And generally since

$$
\{a+(n-l) d\} r^{n-1}=\left[\{a+(n-2) d\} r^{n-2}+d r^{n-2}\right] r
$$

we see that each segment on OP is got from the preceding segment by adding to it the appropriate segment of the G.P. $\mathrm{D}_{1} \mathrm{D}_{2}, \mathrm{D}_{2} \mathrm{D}_{3}, \ldots$ and multiplying the sum by r.

Sum to affinity.
Only $\mathrm{D}_{1}, \mathrm{O}, \mathrm{P}_{1}, \mathrm{H}, \mathrm{D}, \mathrm{T}, \mathrm{P}$ need be entered in the figure.
Now

$$
\begin{aligned}
\mathrm{DO} & =\frac{d}{1-r} \text { and } \mathrm{DP}_{1}=a+\frac{d}{1-r} \\
\therefore \quad \mathrm{OP} & =\frac{\mathrm{DP}_{1}}{1-r}=\frac{a}{1-r}+\frac{d}{(1-r)^{2}} .
\end{aligned}
$$

Again OP is finite when DO is finite, that is when $|r|<1$. We thus have a visual proof of the limit theorem :
if $|r|<1$

$$
n r^{n} \rightarrow 0 \text { when } n \rightarrow \infty
$$

The cases d or r negative require no modified construction or proof, as the above are quite general if the sign convention be applied.

Exactly analogous extensions apply to the constructions of $\mathbf{M r}$ R. M. Milne (§ 291) and Mr F. J. W. Whipple (§ 292) in the Mathematical Gazette, 1909-11, p. 138.
G. D. C. Stokes.

Note on Rational Right-Angled Triangles whose Legs are consecutive Whole Numbers.-Having given the sides of a rational right-angled triangle, to find from them the sides of other rational right-angled triangles.

Put a, b, c for the sides of the given right-angled triangle; then, of course,

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

Let $x+a, x+b$, and $2 x-c$ denote the sides of the triangle sought; then

$$
\begin{equation*}
(x+a)^{2}+(x+b)^{2}=(2 x-c)^{2} \tag{2}
\end{equation*}
$$

Expanding and reducing, we get from (2)

$$
x=a+b+2 c
$$

remembering that $a^{2}+b^{2}=c^{2}$.

Hence

$$
\begin{aligned}
& x+a=2 a+b+2 c \\
& x+b=a+2 b+2 c
\end{aligned}
$$

and

$$
2 x-c=2 a+2 b+3 c
$$

are the sides of the triangle sought; for

$$
\begin{equation*}
(2 a+b+2 c)^{2}+(a+2 b+2 c)^{2}=(2 a+2 b+3 c)^{2} \tag{3}
\end{equation*}
$$

identically when $a^{2}+b^{2}=c^{2}$.
If we put $a+1=b$ in (3) we get

$$
\begin{equation*}
(3 a+2 c+1)^{2}+(3 a+2 c+2)^{2}=(4 a+3 c+2)^{2} . \tag{4}
\end{equation*}
$$

which is an identity when

$$
a^{2}+(a+1)^{2}=c^{2}
$$

Take $a=3$; then $a+1=4, c=5$, and (4) gives 20, 21, 29
for the second right-angled triangle whose legs differ by unity.
Take $a=20$; then $a+1=21, c=29$, and we have from (4)

$$
119,120,169
$$

for the third triangle of this kiad.
Take $a=119$; then $a+1=120, c=169$, and (4) gives

$$
696,697,985
$$

for the fourth triangle whose legs are consecutive whole numbers.
Take $a=696$; then $a+1=697, c=985$, and we get from (4) 4059, 4060, 5741
for the fifth of such triangles.' And so on.
And generally, if $a_{n}, a_{n}+1, c_{n}$ be the sides of the $n^{\text {th }}$ rightangled triangle whose legs are consecutive whole numbers, then the sides of the next or $(n+1)^{\text {th }}$ triangle are

$$
\begin{aligned}
& 3 a_{n}+2 c_{n}+1 \\
& 3 a_{n}+2 c_{n}+2 \\
& 4 a_{n}+3 c_{n}+2
\end{aligned}
$$

See Mathematical Magazine, Vol. II., No. 12, Part 2, p. 322, for a table of the first 40 rational right-angled triangles whose legs are consecutive whole numbers. The sides of the 40 th triangle are 2527961881478169961048032963696, 2527961881478169961048032963697. 3575077977948634627394046618865.

See Analyst, Vol. III., No. 2 (1876), p. 49, for the sides of the 80th triangle; also Mathematical Visitor, Vol I., No. 3 (1879) p. 56, and No. 5 (1880), p. 122, for sides of the l00th triangle.

Artemas Martin.

Formula for Centrifugal Force.-The object of this note is to suggest finding the formula for centrifugal force as an exercise on space-rate of change of energy.

Let the uniform circular motion be that of a particle of mass m travelling with speed v in a circle centre O and radius r, and let the motion be regarded as resolved into two linear motions with reference to rectangular axes $\mathrm{X}^{\prime} \mathrm{OX}, \mathrm{Y}^{\prime} \mathrm{OY}$. Let MP be the ordinate of any point P on the circle.

Then
x-component of velocity at $\mathrm{P}=v \sin \mathrm{XOP}=\frac{v \cdot \mathrm{MP}}{r}$.
Therefore
kinetic energy of x-linear motion at $\mathrm{P}=\frac{1}{2} m \cdot \frac{v^{2} \cdot \mathrm{MP}^{2}}{r^{2}}$
Similarly, if Q be a point on the circle near to P,
kinetic energy of x-linear motion at $\mathrm{Q}=\frac{1}{2} \frac{m v^{2}}{r^{2}} . N Q^{2}$.

