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OSCILLATION PROPERTIES OF WEAKLY TIME 
DEPENDENT HYPERBOLIC EQUATIONS 

BY 

K U R T K R E I T H 

ABSTRACT. A Sturmian comparison theorem is established for a 
pair of linear hyperbolic differential equations. While the equations 
may be time dependent (in the sense of not allowing a separation of 
variables), a measure of the strength of such time dependence enters 
into the hypotheses of the theorem. 

While it is possible to generalize the classical Sturm comparison theorem to 
hyperbolic equations [4], substantive difficulties are encountered in generaliz
ing such results to equations having different principal parts. In [5] Travis 
overcomes such difficulties by restricting consideration to equations allowing a 
separation of variables (see also [2]). Specifically, the basic Theorem 2 of [5] 
deals with functions u(x, t) and v(x, t) which are, respectively, non-trivial 
solutions of 

n 

(1) utt= X DiidijDjU)-™ 
u = i 

n 

(2) vtt= X DtiAiPrf-Cv 
u = i 

in a cylindrical domain D<=[Rn+1. The separation of variables follows from the 
assumptions that the coefficients aij9 Atj, c, and C are functions of x = 
(xu ..., xn) only and that D is a cylinder of the form G x (t0, ta), where G is a 
smooth, bounded domain in Rn. Thus the problem considered in [5] is "time 
independent" in the sense that neither the coefficients nor the cross-sections 

Gt={(x, s)eD:s = t} 

depend on t. 
The purpose of this note is to show that Travis's technique can be 

generalized to establish Sturmian comparison theorems for time dependent 
problems, as long as such time dependence is sufficiently "weak", in a sense to 
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be made precise below. We shall allow the coefficients of (1) and (2) to be 

functions of x and t, continuous in a cylindrical domain D = Gx(t09t1). We 

also assume that the right sides of (1) and (2) define formally selfadjoint elliptic 

operators 

(3) 

(4) 

lt[u]=- X Di(aij(x,t)Dju) + c(x9t)u 
, i = i 

to which classical variational theory can be applied and that the solutions u and 

v of 

(1) utt + lt[u] = 0 

(2) vtt + Lt[v] = 0 

satisfy boundary conditions of the form 

du 
(5) 

(6) 

dv 

dv 

dv 

+ cr(jç, t)u=0 

+ T(X, t)v = 0 

for xedG, t0<t<tl9 where du/dv and dv/dv are transverse derivatives defined 

du du dv 

dv 

dV 

dv 
= I Ai 

U = l 

dV dv 

dxt dXj 

and dv/dXj denotes the cosine of the angle between the exterior normal to dG 

and the positive x r ax i s . Our comparison theorem will involve the functions 

\0(t) and fi0(t) which are, respectively, the smallest eigenvalues of 

(7) 

(8) 

lt[u] = \u in G ; \-cru on dG 
dv 

Lt[v] = IJLV in G ; 
du 

dv 
+ TV on dG. 

Denot ing by <p(x, t) and i/f(x, t) the positive normalized eigenfunctions of lt and 

Lt corresponding to the eigenvalues À0(t) and JULO(0, respectively, we introduce 

the functions 

(9) a(t)= sup 
x e G 

— and /3(f)= sup 
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as measures of the weakness of the time dependence of (2), (6). (Note that in 
case (2), (6) allows a separation of variables we have a(t) = 0 and p(t) = 0 for 

For the sake of simplicity, we first consider the case where (1), (5) is time 
independent, so that cp is independent of t and À() is constant. However, we 
make no such assumptions about (2), (6). 

THEOREM. Suppose w(x, t) is a solution of the time independent problem (1), 
(5) in a cylinder D = G x (t0, tx) satisfying w(x, t0) = u(x, tA) = 0. If 

(i) 

(ii) c(x) + 3a2(f) + |3(t)<C(x, t) 

for all (x, t)eD and all non-zero n-tuples (£1?. . . , £n), and if 

(iii) < x ( x ) < T ( x , t ) < + o o 

/or a/l (x, 0 e ^ G x ( t o , t^, then euery solution v(x, t) of (2), (6) has a zero in 
G.x(t0, t j . 

Proof. Defining 

l/(t) = (w(x, f), cp(x, t)> = u(x, t)<p(x, t) dx 
•>G 

V(t) = (v(x, t), i//(x, t)) = v(x, t)ijj(x, t) dx 

we have 

and 
d2V 

dt2 ~~ 
-(Vm l//) + 2<Dt, lfc) + <tt, l/rtt). 

From (9) we obtain 

(10) 

and 

(ID 

(v„ ilf) = « ( 0 | V | 

d 2 V 
df2 

Since (10) implies that 

<t>to0> ==2a(t)|<u,,«fr>| + 0(r)|V|. 

|<i)„i0r>|<a|V| + 
dV\ 
dt 
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we have from (11) 

d2V 

dt2 ~(v„,ilt) •2a(t) 
dV\ 

dt 
+ (2a2(t) + (3(t))\V\ 

and that there exist continuous functions F(t), H(t) satisfying 

|F( t )N2a(f ) ; |H(f )N2a 2 ( t ) + |3(r) 
for which 

d2V dV 
- ^ T + F ( t ) — + H(f)V = < t ^ > . 

Recalling the definition of i/>, we have 

(vu, *> = (~Ltv, i\f) = -(v, Lrf>) = - W O V 

so that V(t) satisfies 

dt dt 
(12) ^ + F ( 0 ^ + (H(t) + |mo(t))V = 0. 

In order to show that v(x, t) has a zero in D, it is sufficient to show that V(t) 
has a zero in (t0, f j . To that end, we note that (7(t) satisfies 

(13) — r + Ao(f)t/ = 0, 
dt2 

and l/(f0) = Ï7(£i) = 0. Applying a known Sturmian comparison theorem [3, 
Theorem 2.1] to (12) and (13), we see that 

(14) ILto + H ^ ^ + Ao 

is a sufficient condition for V(t) to have a zero in (f0, f j . Clearly (14) is satisfied 
if jLL0>A0 + 3a 2 + |3. However, from classical variational theory for elliptic 
eigenvalue problems [1] we have 

A0 = inf (lty, y) = inf Z ^ A T A T A T + cy2 dx 

^Gr ^Gr JG k i= i -I 

- Z AP^D^ + cifj2\dx = c-C + fx0(t) 
^G U,J = 1 -I 

where F is the appropriate "admissible" class for the variational characteriza
tion of eigenvalues of Lt. Thus if C-c >3a 2+13 it follows that (14) is satisfied, 
and this completes the proof. 

REMARKS AND EXAMPLES. 1. In case (1), (5) is not time independent U(t) 
satisfies a differential equation of the form 

d2Ui£r^dU. 
(13') ~-T + f(t)— + (h(t) + Ut))U = 0 
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where | / | and |g| are bounded by measures of time dependence analogus to 
a(t) and (3(t). In this case we can apply [3; Theorem 2.2] to (12) and (13'), with 
(14) replaced by 

(14') ^ o + G ^ ^ y ^ + ̂  + Ao+h. 

For practical purposes, however, it is most convenient to compare (2), (6) with 
a time independent problem (1), (5). 

2. As observed in [5], the techniques of Theorem 1 also apply in the case of 
equations of the form 

(m(x, t)ut)t 4- lt[u] = 0 
and 

(M(x,t)vt)t + Lt[v] = 0 

if 0 < M < m in D. 
3. As an example of a time dependent problem (2), (6) for which a(t) and 

jS(t) can be estimated directly, consider 

Vn-i—— vx) +(k-tcosx)v = 0 

v(0, t) = v(ir, 0 = 0. 
Here we may choose 

1*M=-\TTZ u*l - ( 1 + ^COSX)D 
U + ÉCOSX Jx 

so that 

i/>(x, t) = k sin(jc +1 sin x) 

for an appropriate normalizing constant fc. This expression for i// readily yields 

sinx | I^J 
and — < 1 , sin(x +1 sin x) I 11//1 

yielding the choice (5(t) = l. For 0 < t < l the argument x + f s i n x is strictly 
increasing for 0 < x < 7r and we can use L'hospital 's rule to evaluate 

sin x 1 ,. sin x 
h m —— • - = - = l im *o+ sin(x + t sin x) 1 + t ^-^^ sin(x + t sin x) 

This shows that a(t) is bounded for 0 < t < 1, and a specific bound can be found 
sin x 

by finding the relative maxima of ^— : for 0 < x < 7r. 
sin(x +1 sin x) 

4. With examples such as the one above we are able to estimate a and |3 by 
solving the elliptic boundary value problem associated with (2), (6). It would be 
of interest, however, to find techniques for determining a priori bounds for a 
and 0 which do not require an explicit determination of t//(x, t). 
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