Appendix A

Reference formulas

A.1 Dirac matrix element tables

Tables A.1 and A.2 first appeared in Lepage and Brodsky (1980). Following the original authors
of these tables we use the notation

PLxpL=p'p?=pp". (A.1)
Note that €' = —¢?! =1, €!! = €2 = 0. The spinors in the tables are defined in Egs. (1.50)
and (1.51).
The following formulas will be useful in relating other matrix elements to those tabulated:
o (P)Y" 06 (p) = il (P)y uo (P, (A2)
0o (P Y ¥V e (P) = e (P)y"y" v U (P, (A3)
U5/ (P" )6 (P) = —lis (Pl (). (A4)

These formulas allow one to obtain matrix elements constructed only from v-spinors using
Table A.1 for matrix elements constructed solely from u-spinors.
For any Dirac spinors v and  and a 4 x 4 matrix I, the following is true:

(¥Tn)" = ay°Tlyy. (A5)
This allows one to construct matrix elements of the type
it (P)TVor(p)) = [0 (P )y Ty us (p)T* (A.6)

from those tabulated in Table A.2. As
Py =t (A7)

in the case I' = y#, Eq. (A.6) gives

*

iio(P)y"ve (p") = (T (P)y"us(p)) (A8)

A.2 Some useful integrals

Below we list several integrals used throughout the book. We leave their derivation as an exercise
for the reader. The Green function of the Laplace equation in two dimensions is

2
o 1
/ R T TR S (A.9)

qi .XJ_A
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Table A.1. Dirac matrix elements constructed from u-spinors only. Table reprinted
with permission from Lepage and Brodsky (1980). Copyright 1980 by the American

Physical Society.

Matrix element Value

g (p) Lus(p) 98
oo’

P+t
b_lo/(P,)y y+y7uo(p)
NN
ﬁo’(P,)y,y+ i Ma(P)
NN
ﬁa’(p,)yier ,MU(P)
NN
ﬁa’(p/) +]/ Ma(P)

500’W(ﬁl : 1_71 —iopy X 1_53_ + mz)

2m . .
—50,7GUW [(p/] + lO'pa) — (p1 + lo‘pz)]

T
5 ,<pL ioeVpy
oo

pi + iaeijpi
Pt

P+

+ + . .
—85_cOM <u> 6 + i08'?)

p/+p+

p+ + p/+ pll + l-apfz pl +iO’p2
(Saa’mT — 85,00 T+ - T
p'p p 14
4120’([7/))/7”0(17)
N
" jeligp'! dm . .
Sgor 4 PLTIEOPL s T 4 iosi?)
Pt ’ Pt
i +ieliop! 4m . 4
Soor & pLtreopy 8 —or 0 — (8N 4+ ic8™)
pt * pt

850289 4+ ioel)

where A is the IR cutoff on the integration. Taking the transverse gradient of Eq. (A.9) yields

-

X1

Here is a variation of Eq. (A.9), for a massive Green function:

/

/ d2q et e = ot (A.10)
q1 X1
g1 -
9L iaie — 2 Ko(mx ). (A11)

gt +m?
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Table A.2. Dirac matrix elements constructed from u- and v-spinors. Table reprinted
with permission from Lepage and Brodsky (1980). Copyright 1980 by the American

Physical Society.

Matrix element Value

Uo(p") L us(p) 28
o,—o'

/+y \/Pj

!/

3

<

~

o”(p _Ma(l’)

Eﬁ
$

o . . o - 2
86,0 W(Pl “py —iopyL X py —m")

2m . .
B [(p" +iop™) + (p' +iop?)]
el 1j i yigel Jj
s / P Pl 4 P Py
o9 p'+ pt
+ +
S <%> 6! +ia8?)

5 mp/+_p/+ 5 0<p/1+i0p/2 p1+i0'p2)
o,—cMl———— " =7 Ogg’ -

ptp ™ Pt pt
4 ﬁa’(p/) — Ma(P)

14
o

i eligp'] dm ,
8o —or 41&,7% + 85010 F((S” +i08?)

i 4ieligp! 4 ) .
8o 4m;—+m _ sm,ap—'_':(a'l Lios?)

8o —or 281 + icell)

Equations (A.10) and (A.9) can be used to show that

Several angular integrals are useful too:

S )
L% =27 1n——. (A.12)
yi(yL+x1) x1 A
2 d 2
T
f e T (A.13)
J (gL —1)*> 1 —qil
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where ¢, is the angle between g, and ll;

2w N o
g, —1 I
/d(quhifz = 270 —q1) 7 (A.14)
(g1 —11) i
2 d 2
Pq v
/ _ : (A.15)
2 - 2
5 g1 +(@qL—11) /4qj‘_ + ]j‘_
2
/ do 759~ — 27 1. (2), (A.16)
0
for integer n > 0;
o0
I (Aw+2
/dkk*—ljv(kx) = 2Hx—*1(2(—)). (A.17)
) I'(324+v-21)

The integral (A.17) converges for real x > 0 and for —Re v < Re A < 3/2, but it can be
analytically continued outside this region of A. A useful special case is v = 0:

i r(ix
/ dk kK"~ Jo(kx) = 2**‘x**(721) (A.18)
r(1-32)
0
One can also show that
r r(La
/dk K1 = Jolkx)] = —2Hx—k(721). (A.19)
r(1-3%)
0

This integral converges for real x and for —2 < Re A < 0: it can also be analytically continued
outside this region of A.

A.3 Another useful integral

Let us find here the integral

_ 2 X
Id,‘p = d X2 > 2 (AZO)

which is very useful in the Mueller’s dipole model. We first note that one can write

[o9)

d*xy = 2 XX / dkk Jo(kx19) Jo(kxa) Jo(kxar), (A.21)
0
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where the right-hand side is non-zero only if there exists a triangle with sides x;9, X290, and xy;.

Equation (A.20) becomes
Liip = 2722, / dk kJo(kx10) / 0 4 (kxor) / 1 kx), (A22)
X20 X21
0 P P
where we have inserted a UV regulator p into the x,9- and x;,- integrals. Writing
[e'9) o0 P
dx . e—1 e—1
— Jolkx) = hn}) dx x7 Jotkx) — | dxx* " Jo(kx) ¢, (A.23)
X €—
P 0 0

we use Eq. (A.18) to perform the first integral on the right while putting Jo(kx) =1 in the
second integral before integrating over x, thus neglecting higher powers of the UV regulator p.
Expanding the result in € and taking the limit ¢ — 0 yields

oo

dx 2
/ —Jokx) =In— — yg + O(p). (A.24)
X kp
P
Substituting Eq. (A.24) into Eq. (A.22) we obtain

o0

> 2
Idip = 2nx120 / dk k]()(kxl()) (ln kf — VE> . (A25)
. Y
Using (for xj9 > 0)
o0
/dk kJo(kx10) = 0, (A.26)
0
i 0 [ I
fdk kJo(kx10) Ink = lim — / dkk'™€ Jo(kx0) = -, (A.27)
e—0 € X0
0 0
and
o0 o0
2 S l4e 2 X10
dickJo(kxio) In2k = tim — [ dk k™ Jo(kxyo) = —- (m oy yE) , (A.28)
e—0 d€? Xio 2
0 0
all of which follow from Eq. (A.18), we can rewrite Eq. (A.25) as
Ly =47 1n 22, (A.29)
0

which is used in arriving at the last line of Eq. (4.64) in the main text.
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