q2 corresponds to s2 with {s2 = 0}=D1 + 2D2. The fixed components in Bs(LF )
are D1 +D2, where D1 and D2 are the divisors corresponding to the faces Q4Q3 and Q4Q5,
respectively. So at a generic point of D1 (or D2), the conic angle along D1 (or D2) should be

2π × (1− (1− 21
25)× 1) = 2π × 21

25 .

Around the point p=D1 ∩D2, if we choose local coordinates near p such that D1 = {z1 = 0}
and D2 = {z2 = 0}, the ideal defining the base locus would be (z2

1z2, z1z
2
2) = (z1)(z2)(z1, z2).

The limit singular Monge–Ampère equation locally looks like

(ω +
√
−1 ∂∂̄ψ)n =

Ω
|z1|2α|z2|2α(|z1|2 + |z2|2)α

,

where Ω is a nonvanishing smooth volume form near p and α= 1−R(X) = 4/25. The author
does not yet know of a candidate singular Kähler metric as the local model. See Remark 4.
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