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in acetonitrile or an organic carbonate. There is a desire to move
away from the LiPF  salt, which can produce hydrogen fluoride
(HF) in even traces of moisture. This HF can cause dissolution
of the cathode metals, the atoms of which then migrate to and
react with the lithium—graphite anode, causing significant loss
of capacity. Boron-based salts are of interest because of their
higher stability, but in some cases, the SEI layers they form are
too resistive. LiBOB and its fluorinated analogs are of particu-
lar interest and might lead to completely new systems over the
next decade. Another research opportunity lies in ionic liquids.
These are salts that are liquid under ambient conditions and do
not need any solvent for operation. They also tend to have low
vapor pressures and to be nonflammable, but they might be too
reactive to be used with lithium and some cathode materials
with which they can form complexes. However, the present
materials might find application in high-power batteries, such
as the dual spinel Li, Ti,O ,/LiM,0, system, or in electrochemi-
cal capacitors. This is just the beginning of new opportunities
for the electrolyte chemist, and major breakthroughs can be
anticipated. For further information, Reference 3 provides
excellent reviews on electrolytes and separators.

Summary

Electrical energy storage is crucial for the effective prolif-
eration of an electric economy and for the implementation of
many renewable energy technologies. Transformational
changes in both battery and capacitor science and technology
will be required to allow higher and faster energy storage at the
lower cost and longer lifetime necessary for major market
enlargement. Most of these changes require new materials with
larger redox capacities that react more rapidly and reversibly
with cations such as lithium.
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Flywheel energy storage systems use the kinetic energy
stored in a rotor; they are often referred to as mechanical bat-
teries. On charging, the flywheel is accelerated, and on power
generation, it is slowed. Because the energy stored is propor-
tional to the square of the speed, very high speeds are used,
typically 20,000-100,000 revolutions per minute (rpm). To
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minimize energy loss due to friction, the rotors are spun in a
vacuum and use magnetic bearings. The rotors today are typi-
cally made of high-strength carbon composites. One of the
main limits to flywheels is the strength of the material used for
the rotor: the stronger the rotor, the faster it can be spun, and the
more energy it can store. However, if the strength is exceeded,
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the rotor can shatter explosively, releasing all of its energy
much like a hand grenade; thus, these systems are often housed
in thick steel containers. Composites have the advantage that
they tend to shatter into very fine particles.

The time required for a rotor to come to full charge (speed),
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Most of the advances in flywheel energy storage technology
are likely to come from engineering improvements as opposed
to materials research breakthroughs. The reader is referred to
www.itpower.co.uk/investire/pdfs/flywheelrep.pdf  (accessed
January 2008) for further information.

within a few minutes, is shorter than that for batteries but longer
than that for supercapacitors. Whereas batteries and capacitors
can, in theory, store energy for indefinite periods, flywheels
consume energy when fully “charged” and are therefore best
suited for short-term storage. This energy loss, around 10% per
hour, might be reduced by improved magnetic bearings, such as
those using superconductors. In this case, high-temperature
superconductors are required, along with an outstanding insu-
lating system, so that refrigeration costs and maintenance do
not become prohibitive; the ideal system needs to be completely
self-contained.

The energy storage capability of flywheels approaches 130
watt-hours per kilogram (Wh/kg), with power capabilities of
around 500 watts per kilogram (W/kg). Present capacities range
from 2kWh upward, with capabilities of providing megawatts
of power for a few minutes. Flywheels are presently used in
conjunction with renewable power systems, such as wind
power, to give steady high-quality output and in conjunction
with uninterruptible power supplies to improve the power qual-
ity (maintenance of frequency and voltage). They are replacing
lead-acid batteries for uninterrupted power supply systems,
such as those used for telecommunications and information
technology systems, having much lower weights and less
required maintenance, even though their initial costs of around
$1,000/kWh are about double those of a lead-acid device.
Flywheels also find use in other highly cyclic operations, such
as dock crane use, where they compete with capacitors rather
than batteries. They are not finding much use in general con-
sumer applications, such as electric vehicles or home-level
load-leveling because of safety and perceived gyroscopic con-
cerns and because they are optimized for short-term storage.
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Figure 1. G2 Flywheel Module. Source: NASA Glenn Research Center,
Power and Propulsion Office; http://space-power.grc.nasa.gov/ppo/
projects/flywheel/img/G2_082704_front2.jpg (accessed January 2008).
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