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Abstract

Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or
polyubiquitin chains attached to substrate proteins, preventing the substrate protein from
being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autop-
hagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies
have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and
control the onset and progression of cardiac disease through a board range of mechanism.
This review summarizes the function of different deubiquitinases in cardiac disease, including
cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease.
Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac
disease, providing the potential therapeutic targets in the future.

Introduction

Protein synthesis and degradation must be in balance for cellular proteins to remain stable
(Ref. 1). The ubiquitin-proteasome system primarily controls the majority of protein degrad-
ation in eukaryotic cells (Ref. 2). Ubiquitin is a polypeptide composed of 76 highly conserved
amino acids (Ref. 3). Ubiquitination is the process of connecting ubiquitin with protein to
form the ubiquitin chains under the action of ubiquitin ligase. Ubiquitination regulates a var-
iety of biological functions, the most important of which is protein degradation mediated by
26S proteasome (Ref. 4). Ubiquitination is a reversible process, which is strictly regulated.
Deubiquitination is the main negative regulation process. It recognizes and cleaves the ubiqui-
tin chains of substrate protein through a series of deubiquitinases, thus inhibiting the degrad-
ation process of protein (Ref. 5). The balance between ubiquitination and deubiquitination is
crucial in the human body, regulating a variety of diseases such as cancers (Ref. 6), neurode-
generative diseases (Ref. 7) and regulating immune cells (Ref. 8).

Recently, more and more research has confirmed that deubiquitinases represent a pivotal
regulator in cardiac disease by recognizing different substrate proteins and regulating a variety
of signalling pathways and mechanisms (Refs 9, 10). However, until now, there are few reviews
on the regulatory role of deubiquitinases in cardiac disease. This review summarizes the recent
basic research on the function of deubiquitinases in cardiac disease, specifically introduces the
emerging roles of deubiquitinases in regulating cardiac diseases and their specific molecular
mechanism, and provides a new strategy for the therapy of cardiac disease in the future.

Ubiquitin proteasome system

Since it was initially identified in the 1970s, ubiquitin has been found in a wide variety of crea-
tures (Ref. 11). Ubiquitin activating enzyme (E1) joins the lysine residue at the C-terminal of
ubiquitin to its own cysteine residue during the ubiquitination process by hydrolysing ATP.
After the ubiquitin has been delivered to ubiquitin coupling enzyme (E2), the target protein
is then joined with ubiquitin by the ubiquitin ligase (E3) (Ref. 12). The majority of proteins
in the human body can be marked with ubiquitin, and the 26S proteasome can identify
and degrade ubiquitinated proteins. There are many different forms of ubiquitination, but
the three most prevalent types are monoubiquitination, K48-linked and Ké3-linked polyubi-
quitination (Ref. 13). After the substrate protein is modified by ubiquitination, different
types of ubiquitination will lead to different protein fate. Monoubiquitination is associated
with protein recognition or allosteric regulation, while K48-linked and K63-linked polyubiqui-
tination may lead to protein degradation and signal transduction, respectively (Ref. 5).

As one of the most important post-translational modifications, ubiquitination not only
plays an important role in regulating protein degradation, but also plays a key role in regulating
cell cycle (Ref. 14), antigen presentation (Ref. 15), immune signal transduction (Ref. 16), tran-
scription regulation and apoptosis (Ref. 17).

Deubiquitinases

Deubiquitination refers to the process of recognizing ubiquitin-labelled proteins, hydrolysing
and removing ubiquitin chains on some amino acid residues of substrate proteins under the
action of a series of deubiquitinases (Ref. 18). Deubiquitinases stabilize proteins to maintain
their functions by reversing the ubiquitination process. Deubiquitinases can be divided into
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six families: the ubiquitin-specific proteases (USPs), the ovarian
tumour-related proteases (OTUs), the ubiquitin C-terminal
hydrolases (UCHs), Machado Joseph disease proteins (M]Ds),
Mindys family motif interacting with ubiquitin containing novel
dub family (MINDYs) and JABI/MPN/MOV34 metalloprotei-
nases (JAMM:s). The first five deubiquitinases belong to cysteine
protease (Ref. 19). The USPs family is the family with the most
members in the deubiquitinases, which can recognize the ubiqui-
tin chains linked by K48, K63 and MET1. The protease of the
MJD family tends to recognize the K48-linked and K63-linked
polyubiquitination, the protease of JAMMs tends to recognize
the K63-linked polyubiquitination, and MINDYs tend to recog-
nize and hydrolyse the K48-linked polyubiquitination from the
distal end (Ref. 5).

Deubiquitinases may either deubiquitinate a broad area sur-
rounding the hydrophobic region of ubiquitin or they can pre-
cisely remove ubiquitin by identifying and hydrolysing the ester
bond, peptide bond or isopeptide bond at the carboxyl terminus
of ubiquitin (Ref. 19). Deubiquitinases can also inhibit the func-
tion of E3 ligase by hydrolysing the peptide linkage that connects
the target protein’s lysine residue to the C-terminal of ubiquitin
(Ref. 20). Deubiquitinases vary in number depending on the spe-
cies, and there are roughly 100 different types in human cells
(Ref. 21). Numerous studies have demonstrated that deubiquiti-
nases can regulate cell growth and development, mediate physio-
logical signalling pathways and maintain cell homeostasis
(Ref. 22). Moreover, deubiquitinases also exert a significant regu-
latory influence over the pathophysiological processes of a num-
ber of diseases, including tumours (Ref. 23), inflammatory
bowel disease (Ref. 24) and vascular disease (Ref. 25).

Deubiquitinase is an essential regulator of cardiac
physiology and homeostasis

USP17 subfamily is comprised of USP17k, USP171, USP17m and
USP17n. Researchers discovered that the USP17 subfamily mem-
bers were significantly expressed in human myocardial tissue,
indicating that the USP17 family may be crucial in preserving
the physiological function of the heart (Ref. 26). Additionally,
DUB-1a, a newly discovered deubiquitinase subfamily member,
was discovered in lymphocytes for the first time. Researchers pro-
vided experimental evidence that DUB-1a was also expressed in
the mouse heart, suggesting that it may be involved in preserving
cardiac homeostasis (Ref. 27).

A critical role of cylindromatosis (CYLD) in maintaining sub-
cellular region was supported by research in which CYLD pro-
moted the stability of plakoglobin by reducing its K63-linked
ubiquitin chains. Plakoglobin is an intermediate protein that sta-
bilizes the gap junction of myocardial cells. The deubiquitination
of plakoglobin stabilized its connection with desmoplakin, con-
tributing to the transmission of Cx43 to the inserted interverte-
bral disc. The stable existence of CYLD is crucial for the
development and maturation of myocardial cells (Ref. 28).

Role of deubiquitinases in cardiac disease
Cardiac hypertrophy

The protein kinase pathway (PI3K/Akt signalling pathway,
c¢GMP/PKG signalling pathway, etc.), calcium-mediated signalling
pathway (CaMKIL signalling pathway, CaN-NFAT signalling
pathway, etc.) and Wnt signalling pathway are the main signalling
pathways currently involved in pathological myocardial hyper-
trophy (Refs 29, 30). Numerous studies have shown that deubi-
quitinases modulate the development of cardiac hypertrophy by
regulating different signalling pathways that are associated with
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cell inflammation (Ref. 31), apoptosis (Ref. 32), autophagy
(Ref. 33), mitochondrial homeostasis (Ref. 34) and metabolic
changes (Ref. 35) (Fig. 1).

Previous studies have found that the expression profile of USP
has changed in hypertrophic hearts, which indicated that USP
may be a biomarker of cardiac hypertrophy or a regulator in
the progression of cardiac remodelling. In the chronic heart fail-
ure model, the mRNA expression of USP19 was significantly
downregulated in chronic heart failure models (Ref. 36). In add-
ition, by comparing the GEO dataset and the mRNA level of
USP2 in hypertrophic heart induced by trans-arterial coarctation
(TAC), it was determined that the expression of USP2 was down-
regulated in hypertrophic heart, and the overexpression of USP2
could relieve the cardiac hypertrophy induced by TAC.
However, further research was still warranted to explore the
molecular mechanism of USP2 in myocardial hypertrophy caused
by pressure overload (Ref. 37).

Transforming growth factor-activated kinase 1 (TAK1) is a
MEKK family member and the upstream of JNK1/2 and p38
(Refs 38, 39). Overexpression of TAKI could promote the activa-
tion of NF-xB and NFAT signalling pathways, and upregulate the
expression of cardiac hypertrophy markers (Ref. 40). In the hearts
of patients with heart failure and hypertrophic rodent hearts, the
mRNA and protein expression of USP4 was downregulated, while
overexpression of USP4 could alleviate cardiac hypertrophy both in
vivo and in vitro. USP4 played an anti-myocardial hypertrophy effect
in regulating pathological myocardial hypertrophy and fibrosis by
blocking the activation of the TAK1-(JNK1/2)/p38 signalling path-
way (Ref. 41). However, unlike the anti-hypertrophic effect of
USP4, USP22 exerted its pro myocardial hypertrophy effect by
activating the TAK1 signalling pathway. USP22 stabilized the
hypoxia-inducible factor-1a (HIF-1a) protein through its deubiqui-
tinase activity, activating the TAK1 signalling pathway and exacerbat-
ing myocardial hypertrophy-induced pressure overload (Ref. 42).

GSK-3p, as a widely expressed serine threonine protein kinase,
can phosphorylate different substrates and act as a significant
negative regulator in regulating cardiac development and myocar-
dial hypertrophy by activating a wide range of downstream signal-
ling molecules (Ref. 43). In a variety of rodent models of cardiac
hypertrophy, the specific overexpression of GSK-3f in myocardium
could significantly alleviate myocardial hypertrophy and fibrosis by
reducing the nuclear localization of NFAT (Refs 44, 45). The phos-
phorylation of GSK-38 is bidirectional. The phosphorylation of the
C-terminal Tyr216 site can activate GSK-38 (Ref. 46), while the
phosphorylation of C-terminal Ser389 and Thr390 sites leads to
the inactivation of GSK-38 (Ref. 47). USP14 has been shown to
upregulate the phosphorylation of GSK-3p. In the models of myo-
cardial hypertrophy induced by abdominal aortic constriction
(AAC) and Ang II, USP14 accelerated the development of cardiac
hypertrophy and worsen cardiac function by activating GSK-3p.
However, it is not clear whether USP14 directly combined with
GSK-3p, or indirectly interacted with GSK-3/ through other mole-
cules. Further experimental research is needed to investigate the
interaction between USP14 and GSK-3f and the phosphorylation
site of GSK-38 (Ref. 48).

In addition to the typical signalling pathways, skeletal muscle
LIM protein 1 (SLIM1) is a key factor related to the pathogenesis
of myopathy and cardiomyopathy (Refs 49, 50). A study on
USP15 transgenic mice showed that the upregulation of USP15
exacerbated myocardial hypertrophy by interacting with the
SLIM1 protein, cutting the SLIM1 ubiquitin chains and stabilizing
the SLIM1 protein. Additionally, in the cardiac tissue of USP15
transgenic mice, the mRNA level of SLIM1 was also higher
than that of WT mice, which indicated that USP15 may upregu-
late the expression of SLIM1 both at the transcriptional level and
post-translational modification level (Ref. 51).
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Figure 1. The main deubiquitinases involved in the pathogenesis of cardiac hypertrophy.

Notes: Multiple deubiquitinases regulate cardiac hypertrophy through mechanisms such as autophagy, ROS, RNA methylation, signal transduction, and calcium
homeostasis. CYLD: cylindromatosis; mTOR: mammalian target of rapamycin; Rab7: Ras-related protein Rab-7a; Erk: extracellular signal-regulated kinase; Nrf2:
nuclear factor erythroid-2-related factor 2; USP: ubiquitin-specific protease; METTL3: metallothionein-like 3; GSK3p: Glycogen synthase kinase 3f; UCHL1: ubiquitin
C-terminal hydrolases L1; EGFR: epidermal growth factor receptor; HIF-1o: hypoxia inducible factor-1o; TAK1: transforming growth factor-B-activated kinase 1;
JNK1/2: c-Jun N-terminal kinase 1/2; SIRT6: sirtuin 6; AKT: protein kinase B; JOSD2: josephin domain-containing protein 2; SERCA2a: sarco/endoplasmic reticulum

Ca,.-ATPase.

The calcium homeostasis of cardiomyocyte is indispensable for
the maintenance of cardiac function (Refs 52, 53). Sarco/endo-
plasmic reticulum Ca®*-ATPase (SERCA2a), located on the sarco-
plasmic reticulum, is regarded as a key protein for maintaining
calcium homeostasis, and multiple studies have shown that
there are several post translational modification sites in
SERCA2a (Ref. 54). Research showed that USP25, as a protective
protein of the heart, played an anti-hypertrophic role in patho-
logical myocardial hypertrophy (Ref. 55). Ye et al. found that
knocking out USP25 in mice exacerbated myocardial hypertrophy
induced by angiotensin II and TAC. USP25 exerted its anti-
hypertrophic effect by regulating the SERCA2a. USP25 stabilized
intracellular calcium homeostasis and alleviated myocardial
hypertrophy by removing the K48-linked ubiquitin chains of
SERCA2a protein (Ref. 55). Coincidentally, the team also found
that JOSD2 maintained myocardial calcium homeostasis by upre-
gulating SERCA2a, thereby attenuating cardiac hypertrophy
(Ref. 56). However, there are currently no agonists or analogues
for USP25 or JOSD2, and more research is needed to promote
their clinical conversion.

The sirtuin protein family (SIRT family), a highly conserved
protein, is a kind of nicotinamide adenine dinucleotide (NAD")
dependent deacetylase. Among the SIRT family members,
SIRT6 has been proved in multiple studies to regulate the
NF-xB signalling pathway or the Akt signalling pathway, both
of which were connected to the development of cardiac hyper-
trophy (Ref. 57). Zhang et al. proved that USP10 exerted its
anti-hypertrophic effect mainly by inhibiting the Akt signalling
pathway, rather than through the common downstream signalling
pathways of USP10 (such as p53, AMPK, TRAF6). Further studies
showed that SIRT6 acted as an intermediate messenger of USP10
inhibiting the Akt signalling pathway. USP10 bound and stabi-
lized SIRT6 by inhibiting the activation of Akt/GSK3p and
mTOR/p70S6k signalling pathway, resulting in the remission of

https://doi.org/10.1017/erm.2024.2 Published online by Cambridge University Press

myocardial hypertrophy and fibrosis (Ref. 10). Aside from
SIRTS, SIRT2 also contributes to the occurrence and progression
of cardiac hypertrophy. SIRT2-deficient mice develop spontaneous
pathological cardiac hypertrophy through LKB1/AMPK (Ref. 58).
Mei et al. discovered that the mRNA and protein level of CSN6
was upregulated both in the Ang II-induced hypertrophic cardio-
myocyte and hypertrophic cardiac tissue. The researchers pointed
out that inhibiting the expression of CSN6 might relieve the pro-
gression of cardiac hypertrophy. Additional research revealed that
CSN6 could contribute to cardiac hypertrophy by stabilizing
Nkx2 and removing the K48-linked ubiquitin chains of Nkx2.2.
Nkx2.2, a common transcription factor, attached to the promoter
of SIRT2 and prevented the activation of transcription. CSN6 stabi-
lized Nkx2.2, which blocked the transcription of SIRT2, resulting in
ventricular hypertrophy and heart failure (Ref. 59).

Signal transducer and activator of transcription 3 (STAT3) is a
protein that is involved in both cytoplasmic signal transduction
and nuclear transcriptional activation. It is one of the key factors
exacerbating myocardial hypertrophy and is regulated by deubi-
quitinase. Wang et al. demonstrated that OTUDI promoted the
development of pathological myocardial hypertrophy by remov-
ing the K63-linked ubiquitin chains of STAT3 and stabilizing
the protein in various rodent models of myocardial hypertrophy.
This study further elucidated that OTUD1 bound to the SH2
domain of STAT3 through its cysteine site at position 320, thereby
exerting the effect of deubiquitination (Ref. 60).

In addition to transcription factors, at the level of gene regula-
tion, methyltransferases in cardiomyocytes are also indirectly
regulated by deubiquitinases. USP12 deubiquitinated p300 to acti-
vate the transcription of methyltransferase-like 3 (METTL3),
which resulted in the abnormal m6A RNA methylation in cardi-
omyocyte and exacerbated cardiac hypertrophy (Ref. 61).

Even though the function of autophagy in the heart is still
debatable, recent studies tend to view the activation of autophagy
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as a protective process of cardiac hypertrophy (Ref. 62).
Autophagy is regulated by several kinds of deubiquitinases,
including CYLD (Refs 63, 64, 65). An experiment has demon-
strated that CYLD could give rise to cardiac hypertrophy by medi-
ating autophagy in cardiac hypertrophy induced by pressure
overload. Specifically, compared with wild-type mice with
TAC-induced cardiac hypertrophy, autophagic flow in cardiac
myocytes was significantly blocked in the hypertrophic heart of
mice with cardiomyocyte-specific CYLD overexpression, resulting
in cardiac morphological changes and dysfunction in transgenic
mice (Ref. 66). The role of CYLD was only related to the restricted
autolysosome efflux but did not affect basic autophagy and the
combination of autophagosome and lysosome. Further study on
the downstream molecules of CYLD revealed that the hyper-
trophic effect of CYLD was partly attributed to the inactivation
of mTORCI1 and the upregulation of Rab7, which was important
in the excretion of autolysates. Another study provided another
potential molecular mechanism of CYLD in pressure load-induced
cardiac hypertrophy. CYLD blocked Nrf2-mediated antioxidant
capacity by inhibiting Erk, p38/AP-1 and c-Myc pathways, thereby
promoting oxidative stress in myocardial tissue and aggravating
myocardial hypertrophy and ventricular remodelling (Ref. 67).

Epidermal growth factor receptor (EGFR) is a member of
receptor tyrosine kinase whose deficiency could worsen myocar-
dial hypertrophy, cardiac dysfunction and arterial hypotension
(Refs 68, 69). A series of classic pro-hypertrophic factors, such
as Ang II and norepinephrine, could bind to their cell membrane
receptors and activate EGFR (Refs 70, 71). The intracellular tyrosine
kinase domain of EGFR actively participates in signal transduction,
activating the PI3K/Akt, MAPK and other signalling pathways.
In addition, patients receiving EGFR tyrosine kinase treatment are
particularly prone to cardiac complications (Ref. 72). Li et al. identi-
fied UCHLL as a pathogenic factor of cardiac hypertrophy through
microarray analysis. By recognizing and cutting the ubiquitin chains
connected with EGFR, UCHLI1 reduced the degradation of EGFR
through the ubiquitin-proteasome system, thus continuously activat-
ing EGFR, Akt and ERK signalling pathways, leading to myocardial
hypertrophy (Ref. 9). The cardiac dysfunction of mice with cardiac
hypertrophy induced by TAC was dramatically relieved after treat-
ment with LDN-57444, an inhibitor of UCHLI, indicating that
UCHLI may be employed as a potential drug target for the therapy
of cardiac hypertrophy in the future.

Moreover, another study on the role and mechanism of
UCHLI in cardiac hypertrophy induced by pressure overload
revealed that the expression of UCHLI was upregulated in hyper-
trophic heart, while the overexpression of UCHLI could inhibit
the growth of fibroblasts, and the inhibition of growth was not
related to apoptosis. Interestingly, other research has unveiled
that UCHLI1 could enhance the proliferation of a range of cells,
such as HeLa cells, Neuro2a cells, human cancer cell lines h727
and MCF (Ref. 73). Based on the conclusion of the above
research, investigators confirmed that the inhibitory effect of
UCHLL1 on cell growth inhibition is unique to cardiac fibroblasts.
The inhibitory effect was caused by affecting the level of cyclin-
dependent kinase inhibitor protein p21“AF“P! instead of affect-
ing the signal pathway related to fibroblast proliferation.
Interestingly, further experiments of the team showed that
UCHLI increased the protein content of p21"VAF/“P! by inhibit-
ing the autophagy lysosomal degradation of p21 rather than by
inhibiting the ubiquitin-proteasome system (Ref. 74).

Deubiquitinases also exert regulatory effects on the pathogenesis
of heart failure-related stroke. Researchers analysed and compared
heart failure-related chip data and stroke-related chip data through
bioinformatics analysis. OTU deubiquitinase with linear linkage
specificity (OTULIN) was identified as a regulator in the pathogen-
esis of heart failure-related stroke through the intersection analysis
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of heart failure-related chip data and stroke-related chip data. It
may participate in the regulation of heart failure-related stroke by
participating in protein ubiquitination and Wnt signalling.
OTULIN is expected to become a key regulator in the pathophysio-
logical process of heart failure-related stroke (Ref. 75).

Deubiquitinases are also involved in the pathogenesis of right
ventricular hypertrophy (RVH). The researchers indicated that
the expression of UCHL1 was evaluated in the RVH model
induced by pulmonary artery ligation (PAC). However, whether
UCHLL is involved in the pathogenesis of RVH and its molecular
mechanism is not yet clear, and additional research is warranted
to clarify the role of UCHLI in RVH (Ref. 76).

Myocardial infarction (MI) and myocardial ischaemia
reperfusion (I/R) injury

MI is driven by the imbalance between myocardial oxygen supply
and demand, which results in myocardial necrosis. Researchers
discovered that the mRNA expression of USP19 was downregu-
lated in the acute model of MI, which raised the possibility that
USP19 could have a special function in MI (Ref. 36). However,
the mechanism of USP19 in MI remains unknown.

Apoptosis is a key process in the pathogenesis of MI and car-
diac dysfunction. ABRO1 is also one of the four subunits
(ABRO1, NBAI, BRE and BRCC36 proteins) of deubiquitinase
BRISC. According to the research, the hearts of MI patients
were characterized by higher protein levels of ABRO1 protein.
The protein level ABRO1 was upregulated in the heart of MI
mice and the knockdown of ABRO1 worsened myocardial cell
apoptosis. However, it is unclear how ABRO1 specifically prevents
cardiomyocytes from cell apoptosis (Ref. 77). Besides, study has
shown that the expression of USP7 was upregulated in HOC2 car-
diomyocytes cultured under hypoxia and in the heart of MI rats,
and overexpression of USP7-induced inflammation and apoptosis
of cardiomyocytes, leading to aggravation of MI injury. The study
further pointed out that the upregulation of USP7 in the MI
model was partly due to the downregulation of miR-409-5p
(Ref. 78). Other researchers detected the expression of USP6
and USP47 from monocytes isolated from peripheral blood sam-
ples of MI patients and healthy controls. The expression of USP6
and USP47 was upregulated, especially the level of USP47. The
team further found that USP47 may enhance the activity of the
NF-xB promoter, activating the NK-«xB pathway, thereby promot-
ing cardiomyocyte apoptosis and I/R injury (Ref. 79).

Ferroptosis is a kind of programmed cell death that depends
on iron, which is different from apoptosis and necrosis.
Inhibition of ferroptosis can effectively reduce myocardial injury
caused by ischaemia-reperfusion (Ref. 80). The expression of
USP7 was evaluated in the myocardial tissue of rats with
ischaemia-reperfusion injury. Knockdown of USP7 could inhibit
ferroptosis by deubiquitinased p53. The deficiency of USP7
reduced MI area and alleviated myocardial fibrosis through the
inhibition of p53/TfR1 pathway (Ref. 81). In addition to the deu-
biquitinase mentioned above, recent study has shown that
OTUDS played an important role in the mechanism of ferroptosis
exacerbating myocardial ischaemia-reperfusion injury. OTUD5
inhibited ferroptosis and alleviated myocardial injury by directly
binding to glutathione peroxidase 4 (GPX4), the key protein of
ferroptosis, and removing the K48-linked ubiquitin chains of
GPX4 (Ref. 82).

Deubiquitinase can not only regulate myocardial cell apoptosis
and ferroptosis, but also modulate myocardial cell pyroptosis.
Recent study has shown that USP11 promoted cardiomyocyte
pyroptosis and exacerbated myocardial ischaemia-reperfusion
injury by binding to TRAF3 protein and hydrolysing its ubiquitin
chains (Ref. 83).
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In addition to the programmed cell death, inflammatory cells and
inflammatory factors are also important mechanisms for the occur-
rence and development of MI. As a cytokine combined with ST2,
IL-33 plays a protective role in acute MI by reducing inflammation
and apoptosis. It was reported that USP17 maintained the stability of
IL-33 by cleaving and hydrolysing both the K48- and K63-linked
ubiquitin chains (Ref. 84). In the heart of AMI mice, inhibition of
IncRNA ANRIL weakened the degradation of IL-33 mediated by
USP17. Reduction of degradation of IIL33 through the ubiquitin
proteasome system alleviates cardiac dysfunction and cardiac fibrosis
by reducing infarct size and inhibits cell apoptosis (Ref. 85).

Previous studies have shown that dual specificity phosphatase
1 (DUSP1)-mediated JNK dephosphorylation participated in pro-
tecting the heart from ischaemia-reperfusion injury through the
anti-apoptotic effect (Ref. 86). According to recent research,
USP49 has been confirmed as a regulator of DUSP1-JNK1/2 sig-
nal transductions. The expression of USP49 was upregulated in
the I/R injury model on AC16 cardiomyocytes, and the signal
transduction pathway of DUSP1-JNK1/2 was activated to exert
its anti-apoptotic role (Ref. 87).

After myocardial ischaemia-reperfusion injury, myocardial cell
apoptosis, autophagy and immune cell infiltration prompt the
imbalance of a series of cytokines, eventually activating cardiac
fibroblasts and leading to myocardial fibrosis (Ref. 88). TGEg/
Smad4 signalling pathway is identified as a classic pro-fibrosis
pathway and is modulated by USP10 (Ref. 89). It is demonstrated
that, in fibroblasts, HSP47 aggravated chronic fibrosis after myo-
cardial ischaemia-reperfusion by recruiting USP10, which
removed the ubiquitin chains of Smad4, and stabilized Smad4
protein (Ref. 90).

In addition, under pathological conditions such as the stimu-
lation of TGF-f, myocardial fibroblasts undergo glycometabolic
reprogramming, mainly manifested as enhanced glycolysis

(Refs 91, 92, 93). Inhibiting glycolysis could alleviate myocardial
fibrosis. Researchers found that the protein level of PFKFB3, a
sort of glycolytic enzyme, was upregulated by the deubiquitinase
OTUD4 in myocardial fibroblasts of post MI mice. OTUD4 pro-
moted the stability of PFKFB3, leading to enhanced glycolysis and
exacerbating cardiac fibrosis (Ref. 94).

Based on previous studies, sevoflurane postconditioning has
been considered as a potential treatment to protect the myocar-
dium from I/R injury by limiting the size of MI, reversing myo-
cardial dysfunction, and improving blood circulation (Ref. 95).
Researchers found that the expression of USP22 was upregulated
in the hearts of I/R mice treated with sevoflurane postcondition-
ing, and knockdown of USP22 could reverse the protective effect
of sevoflurane. Sevoflurane postconditioning upregulated USP22,
which increased the protein content of lysine-specific demethylase
3A (KDM3a) in the promoter region of YAP1 by cutting the ubi-
quitin chains of the protein. The upregulation of USP22 indirectly
promoted the transcription of YAP1, thereby reduced myocardial
cell injury (Ref. 96).

Besides, appropriate level of autophagy in cardiomyocytes is
considered as a protective mechanism determining the cardiac
remodelling. Excessive activation or inhibition of autophagy
could deteriorate MI (Refs 97, 98). Research has shown that defi-
ciency of UCHLI in the myocardium after MI could exacerbate
cardiac remodelling by inhibiting autophagy and decreasing
autophagic flux. The research further revealed that the upregula-
tion of autophagic flux was induced by the abnormal formation of
autophagosome instead of the increased degradation of autopha-
gosomes. Interestingly, this research pointed out that the absence
of UCHLI in cardiomyocytes has little impact on heart develop-
ment. No abnormalities were observed in the cardiac development
of UCHLI-specific knockout mice before 14 weeks of age
(Ref. 99) (Fig. 2).

UsP11 oTUD4 usPa7 usP? -
buse Cvews
p53
modulate
TRAF3 PFKFB3 NF-xB l
GPX4 JNK1/2
TR1 L J_
Pyroptosis Glycolysis Apoptosis Ferroptosis Apoptosis Autophagy
Promoting MI Alleviating MI

Figure 2. The main deubiquitinases involved in the development of myocardial infarction.

Notes: A series of deubiquitinases regulate myocardial infarction through apoptosis, ferroptosis, pyroptosis or metabolic reprogramming. USP: ubiquitin-specific
protease; TRAF3: TNF receptor-associated factor 3; PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; OTUD: ovarian tumor-related deubiquitinase;
NF-xB: nuclear factor kappa-B; TfR1: transferrin receptor 1; GPX4: glutathione peroxidase 4; DUSP1: dual specificity phosphatase 1; JNK1/2: c-Jun N-terminal kinase

1/2; UCHL1: ubiquitin C-terminal hydrolases L1.
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Diabetes mellitus (DM) related cardiac disease

Diabetic heart disease is characterized by dysregulated cardiac
structure and function that is independent of diabetic macrovas-
cular complications (including hypertension, coronary artery
disease and atherosclerosis) (Ref. 100). Mitochondria
are important integrators of redox signal and metabolic flux,
and mitochondria dysfunction is involved in the occurrence
and development of diabetic heart disease (Ref. 101).
S-sulfhydrylation is a new post-translational modification of
specific cysteine residues on target proteins by H,S (Ref. 102).
A study has shown that under the conditions of high
glucose and high fat in vivo and in vitro, the S-sulfhydrylation
of USP8 was significantly reduced, while after exogenous H,S
treatment, the S-sulfhydrylation level of USP8 was increased,
promoting the combination of USP8 and Parkin. The combin-
ation of USP8 and Parkin ameliorated cardiac dysfunction in
mice with type2 diabetes mellitus (T2DM) by regulating mito-
chondrial autophagy, reducing mitochondrial fusion and
improving cell mitochondrial function (Ref. 103). The
deubiquitinase-regulated downstream process involved not
only mitochondrial autophagy, but also the abundance altera-
tions of transcription factors. Y-box binding protein-1 (YB-1),
as a regulatory factor for transcription and translation, protects
cardiomyocytes from apoptosis and ameliorates cardiac fibrosis
(Ref. 104). YB-1 is regulated by various post-translational mod-
ifications, including ubiquitination (Ref. 105). Study in vitro and
in vivo indicated that hyperglycaemia caused the phosphoryl-
ation of S102 site of YB-1 in cardiomyocytes, which weakened
the interaction between YB-1 and OTUBI, thus promoting the
degradation of YB-1 through ubiquitin-proteasome pathway,
leading to aggravation of diabetes cardiomyopathy (Ref. 106).
Compared with the general population, patients with T2DM
are more likely to suffer from MI, which is a multi-step event
characterized by myocardial fibrosis, cardiomyocyte apoptosis
and cardiac dysfunction (Ref. 107). Follicle-like protein 1
(FSTL1) is a glycosylated secretory protein produced by mesen-
chymal cell lines such as cardiomyocytes and fibroblasts. It is
an acidic secretory protein rich in cysteine and is considered to
be a beneficial regulator of cardiac fibrosis and insulin resistance.
Recent studies have confirmed that the protective effect of FSTL1
in T2DM with MI was mediated by the USP10/Notchl axis.
Moreover, the inhibition of the USP10/Notchl axis could coun-
teract the myocardial protection of FSTL1 in T2DM (Ref. 108).

Myocardial disease

Myocarditis is a local or diffuse inflammatory lesion of the heart
characterized by inflammatory cell infiltration, cardiomyocyte
degeneration and necrosis (Ref. 109). In coxsackie virus B3
(CVB3)-infected myocarditis, the expression of miR-21 that tar-
geted the mRNA of the deubiquitinase YOD1 was up-regulated,
resulting in the downregulation of YOD1. The decreased expres-
sion of YOD1 led to the increase of the K48-linked ubiquitin
chains of desmin protein, causing the degradation of desmin
through the ubiquitin proteasome pathway. The degradation of
desmin induced by YODI resulted in desmosome damage and
disc dysfunction (Ref. 110).

Dilated cardiomyopathy (DCM) is a non-ischaemic cardiomy-
opathy with left ventricular dilation and systolic dysfunction,
without coronary artery disease or abnormal load proportional
to the degree of left ventricular damage (Ref. 111). By collecting
myocardial samples from patients with DCM and volunteers in
the control group, the researchers found that the protein level
of p53 in patients with DCM was associated with the upregulation
of herpesvirus-associated ubiquitin specific protease (HAUSP).
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HAUSP stabilized p53 by removing ubiquitin chains, resulting
in increased cardiomyocyte apoptosis (Ref. 112).

In DOX-induced cardiomyopathy, USP19 was downregulated
in cardiomyocytes, which accelerated the degradation of TRAF2.
The decrease in TRAF2 protein level led to abnormal NF-«B sig-
nalling, resulting in mitochondrial abnormalities and cell necrosis
(Ref. 113).

Rheumatic heart disease

Rheumatic heart disease (RHD) is a valvular heart disease caused
by acute rheumatic fever (Ref. 114). It is an autoimmune sequela
of suppurative streptococcal mucosal infection (Ref. 115). As one
of the CD4" T cell subsets, Th17 secretes IL-17 to mediate inflam-
mation as well as autoimmunity and promote inflammatory
response as well as disease progression in patients with RHD.
By isolating T cells from patients with RHD as well as healthy
volunteers and detecting the mRNA level of USP4 in CD4" T
cells, the researchers found that the mRNA level of USP4 was
related to the mRNA level of IL-17 and the function of Thl7,
indicating that USP4 may mediate the function of Th17 under
inflammatory stimulation. The preliminary study of USP4 pro-
vided experimental evidence that USP4 may be a future thera-
peutic target for RHD (Ref. 116).

Deubiquitinase inhibitors associated with cardiac disease

There are approximately 30 types of deubiquitinase inhibitors
(Ref. 19), and most of the research on deubiquitinase inhibitors
focuses on tumours (Refs 18, 117). In terms of heart disease, a
recent study revealed that UCHLI inhibitors inhibited a variety
of signalling pathways related to myocardial hypertrophy and
fibrosis, such as AKT, ERK1/2, STAT3, calcineurin A, TGF-f/
Smad2/3 and NF-xB, which alleviated hypertension-induced
myocardial hypertrophy and fibrosis (Ref. 118). P22077 is the
inhibitor of USP7 with the protective role in cardiac hypertrophy
and cardiac remodelling. The deubiquitinase inhibitor repressed
multiple signalling pathways such as AKT/ERK and TGEF-j/
SMAD?2/collagen I/collagen III, NF-xB/NLRP3 and NAPDH oxi-
des, leading to the inhibition of inflammation and oxidative stress
(Ref. 119).

As is exhibited in Table 1, there is little research on the role of
deubiquitinase inhibitors in cardiac disease, especially in cardiac
hypertrophy, and the vast majority of deubiquitinase inhibitors
are still in the pre-clinical stage, with no clinical research on deu-
biquitinase in cardiac disease (Ref. 18). Compared with other deu-
biquitinase inhibitor, the anti-hypertrophic role of LDN-57444,
the inhibitor of UCHLI, seems more explicit. LDN-57444 may
serve as a new therapeutic direction in the future.

Several studies have shown that the accumulation of ubiquiti-
nated proteins induced by deubiquitinase can lead to endoplasmic
reticulum (ER) stress and activation of autophagy (Refs 120, 121).
Both broad-spectrum inhibitors of deubiquitinases and specific
inhibitors of individual deubiquitinases can lead to an increase
in the ubiquitination of total proteins, thereby activating ER stress,
unfolded protein response and AMPK pathway-mediated autop-
hagy (Refs 122, 123). In hepatocellular carcinoma, the deubiqui-
tinase inhibitor bAP15 (a specific inhibitor of UCHL5 and
USP14) or ML-323 (a specific inhibitor of USP1) could increase
the ubiquitination level of total proteins and activate ER stress,
thereby inhibiting the viability and migration of cancer cells
(Refs 124, 125). However, currently, there is few relevant research
focusing on the relationship between deubiquitinase inhibitors
and ER stress and ER stress-related autophagy in cardiac disease.
In the future, more research is needed to focus on the potential
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Table 1. The function and mechanism of deubiquitinase involved in regulating cardiac disease

Target
Inhibitor deubiquitinase Disease Function Mechanism Reference
LDN-57444 UCHL1 Cardiac Alleviate cardiac hypertrophy Reduce the stability of EGFR 11
hypertrophy R o L s
UHCL1 Alleviate hypertension-induced Inhibit the activation of AKT, ERK1/2, 118
cardiac hypertrophy STAT3, calcineurin A, TGF-8/Smad2/3 and
NF-xB
P22077 USP7 Alleviate cardiac hypertrophy Inhibit the activation of AKT/ERK and 119
and cardiac remodelling TGF-B/SMAD2/collagen I/collagen lil,
NF-xB/NLRP3 and NAPDH oxides
U1 USP14 Alleviate cardiac hypertrophy Decrease GSK-3j phosphorylation 48
Spautin-1 USP10 T2DM-MI Accelerate T2DM-associated Ml Inhibit USP10/Notch1 signalling 108

impact of deubiquitinase inhibitors on ER stress and its related
autophagy in cardiac disease.

Deubiquitinase functions beyond the cardiac disease

Deubiquitinases not only participate in regulating cardiac disease
but also play an indispensable role in other diseases, including
vascular disease, cancer and neurodegenerative diseases
(Refs 25, 126, 127). Among the vascular diseases that are closely
related to cardiac disease, deubiquitinases have been proven to
be related to the onset and disease progression of atherosclerosis,
vascular calcification, aneurysm onset and disease progression
(Ref. 25). Furthermore, the emerging role of deubiquitinases in
cancer is also a research hotspot. It is demonstrated that deubiqui-
tinase USP25 promoted tumour growth of pancreatic cancer in
conversion with HIF-1a (Ref. 128). Taken together, deubiquiti-
nases target a variety of proteins, endowing them with the ability
to regulate physiological and pathological processes such as
eukaryotic cell division, differentiation and apoptosis. Further
exploration of the role of deubiquitinases in cardiac disease is
promising.

Conclusion

Deubiquitinases can recognize a variety of proteins related to the
progression and pathophysiological process of cardiac disease, stabil-
ize the protein by removing the ubiquitin chains, then affect the acti-
vation of the signal pathway that is downstream of the substrate
protein, and finally regulate the basic biological processes such as
inflammation, apoptosis and autophagy. According to an increasing
number of studies, deubiquitinases were implicated in the regulation
of the pathophysiology progression of cardiac disease, and its abun-
dance changes in a variety of pathological stimuli, which then affects
the post-translational modification of proteins in vivo. However,
there are still many unknowns about the mechanism of deubiquiti-
nases regulating cardiac disease that needs to be further explored.
There is still a large span from animal experiments to human
research. A deeper study of the mechanism on the role of deubiqui-
tinases and the study of related inhibitors will contribute to provid-
ing new therapeutic targets for cardiac disease in the future.
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