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Abstract

This pearl defines a translation from well-typed lambda terms to combinatory logic, where both the
preservation of types and the correctness of the translation are enforced statically.

1 Introduction

The correspondence between Curry’s type-free lambda calculus and
Schönfinkel’s combinatory algebras is among the oldest known

and the most aesthetically pleasing facts about the lambda calculus.
Peter Selinger, The lambda calculus is algebraic,

Journal of Functional Programming, 12(6), 549–566.

This paper explores the connection between the lambda calculus and combinatory
logic (Schönfinkel, 1924; Curry et al., 1958). The terms of the lambda calculus are defined
by the following grammar:

M ::= x | M M | λx.M

Evaluating and manipulating lambda terms require a careful treatment of variable binding.
Combinatory logic, on the other hand, is a language without variable binding:

T ::= x | T T | S | K | I

Here, lambda abstractions have been replaced by three combinators: S, K, and I.
Each combinator has its own reduction behaviour, given by the following rewrite
rules:

S f g x → (f x) (g x)

K x y → x

I x → x
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2 W. Swierstra

It is not so hard to define a translation from combinatory logic to lambda terms that
preserves reduction behaviour. The following three lambda terms correspond to the
combinators S, K, and I, respectively.

λf g x . (f x) (g x)

λx y . x

λx . x

Interestingly, there is also a translation in the other direction, from lambda terms to
combinatory logic. The key ingredient in this translation scheme is known as bracket
abstraction or combinatory abstraction. Given a variable x and term in combinatory logic
t, we can define the term � x . t by means of the following three cases:

� x . x = I

� x . t = K t if x does not occur freely in t

� x . (t1 t2) = S (� x . t1) (� x . t2)

As its name suggests, the term in combinatory logic computed in this fashion simulates the
reduction behaviour of a lambda abstraction in combinatory logic.

These translations are typically defined on untyped lambda terms. In this pearl, we
try a different tack and explore how to prove that the translation from the simply typed
lambda calculus to combinatory logic preserves both types and semantics. This is not
a new result, but rather than prove these properties post hoc, we ensure the transla-
tion is correct by construction using the dependently typed programming language Agda
(Norell, 2007).

2 Lambda calculus

To set the scene, we start by defining an evaluator for the simply typed lambda calculus.
This evaluator features in numerous papers and introductions on programming with depen-
dent types (McBride, 2004; Norell, 2009, 2013; Abel, 2016), yet we include it here in its
entirety for the sake of completeness.

Types

The types of our lambda calculus consist of a single base type (ι) and functions between
types, denoted using the function space operator (⇒):

data U : Set where
ι : U
_⇒_ : U → U → U

We can map these types to their Agda counterparts.

Val : U → Set
Val ι = A
Val (u1 ⇒ u2) = Val u1 → Val u2
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A correct-by-construction conversion 3

Here the interpretation of the base type, ι, is mapped to some type A : Set, which we pass
as a parameter to this development; the functions and proofs that follow do not depend on
the interpretation of our base type in any meaningful way.

Before defining lambda terms, we need one last definition. We will represent contexts
or type environments as lists of types:

Ctx = List U

Typically, we will use variable names drawn from the Greek alphabet to refer to types
(such as σ and τ ) and contexts (� and �).

Terms

Before we define the terms of the simply typed lambda calculus, we need to decide on how
to treat variables. We begin by defining the following inductive family, modelling valid
references to a type σ in a given context �:

data Ref (σ : U) : Ctx → Set where
zero : Ref σ (σ :: �)
succ : Ref σ � → Ref σ (τ :: �)

Erasing the type indices, we are left with the Peano natural numbers – corresponding to
the typical De Bruijn representation of variable binding.

We can now define the datatype for well-typed, well-scoped lambda terms as follows:

data Term : Ctx → U → Set where
app : Term � (σ ⇒ τ ) → Term � σ → Term � τ

lam : Term (σ :: �) τ → Term � (σ ⇒ τ )
var : Ref σ � → Term � σ

Each constructor mirrors a familiar typing rule: applications require the function’s domain
and argument’s type to coincide; lambda abstractions introduce a new variable in the con-
text of the lambda’s body; the var constructor may be used to refer to any variable that is
currently in scope.

Evaluation

The dependent types in the definition of Term pay dividends once we try to define an
evaluator for lambda terms. Before we can do so, however, we need to introduce a datatype
for environments:

data Env : Ctx → Set where
nil : Env []
cons : Val σ → Env � → Env (σ :: �)

An environment stores a value for each variable in the context �, as witnessed by the
following lookup function:

lookup : Ref σ � → Env � → Val σ
lookup zero (cons x env) = x
lookup (succ i) (cons x env) = lookup i env
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Note that this function is total. The type indices ensure that there is no valid variable in the
empty context; correspondingly, the lookup function need never worry about returning a
value when the environment is empty.

We can now define an evaluator for the simply typed lambda calculus:

[[_]] : Term � σ → (Env � → Val σ )
[[ app t1 t2 ]] = λ env → ([[ t1 ]] env) ([[ t2 ]] env)
[[ lam t ]] = λ env → λ x → [[ t ]] (cons x env)
[[ var i ]] = λ env → lookup i env

That this code type checks at all is somewhat surprising at first. It maps app constructors to
Agda’s application and lam constructors to Agda’s built-in lambda construct. Once again,
the type indices ensure that the evaluation of the lam construct must return a function (and
hence we may introduce a lambda). Similarly in the case for applications, evaluating t1
will return a function whose domain coincides with the type of the value arising from the
evaluation of t2. Finally, the environment of type Env � passed as an argument contains
just the right values for all the variables drawn from the context �.

3 Translation to combinatory logic

Before we can define the translation from lambda terms to combinators, we need to fix
our target language. As a first attempt, we might try something along the following lines,
turning the grammar from the introduction into an Agda datatype:

data Comb : Set where
S K I : Comb
app : Comb → Comb → Comb
var : ... → Comb

Yet if we aim for our translation to be type-preserving, the very least we can do is decorate
our combinators with the same type information as our lambda terms:

data Comb (� : Ctx) : U → Set where
S : Comb � ((σ ⇒ τ ⇒ τ ’) ⇒ (σ ⇒ τ ) ⇒ (σ ⇒ τ ’))
K : Comb � (σ ⇒ τ ⇒ σ )
I : Comb � (σ ⇒ σ )
app : Comb � (σ ⇒ τ ) → Comb � σ → Comb � τ

var : Ref σ � → Comb � σ

The types of both the app and var constructors are the same as we saw for the lambda
terms. The types of the primitive combinators are determined by their desired reduction
behaviour. Note that – as our Comb lacks lambdas and cannot introduce new vari-
ables – the context is now a parameter rather than an index as we saw for the Term
datatype. This is the essence of combinatory logic: a language with variables but without
binders.

Yet we will strive to do even better. We will define a translation that preserves both the
types and dynamic semantics of our lambda terms. To achieve this, we index our com-
binators with both their types and their intended semantics, given by a function of type
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Env � → Val u. This will enable us to define a translation from a lambda term to a term
in combinatory logic that has the same semantics as its input lambda term. This yields the
final version of our datatype for combinatory logic:

data Comb : (� : Ctx) → (u : U) → (Env � → Val u) → Set where
S : Comb � ((σ ⇒ τ ⇒ τ ’) ⇒ (σ ⇒ τ ) ⇒ σ ⇒ τ ’) (λ env → λ f g x → (f x) (g x))
K : Comb � (σ ⇒ (τ ⇒ σ )) (λ env → λ x y → x)
I : Comb � (σ ⇒ σ ) (λ env → λ x → x)
var : (i : Ref σ �) → Comb � σ (λ env → lookup i env)
app : Comb � (σ ⇒ τ ) f → Comb � σ x → Comb � τ (λ env → (f env) (x env))

Here the type of each base combinator (S, K, and I) contains both its type and seman-
tics. For example, the I combinator has type σ ⇒ σ and corresponds to the lambda term
λ x → x. None of the combinators rely on the additional environment parameter env. This
environment is used in the var constructor; just as we saw in our evaluator for lambda
terms, this environment stores a value for each variable. Finally, the app constructor
applies one combinator term to another. The type information for both the var and app
constructors coincides with their counterparts from the Term data type; their intended
semantics can be read off from the evaluator for lambda terms, [[ t ]], that we defined
previously.

The key difference between lambda terms and SKI combinators is the lack of lambdas
in the latter. To handle the bracket abstraction translation from the introduction, we define
the abs function that maps one combinator term to another:

abs : ∀ {f} → Comb (σ :: �) τ f → Comb � (σ ⇒ τ ) (λ env x → f (cons x env))
abs S = app K S
abs K = app K K
abs I = app K I
abs (app t1 t2) = app (app S (abs t1)) (abs t2)
abs (var zero) = I
abs (var (succ i)) = app K (var i)

This behaviour of the abs function should be clear from its type: given a Comb term of type
τ using variables drawn from the context σ :: �, the abs function returns a combinator of
type σ ⇒ τ using variables drawn from the context �. Essentially, any occurrences of the
var Top are replaced with the identity I; the new argument is distributed over applications
using the S combinator; any other variables or base combinators discard this new argument
by introducing an additional K combinator.

With this definition in place, we can now define our type-preserving correct-by-
construction translation. That is, we aim to define a translation with the following
type:

translate : (t : Term � σ ) → Comb � σ [[ t ]]

Here a lambda term of type σ in the context � is mapped to a combinator of type σ using
variables drawn from the context � in such a way that the evaluation of t and semantics of
the combinator are identical, namely [[ t ]]. The definition of this translation is now entirely
straightforward.
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translate (app t1 t2) = app (translate t1) (translate t2)
translate (lam t) = abs (translate t)
translate (var i) = var i

To see why this code type checks, note that both the (dynamic) semantics of both the
app and var constructors of the Comb datatype coincide precisely with their semantics as
lambda terms, [[ app t1 t2 ]] and [[ var i ]], respectively. Finally, if translating the body of a
lambda produces some Comb term f, the abs function produces a combinator term with the
semantics λ env x → f (Cons x env). The similarity between the type of the abs function
and the lam branch of our evaluator is no coincidence.

There is a subtle difference between this translation scheme and the one presented in the
introduction. In particular, when a variable does not occur anywhere, the bracket abstrac-
tion sketched in the introduction immediately introduces a K combinator, whereas the abs
function will use the S combinator in every application – even if the variable is unused in
both branches. This may lead to unnecessarily large combinatorial terms. Furthermore, the
SKI-combinators are not the only possible choice of combinatorial basis. In particular, the
S combinator always passes its third argument to the first two – even if it is unused in one
of the branches. Can we do better?

4 An optimising translation

There is an alternative implementation of bracket abstraction, using two additional combi-
nators B and C, that Turner (1979) attributes to Curry. The reduction behaviour of B and
C is defined as follows:

B f g x → f (g x)

C f g x → (f x) g

In contrast to the S combinator, the B combinator only passes its third argument to its
second argument. The C combinator, on the other hand, only passes its third argument
to its first argument. This avoids unnecessarily duplicating the third argument x, when it
is only used by one of the two terms in an application. When the variable is not used at
all, we can introduce the K combinator as suggested by the translation scheme from the
introduction. As a result, normalising terms may require fewer reduction steps.

We can readily extend our Comb datatype with new constructors for these two
combinators:

data Comb : (� : Ctx) → (u : U) → (Env � → Val u) → Set where
...
B : Comb � ((σ ⇒ τ ) ⇒ (ρ ⇒ σ ) ⇒ (ρ ⇒ τ )) (λ env f g x → f (g x))
C : Comb � ((σ ⇒ τ ⇒ ρ) ⇒ τ ⇒ σ ⇒ ρ) (λ env f g x → (f x) g)

When translating an application, we now need to select between four possible choices: K,
B, C, and S, depending how variables are used. How can we make this choice, while still
guaranteeing that types and semantics are preserved accordingly?

The key insight is that the translation scheme, implemented by the abs function above,
already informs us whether or not a variable is used: any variable occurrence or combinator
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that does not use the most recently bound variable starts with an application of the K
combinator. Rather than indiscriminately apply the S combinator on subterms, we can
instead differentiate where variables are actually used. To this end, we define the following
specialised function for applying the S combinator:

sapp : ∀ {f x} → Comb � (σ ⇒ τ ⇒ ρ) f → Comb � (σ ⇒ τ ) x →
Comb � (σ ⇒ ρ) (λ env y → (f env y) (x env y))

sapp (app K t1) I = t1
sapp (app K t1) (app K t2) = app K (app t1 t2)
sapp (app K t1) t2 = app (app B t1) t2
sapp t1 (app K t2) = app (app C t1) t2
sapp t1 t2 = app (app S t1) t2

Unlike the previous naive translation, this definition avoids unnecessary occurrences of the
K combinator, simplifying the resulting definition whenever possible. Only the very last
case, when neither t1 nor t2 start with an application of K, introduces the S combinator.
The other cases introduce an outermost K, B, or C combinator, depending on where the
‘bound’ variable occurs.

To complete the translation, we need to adapt the abs function: adding new cases for B
and C, and calling the sapp function instead of applying S directly.

abs : ∀ {f} → Comb (σ :: �) τ f → Comb � (σ ⇒ τ ) (λ env x → f (cons x env))
...
abs B = app K B
abs C = app K C
abs (app t1 t2) = sapp (abs t1) (abs t2)

The types and remaining cases definitions, however, remain unchanged.

5 Reflection

Although the translation schemes are reasonably straightforward, finding the implementa-
tion presented here was not. Writing dependently typed programs in this style – folding a
program’s specification into its type – may feel like a bit of a parlour trick, where the right
choice of definitions ensures the entire construction is correct. Yet reading through these
definitions after the fact – like so often with Agda programs – does not tell the complete
story of how they were constructed.

Verifying the type safe translation from lambda terms to SKI combinators is a question
I have set my students in the past. Proving this translation correct requires defining an
evaluation function for combinatory terms and then proving that the translation is seman-
tics preserving. Interestingly, this proof requires an axiom – functional extensionality – in
the case for lambdas, as we need to prove two functions equal. Yet the structure of proof
is simple enough: it relies exclusively on induction hypotheses and a property of the abs
function. It is this observation that makes it possible to incorporate the correctness proofs
in the definitions themselves – where the required property of the abs function is combined
with its definition. This observation is an instance of the recomputation lemma of algebraic
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ornaments (McBride, 2010). Extending the translation scheme to use the B and C combina-
tors is a bit harder. The code accompanying this paper demonstrates how to use the ‘co-De
Bruijn’ representation of variables to define the optimising translation (McBride, 2018).
Ralf Hinze suggested defining the translation directly using the sapp function.

Historically, combinatory logic arose from the desire to find a foundation for mathemat-
ics that avoided the issues surrounding variable binding (Schönfinkel, 1924; Curry et al.,
1958). The translation between between lambda calculus and combinatory logic is well
documented in numerous textbooks (see Barendregt, 1984, Chapter 7; Hindley & Seldin,
1986, Chapter 2; Sørensen & Urzyczyn, 2006, Chapter 5.4; Mimram, 2020, Chapter 3.6).
There is a close connection between combinatory logic and Hilbert-style proof systems –
cognoscenti will recognise the correspondence between the first three axiom schemes and
the types that can be assigned to the three combinators above. Since then, Turner (1979) has
explored how to compile functional programs to combinatory logic (see also Peyton Jones,
1987, Chapter 16; Diller, 1988). This idea has been extended further by Hughes (1982) and
many others, even leading to design of custom hardware for efficiently rewriting terms in
combinatory logic (Stoye, 1983, 1985; Scheevel, 1986). The lambda terms corresponding
to the S and K combinators have made a recent reappearance as the operations defining the
Reader applicative functor (McBride & Paterson, 2008).

As our starting point, we have taken the ‘traditional’ simply typed lambda calculus.
More recent work by Kiselyov (2018) shows how a slight modification to the typing rules
allows for a denotational semantics as combinators directly. Formalising this in a proof
assistant, however, is left as an exercise for the reader.
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