
Can. J. Math. Vol. 47 (6), 1995 pp. 1219-1239 

ANALYTIC PROPERTIES OF POWER PRODUCT EXPANSIONS 

H. GINGOLD AND A. KNOPFMACHER 

ABSTRACT. Let/(z) be a complex function analytic in some neighbourhood of the 
origin with/(0) = 1. It is known that/(z) admits a unique "power product" expansion 
of the form 

CO 

n=\ 

convergent near zero. We derive a simple direct bound for the radius of convergence of 
this product expansion in terms of the coefficients of/(z). In addition we show that the 
same bound holds in the case of "inverse power product" expansions 

CO 

f(z)=ïi(\-hnz»rl. 

Examples are given for which these bounds are sharp. We show also that products with 
nonnegative coefficients have the same radius of convergence as their corresponding 

1. Introduction. The idea of representing a formal power series 

oo 

(1.1) /(*) = 1 + Da»*" 

in the form of a formal product expansion 

oo 

(1-2) f(z)=I[(l+gnZn) 
n=\ 

with gn e C for n E N, appears to have first been studied in the 1930's by Ritt [R] and 
Feld [F]. More recently, Knopfmacher and Lucht [KL] established a sharper domain of 
convergence: Consider the Maclaurin series 

oo 

(1-3) / ( z ) / / ( z ) = E ^ _ 1 

and let 

(1.4) r=suV\dn\
l'n. 

n>\ 

(1.5) Then the expansion (1.2) converges for \z\ <l/r. 
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1220 H. GINGOLD AND A. KNOPFMACHER 

This result has been established independently also by Indlekofer and Warlimont [IW]. 
In practice, for functions/(z) given in the form (1.1), the determination of r can prove 
difficult. 

The main aim of this paper is to prove a simple direct bound for the radius of conver­
gence of (1.2) in terms of the known coefficients of (1.1). For this purpose define 

(1.6) s = sup{\an\
l'n9ne N}. 

THEOREM 1. Iff(z) given by (1.1) is analytic in some neighbourhood of the ori­
gin then the expansion (1.2), termed the power product expansion off(z) converges for 

M < 5-
In particular, the power product expansion of the function/(z) = -y^f studied in 

Section 2 shows that this bound can be sharp. 
The same bound is also shown to hold in the case of inverse power product expansions, 

oo 

(i.7) / ( z ) = n ( i - w 
n=\ 

which are studied in Section 3. Inverse power product expansions are known to play an 
important role in the theory of Witt vectors. (See e.g. Dress and Siebeneicher [DS] and 
Borwein and Lou [BL]). 

Finally in Section 4 we look at analytic properties of product expansions arising in 
combinatorial applications. 

2. Power product expansions. It is easy to see that if/(z) has representations in 
both forms (1.1) and (1.2) then 

f(z) = 1 +giz + g2z
2 + fc +gig2>3 + • • • 

where in general for n > 1, 

C2-1) an= E gjiSii-'Sir* 
jl+J2+-+jr=n 

\<j\<h<-<jr<n 

the summation being over all partitions of « into distinct parts. Various concrete examples 
of (2.1) are given in Gingold, Gould and Mays [GGM]. As two further concrete examples 
of (2.1) arising in combinatorics we mention II£ii(l + ~) , treated by Greene and Knuth 
[GK, p. 48] and n ~ i ( l + j£) treated by Knopfmacher et al [KORSW]. 

Of more interest for our purposes is the expression of the coefficients gn in terms of 
the coefficients ai9 1 < / < n. From (2.1), 

(2-2) gn = a„- J2 Shgii ' ' ' gir-
n=i\+i2+---+ir 
1 1 < / 2 < • • • < / , • 

r>2 
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ANALYTIC PROPERTIES OF POWER PRODUCT EXPANSIONS 1221 

Now we may successively substitute for each gt using (2.2) and continue this process 
until all the gfs are eliminated. This leads to the following representations 

g\ = <*\ 

gi = a2 

g3 = «3 - a2a\ 

g4 = a4 -a3a\ + a2a\ 

gs = a$ — a$a\ — ai,a2 + a^a\ + a\a\ — a2a\ 

gô = Û6 — #5^1 — ^4«2 + 04^1 + amenai — a^a\ — a\a\ + a2a\ 

gi = ai — a^a\ — a^a2
 + asa2\ — #4^3 + 2a^a2a\ — a^a\ + a\a\ + a^a\ 

— 3ai,a2a\ + a^a\ — a\a\ + 2a\a\ — a2a\ 

g8 = «8 - «7^1 - #6^2 + «6^1 ~ #503 + 2a5a2a\ - ûf5aj + 0403^1 + (24^ 

— 204^2^1 + a^a\ + «^2 — a\a\ — 3^3^201 + 3a^a2a\ — a^a\ 

+ 2a|af - 2a\a\ + a2«i 

g9 = ag — a%a\ — aja2 + #7^1 — #6^3 + 2a^a2a\ — a^a\ — a^a^ + 205^301 

+ a$a2 — 3asa2ax + a^ax + a4a\ + 2^40302 ~ 3tf4a3a! — 3a4a2a\ 

+ Aa4a2a\ — a^a\ — 2a\a2a\ + 2^3^ — a^al + Sa^a\a\ — 5aT,a2a\ 

+ « 3 ^ + a\a\ — 3a\a\ + 3a\a\ — a2a\ 

gio = # 10 ~ ^9^i — ^8^2 + ̂ 8^1 — «7^3 + 2aja2a\ — #7^ — #6^4 + 2a^a2a\ 

+ «6^2 — 3a6a2a\ + a6^f + «504^1 + «503^2 — 205^3^1 — 2a$a\a\ 
^ ^ 9 9 9 9 "̂  

+ 3^5^20! — a$ax + fl402 — #4^1 + «4^3 — 5a4a^a2a\ + 3a4<Z3<z1 

— a4û?2 + 5ci4a\a\ — 4d4a2a
4
{ + #4^1 — a\a\ — a\a\ + 5a\a2a\ — 2a\a\ 

+ 3aza\a\ — %a^a\a\ + Sa^a2a\ — a^a] — 2^0^ + ̂ a j — l>a\a\ + a ^ i • 

At first glance these formulas would not appear to be useful in trying to estimate the size 
of growth of the gw's in terms of that of the aw's. However, it turns out that there is quite 
a lot of structure to these seemingly haphazard expressions and by exploiting this we are 
lead ultimately to the proof of Theorem 1. 

We begin by introducing some further notation that we will use throughout. Let À = 
(lAl2A2 • • • nXn) denote the partition 

Ai • 1 + A2 • 2 + • • • + \n • n = n, X, > 0, 1 < i < n, 

and let |A| denote the sum £JLI A,-. Furthermore we use c(A) to denote a constant G Z 
which depends on A and use ax for the product a\xa\2 • • • a\n. Where necessary we write 
A = X(n) in order to make the size of the partition explicit. 

LEMMA2.1. Forn > 1 

(2.3) gn = J2c(X)ax 

A(») 
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1222 H. GINGOLD AND A. KNOPFMACHER 

where the sum is over all partitions A ofn. 

PROOF. For « = l w e have g\ — a\. Now we proceed inductively using the relation 

(2.2), 

gn = an- E ëhëh'-gir-

ii<i2-<ir 
r>2 

By assumption an arbitrary term in the expansion of gtj is of the form c(A(z)))aA(/A 
Thus an arbitrary term in the product gixgi2 • • * gir has the form 
C(A(ÏI))C(A(I2)) • • • c(A(ir))a

A(,'l)aA(,'2) • • • aA('v) = d(X(m))a^m\ where the constant 
d(X) e Z since each c(A(*))) G Z, and <zA(m) represents a product which corresponds 
to a partition of size 

w = l - è A 1 ( i > ) + 2X;A2(ï>) + - - - + / i - E ^ 0 V ) 
y = l y = l y = l 

= E kXk(h) + E *Mfe) + E *M*r) 
*=1 ifc=l ife=l 

= / l + Ï2 + ' ' ' + *r — w- • 

THEOREM 2.2. The sign of the term c(X)ax (c(A) 7̂  0) /« the expansion ofgn is 

(2.4) (-1)IA'+1. 

PROOF. TO prove this we make use of a three term recurrence for gn established in 
[GGM, Theorem 3]. Let 

M* = a„ 

Am,n = 0 if m > n else 

v '̂~v A m n = Am—x,n Am—\^m—\Am^n—m^\. 

Then 

Firstly by iteration of (2.5), 

^m,« = Am— \n Am—im—\\Am—\n—m+\ Am—\m—\Am^n—2(m—\)\ 

— Am—X,n — Am—Xjn—\Am—Xji—m+\ + Am_\m_\Amjl—i{m-X) = • • • 
r 

— 2^^m~\,m~\^m-\,n-j(m-\) + (~ 1) ^m-l,/n-l^w,M'4-l)(w-l)-

Now choosing r large enough so that m> n — (r+ \){m — 1) gives 

[£3fl 
(2- 6 ) ^m,« = E ( - ^ X z - l m-l^m-l,«-y(m-l). 

j=0 
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ANALYTIC PROPERTIES OF POWER PRODUCT EXPANSIONS 1223 

From this we deduce in the same way as in Lemma 2.1 that^w?w = T,\\\=n cm(\)ax where 
cm{\) E Z represents a constant depending on A and m. For m = l,A\tn = an satisfies 
(2.4) since |A| = 1. 

Suppose now by induction that for I = 1,2,...,m — 1 A^n has terms whose signs 
obey (2.4). We consider now the sign in Amjn of the term corresponding to an arbitrary 
partition \(ri) with cm(X) ^ 0. By (2.6) terms having the form aA(w) will arise from one 
or more products 

{-^1 ^m-\,m-\Am-\,n-j{m-\), j ~ 1 , 2 , . . . , n — m 
Vm- U 

Suppose the term from A,
m_l m_x corresponds to the product afl a"2 • • • cÇr, this being 

made up of the product of/ terms from Am-\^m-\. For each of these y terms the sign is 
determined according to our inductive hypothesis by (—1) raised to the power 1 plus 
the sum of the exponents of the corresponding term. Thus the sign of the product term 
a? • • • a*/ KÀm_Xm_x will be just ( - l ) 1 ^ . 

On the other hand the sign of the term from ̂ 4m_ijW_/(W_i), say a^1 a^2 - - cCSfZ^u will 
be(-l)1 +^<. 

Combining these implies that the sign of ax^ from (— iyAJ
m__{ w_1^w-i,n-y(m-i) will 

be (_i)2y+i+£«,+5:/3, = (_1y+iAl- a s required, since we have A,- = a- + ph 1 < i < n. m 

REMARK. We have 

(-1)IAI+ 1 = (_n^2i-i+£A2,-+l _ / j\-ZA2/_i+ZA2i+l 

= / lyH-i+ZAa _ | (~l)1+IA2i, n even, 
(-lfX2i, «odd, 

where we have used the fact that n = Y,i>\ 2/A2/ + E/>i(2/ — 1)À2/—i- This gives an 
alternative rule for determining the sign of the term in aX{ji) that depends only on the 
even exponents A2/ as well as the parity of n. 

In order to estimate the rate of growth of the coefficients^ in terms of the size of the 
coefficients at, 1 < i < n, we will require estimates for the function 

(2.7) * ( I )=£KA(*) ) | . 
A(») 

Thus B(n) denotes the sum of the absolute values of the coefficients occuring in the 
expansion (2.3) of gn. 

We first remark that the similar sum 

(2.8) T,c(W) = 
0, n±2\ 

I 1, n = 2k £ = 0 , 1 , 2 , . . . . 

This follows by setting a „ = l , « > l i n ( l . l ) which corresponds to the function 

with the well known power product expansion il)£o(l + ^ )• 

1 

Suppose instead we choose an — — 1, n > 1 in (1.1) with corresponding function 
z __ 1-

\-z 1-l + E ~ i « « ^ = l - ^ - - ^ 2 
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1224 H. GINGOLD AND A. KNOPFMACHER 

In this case by Theorem 2.2 each term c({ri))am of the representation (2.3) becomes 

It follows that the coefficients gn in the power product expansion of j ~ are equal to 
B(n)> We use this to prove 

THEOREM 2.3. (a) Forn—p prime, 

2^ — 2 
(2.9) B(p)= . 

P 

(b) 

2«—l 2n 

(2.10) <B(n)<—, n>\. 
n n 

(c) As n —> oo, 

(2.11) B(n)=^[l + oQ. 

PROOF. By taking logarithmic derivatives of the formal power product expansion 
(L2) and using (1.3), we obtain the recurrence relation (see e.g. [KL]), 

(2.12) g» = - + £ ^(-a-AfA n>\. 
d\n 
d>\ 

We use this recurrence to estimate gn = —B(n) in the particular case/(z) = -y~f for 
which 

f'(7\ _ 1 oo 
J_2£j_ _ y v i _ 2w^z / z -1 

f{z) ( l -2z)( l -z) „tf 
Firstly g\ — d\ — — 1 so that B(\)— 1. Next for n — p prime, 

dP + l , v- 2 - 2 ^ 
gP = — + -(-g\f = , 

P P P 
which proves a). 

b) Suppose now inductively that 

— < & < — , 1 <j<n. 

It is straightforward to verify these inequalities for 1 < j < 8. Hence we may 
assumes > 9. By (2.12), 

—2n 1 1 

» » d\r. d ' 
d>\ 
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Now 

n d\n d » d\nd ' » » d\n X n ) 

d>\ \<d<n 

1 2n 

and the result follows, 
c) As shown above 

1 1 2n (2 nl2 (d\d~\\ 

d\n d n n\n ^\nJ I 
d>l 

Now by dissecting the sum Y."J=-i{jl)
d~x into the three parts 

{ E • E • E ) © 
d\à-i 

as in Greene and Knuth [GK] we find that 

nl2 (d\d-\ 

d=3 

It follows that 

E ( - ) =0(n-2% „ ->oo . 

REMARK. We can improve this asymptotic estimate by bootstrapping. Since 

as shown above, and since (2.11) gives 

2fe./2)2 = ^ r ( i + < ^ ) ) > » » - ° ° 

we deduce that as « —> oo, 

(2 13) B(n)-r^l+0(-n~2^ " 
(2.13) fiW-{f(l + 2 + 0 ( n - 2 ) ) ? „ 

odd 

even 
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1226 H. GINGOLD AND A. KNOPFMACHER 

In view of the significant role played by the sequence {B(n)} in the relationship be­
tween {gn} and {an} it seems worthwhile to note a few arithmetic properties of these 
numbers. The first few values appear below. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
B(n) 1 1 2 3 6 8 18 27 54 84 186 296 630 1008 2106 3711 

From this table we notice some interesting divisibility properties of B(n) which are easily 
established. 

PROPOSITION 2.4. (a) 

j 0 (mod 2), n ^ 2* 
B(n) = 

(b) Forn>3, 

B(n) = 

_lk * = 0 ,1 ,2 , . . . . 
1 (mod 2), n = 2 

f 0 (mod 3), n ± 3 • 2* , _ ft 1 ? 

12 (mod 3), « = 3-2* * - u ' ^ ' - - " 

PROOF, (a) l — j ^ = -^ (mod 2) and thus the power product for 1 — —^ modulo 2 
equals that of ^ = U%L0(1

 + z2*)-
(b) This follows from the identity 

oo 1 ~2 

(1 - z ) ( l - z 2 ) 11(1 +z 3 2 ) = (1 - z ) ( l - z V O - z > = 
*=0 1 + Z + ZZ 

Now modulo 3, 

1 — z2 1 — z2 1 + z z -22. / x 

Theorem 1 of the introduction is now one part of the following main result. 

THEOREM 2.5. If 

oo oo 

(2.14) f(z) = 1 + £ a„z" = I K ! +£»*") 

and if the associated function 
CO OO 

(2.15) / W = l - E k | z " = n O - G B z " ) 

then for n > 1, 

(2.16) | g w | < G w < 5 ( « K 

where s = suprt> j | a„ |* /w. 
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Furthermore the power products (2.14) and (2.15) converge at least for 

(2.17) | z | < l 

PROOF. Let \a\x denote the product \a\ |Al \a2\
Xl • • • \an\

x". We have by (2.3) 

\gn\ = \j:c(\)ax\<Y/\c(\)\\a\x = Gn, 
A(n) X(n) 

since -Gn = £A(/j)(-l)W
+1|c(A)|(-l)lAl|tf|A using (2.4). Furthermore by definitions 

(1.6) and (2.7) 

Gn < E HX)\^ = B(ny. 
A(«) 

It follows that 

limsuplg^l1/'1 < \imsup\Gn\
l/n < \imsupB(n)l'ns = 2s 

n>\ ri>\ «—KX> 

by our estimate (2.11) for B(n). The bounds for the power product radii of convergence 
then follow. • 

REMARKS. 1) The example ~f whose power product converges for \z\ < ^ shows 
that this bound for the radius of convergence is in general best possible. 

2) We are indebted to Lutz Lucht (Clausthal) for showing us that the bound (2.17) 
of Theorem 2.5 can be deduced from the result (1.5): If we assume for convenience that 
s = 1, then from the recurrence relation 

w - l 

nan = dn + Y, dkan-k, n>\, 

it is easy to show by induction that \dn\ < 2n — 1 which with (1.5) implies the bound 
(2.17). However the proofs of (1.5) in [KL, IW] depend heavily on complex analysis 
whereas the direct proof of (2.17) given above requires only elementary techniques and 
leads also to the more precise estimates (2.16). 

Although the bound (2.17) is in general best possible, sharper bounds can be derived 
for classes of functions satisfying addition restrictions. The following proposition pro­
vides a useful tool for deducing such improved estimates. 

PROPOSITION 2.6. If 

oo oo 

(2.18) / ( z ) = l - E k | z " = I l O - G » z " ) 
n=\ n=\ 

then for n > 1, 

(2.19) 0<Gn<-—, 
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1228 H. GINGOLD AND A. KNOPFMACHER 

where îj& = Y^xdnz
n-\ 

Furthermore the radius of convergence of the product in (2.18) is greater than or 

equal to that oy-j^z. 

PROOF. The inequality Gn > 0 is immediate from equation (2.16) of the Theorem. 
Next, from the recurrence (2.12), 

r dn „ 1 d dn 
n = ~~n~~ ^ ~d nld-~~n~' 

n d\n a n 

d>\ 

Thus limsup IG^I1/" < limsup \dn\
xln which implies that the radius of convergence 

of the product in (2.18) is greater than or equal to that 
J\z) 

REMARK. The radius of convergence of (2.18) can be strictly greater than that of 

•C^, for example if/(z) = (1 — z). 

Now the use of the above result in conjunction with Theorem 2.5 leads easily to nu­
merous stronger corollaries. 

COROLLARY 2.7. a) Iff(z) — 1 is an odd function then the power product (1.2) 

converges at least for \z\ < j-s, where </> = 2^. 

b) Iff(z) is an even function then the power product (1.2) converges at least for 

N < TTs-

PROOF, a) Letg(z) denote the "odd" function 1 - T%LX z2k~l = x-f^r and define 
the sequence {E(n)}^LY by 

(2.20) g ( z ) = n ( i - £ ( » y ) . 

Now as in the proof of (2.16) in Theorem 2.5, we have the inequalities 

(2.21) \gn\<Gn <E{n)s\ 

Now since gf(z) converges for \z\ < 1 and -~r has simple poles on the circles \z\ = <j> 

and \z\ = 4, we deduce that ^ has radius of convergence | . Thus by Propo­

sition 2.6 the product representation (2.20) converges for \z\ < ^. We deduce that 

l imsup^^ E{ri)xln < <\> and the stated result then follows by using (2.21). 

b) This follows in the same way as a) above by considering the power product ex-
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pansion for the function g(z) = 1 — Ejg^ z2k — jzp~. • 

REMARK. We can generalise part b) above by considering functions which have the 

form h(z) =f(zk), k = 2,3,4, for which the radius of convergence is at least -^. 

Similarly if we impose growth restrictions on all the coefficients an of f(z\ better 

bounds for the radius of convergence can be obtained. The next corollary is merely a 

sample of the large number of results of this type that can also be deduced. 

COROLLARY 2.8. a) Iff(z) given by (1.1) has coefficients which satisfy the growth 

condition \an\ < ^rr, n>l, then the product (1.2) converges at leastfor \z\ < (2/3)s~l. 

b) Ifthe coefficient satisfy \an\ < ^, n > 1, then the product (1.2) converges at least 
for\x\ <(ln2>~1 . 

The proofs follow as in the previous corollary by considering the poles of ^ for the 
respective functions 

00 z" 2 — 3z 
g ( z ) = 1 ~52^ = ^ 7 

and g(z) = l - E £ , £ = 2 - e * . 

We remark finally that the functions g(z) themselves of Corollaries 2.7 and 2.8 can be 
used to show that the respective bounds are sharp. 

3. Inverse power product expansions. If f(z) has representations in both forms 
(1.1) and (1.7) then 

f{z) =\+hxz + (h2 + h^z2 + (h3 + h2hx + h\)z3 + • • • 

where in general for n > 1, 

(3.1) an= £ nhhh'"hjr 
jl+j2+-+jr=n 

\<jx<J2<-<jr<n 

where the summation is over all partitions of n. Concrete examples of (3.1) with 

hn G {0,1} arise in the theory of partitions. A further concrete case is the product 

n ^ i (1 ~ j)~\ treated recently by Knopfmacher and Ridley [KR]. 

By separating out the term h„ from the right hand side of (3.1) and successively sub-
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stituting for each hjt that occurs, we are lead to the representations 

hx = a\ 

h2 = 0 2 --a\ 

h = 0 3 --a2ax 

h, = «4 --aia\ - a\ + 2020?--A 
h5 = « 5 -- 0401 — aia2 + 030? + a\a\ -a2a] 

0 A. 0 0 0 ^ ^ 

305020! + «50J + 040i + 2040302 — 304030J — 304020i + ^a^a2a\ — a^a\ 

2a\a2a\ + 2030] — 0302 + 5030^0? — 503020? + ^a\ + 0*01 — 30^0? 

/Z6 — fl6 — ^501 — 0402 + 040j — 03 + 3030201 — 030i — 02# 1 

h7 — 07 — 060j — 0502 + 050j — 0403 + 2040201 — 040! + 030l + 0302 — 3030201 

+ 030? — 0201 + 20201 ~ a1a\ 

h% = 08 — 0701 — 06^2 + #6^? — #5^3 + 2a^a2a\ — 050? — 04 + 3040302 + 20402 
O /l O 0 0 0 1 ^ A 

— 5040201 + 20401 + a3a2 — 2030j — 403020l + 6030201 ~~ 2030j — 02 

+ 5020? - 7020? + 4020^ - a\ 

hg = 09 — 0801 — 0702 + #7^1 — #603 + 20602^1 ~ #6^1 — #5^4 + 2050301 + 0502 

M 

M 

+ 3020i — 0201 

^10 = «10 — «9^1 — «8^2 + #8#? — «7«3 + 2aja2a\ — 070i — 0604 + 2060301 + 0602 

— 3060201 + a*>a\ — (*5 + 3050401 + 3050302 ~ 405030? ~ 4050^01 + 505020? 
^ 0 0 0 0 "̂  1 O O 

— 050! + 0402 — 2040j + 0403 — 704030201 + 504030] ~ «4^2 + 7040^01 

— 604020? + a<\a\ — a\a\ — 2a\a\ + 703020? — 3030? + 5a^a\a\ — \2a^a\a\ 

+ 7030201 ~~ a 3 f l l ~~ 2020? + 4020? — 2020^. 

To begin our study of inverse power product representations we note that formally 
(1.7) corresponds precisely to the power product expansion (abbreviated PPE), 

1 0 0 

Now 

Thus by substituting into the recurrence relation for the power product (2.12) we obtain 

n d\n a 

d>\ 

which gives for the inverse power product the recurrence 

(3.2) *» = - - E W 
n d\n a 

d>\ 
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If we compare this with the corresponding recurrence for the power product of/(z), 

n d\n d ' 
d>\ 

we see that in the case of « odd, since h\ = d\ = g\ and all divisors d of n are also odd, 
that hn — gn, n = 1,3,5, Thus we have shown 

PROPOSITION 3.1. Iff(z) = 1 + £ ^ anz
n has formal product expansions 

oo 

^)=nov) 
and 

OO 

Az)=]\(i-hHfri 

then for n odd, h„ = gn. 

REMARK. If for example we consider the power product for the partition generating 
function 1 + T%L\ p(n)zn, then the proposition tells us that gn = 1 for odd n. The PPE for 
this particular function is given a detailed treatment in [IW]. 

It follows that in considering further properties of inverse PPE's we may restrict our 
attention to the coefficients {h2n}^L\- Corresponding results for {/*2«-i}^i follow im­
mediately from those previously established for {gin-\ }™-\ • 

Furthermore since \dn\ = \ — dn\, all the results in the power product literature which 
depend on estimates for \dn\ apply with trivial modification to inverse PPE's as well. In 
particular if r — supw>1 \dn^ln then the result of [KL] and [IW] implies that the inverse 
PPE (1.7) of/(z) converges at least for 

(3.3) \z\<k 

Similarly, Theorem 3 of [GKL] gives conditions on the sequence { l ^ l } ^ which 
when applied to inverse PPE's ensure that the conclusion lim^oo hn/(dn/n) = 1 holds. 
Furthermore by considering -~ in place of/(z), the results of [GKL] on the distribution 
of the zeros of partial products become theorems on the distribution of the poles of the 
partial products Qm(z) = ITJLi(l - A»^)"1, rn > 1, of inverse PPE'S. 

NOTE. If we eliminate ^ from each recurrence (3.2) and (2.12) then we have the 
relationship 

1 (-Ud+l 

(3-4) E / ^ E T £,„• 
d\n a d\n a 

This can be used to recursively calculate hn, n even, if the sequence {gn}^ is known 
and vice versa. In particular in the case of partition generating function considered above, 
we have for even n the recurrence 

d\n 

where a(n) = E</|„ d is the divisor sum function. 
By analogy with our results for PPE's we show 
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LEMMA 3.2. Forn > 1, 

(3.5) hn = J2b(X)ax 

X(n) 

where the sum is over all partitions À ofn. 

PROOF. The proof is analogous to that of Lemma 2.1 using instead the relation 

hn = an- Y, hhhh--hir. 

r>2 

since y ^ is its own inverse PPE we deduce immediately the identity 

1, n = 1 
0, n> 1 

NOTE. Proposition 3.1 implies that b(\(2n - 1)) = c(A(2/i - 1)) for n > 1. Also 
l 

\-z 

(3.6) E*(A(n)) = 
A(n) 

(Compare with (2.8) for £c(A(/i))). 

LEMMA 3.3. 77*e s/g/i 6>/7/ïe term b(X)ax (b(X) ^ 0,) /w f/*e expansion ofhn is 

(3.7) (-1)'A,+1. 

PROOF. AS in the case of PPE's we use a three term recurrence relation for hn estab­
lished in [GGM]. Let 

Bm,n = 0 if m > « else 

(3.8) Bm,n = Bm-1 in — B m - 1 )W_ 1Z? m _ i > / T _ m + 1 , 

thentf™ =hn. 
The proof by induction on m of the signs ofBm,n now follows from (3.8) in a similar 

but simpler way to that of Lemma 2.2. • 
We see that precisely the same rule of signs applies here as applies in the case of 

PPE's. Thus in this case too, the choice an = — 1, n > 1, leads to hn = — EA|^(A(«) ) | . 

For convenience we denote this sum by 

(3.9) B(n) = j:\b(X(n))\. 

THEOREM 3.4. (a) Forn odd, 

B{n) = B{n). 

(b) For n even, 

(3.10) p— < B{n) < a—, n>2, 
n n 
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where a = — and (3 = —a + 2 = ^|. 
(c) As « —> oo, 

(3.11) *(B)=£(l + o(I)). 

PROOF, (a) This is immediate since the coefficients hin-x andg2/I_i in the inverse 
PPE and PPE, respectively for the function/(z) = 1 — Y~- are equal. 

(b) Suppose now that for/(z) = \ ^ for which d„ = I — 2n,n > 1, we have 

inductively —a=- < hj < — /34-, 1 <j<n. The recurrence (3.2) gives h\ = d\ — — 1 

and hn = - £ + I - E rf|B J C V ^ ' " > L 

d>\ 
Now since \hj\ < où! /j, 1 <y <n, 

*n A\„ a d\n 
d>\ 

\<d<n 

Krf<« 

2W r 1 2a / 3 a \ 2 

Hence 

and 

« V a / 

2" r 1 1 i 2" 
|A»| = B(n) < a — + - + l - - = a — 

« l a a J « 
2« 9W 2 " 

hn< + ( a - l ) - = ( - /? ) - . 
« n n 

The cases 2 < « < 22 for even « are easily verified by computer. We remark that the 
value a = | | is the smallest value for which the upper bound is valid for every n, with 
the equality hn = —oc^ holding for « = 8. With more work an improved value for f3 
could be found: The computational results suggest that the largest possible value of /? is 
H which is achieved in the case n = 6. 

(c) Now | E d\n
 lj\(hn/d)

d\ < \ + a2H2f + s £ ( f X*"1}- Now applying the same 
d>\ 

dissection used for B{ri) results in Y?J=$(c£)d~l = 0(n~2), n —• oo. Hence 

(. „ ( \ \ \ 

as « —> oo. • *. = -*„) = -£(l + 0(I)), 

https://doi.org/10.4153/CJM-1995-062-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-062-9


1234 H. GINGOLD AND A. KNOPFMACHER 

REMARK. We may bootstrap in precisely the same manner as before to obtain as 
n —> oo, 

2 V . 2 B{n) = — ( 1 + - + 0(n~2)), n even. 
n V n / 

The first few values of the sequence {#(w))} appear below 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
B(n) 1 2 2 6 6 10 18 54 54 114 186 334 630 1314 2106 5910 

Corresponding to Proposition 2.4 for B(n) we have 

PROPOSITION 3.5. a) B(n) = 0 (mod 2)for n>\. 

b) For n>4, 

B(n) = 0 (mod 3), n^3.2k, k = x 2 2 
1 1 (mod 3), /i = 3.2* ' ' 

PROOF, a) This is immediate since 1 — -r- = ~~ modulo 2. 
b) Here we have the identity 

CO 

(î+zr'o-zVo-zVno+z3-2)" k=\ 

Now modulo 3, 

1+z3 _ (1+z)2 __ 1+z 
( l + z ) ( l - z 2 ) 1 - z 2 1 - z 1 - z 

as required. 

THEOREM 3.6. If 

oo oo 

(3.12) f(z) = 1 + E ^ = P - Ai.*")"1 

a«d j/7/*e associated function 
oo oo 

(3.13) /(z) = 1 - E Kl2" = 11(1 +//„f)-1 

then for n > 1, 

(3.14) N < / / „ < £ ( « K 

w/*ere ^ = supw>1 la^l1/". Furthermore the inverse PPEs (3.72) a«d (3.13) converge at 
least for \z\ < ^ . 

PROOF. We have \hn\ = \ Zx{n) b(X)ax\ < £A(rt) |6(A)| \a\x = Hn. 
The last equality follows as in the PPE case from the rule for signs. Furthermore 

Hn < EA(«) \b(\)\s? = B{n)sn < (2sf from our estimates for B(n). 
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Now 
hnz" W (AI / tl 7 " \ 

and 

From the above estimates, each of the functions ^ and {^]fzn is analytic within the 

circle \z\ < ^ . 
Consider \z\ < p < j - then 

Thus the series converge uniformly for suchz, and by standard results on infinité products 
(see e.g. Knopp [p. 437]), the inverse PPE's converge for \z\ < j ^ . m 

REMARKS. If/(z) = 1 - Y%Li \an\z" has product representation (2.15) and (3.13) 
then we know already that H„ = Gn for n odd. Furthermore by induction using (2.12) and 
(3.2) is is easy to show that H2k > G2k, k = 1,2,3, However, such inequalities need 
not hold for arbitrary even «.For example if « = 6 we have 7/6—^6 = a\^2a^a2a\—a2a\. 
Now choosing a\ = a2 = 0, a-x, ^ 0 gives H6 — Ge = a\ > 0, while the choice a3 = 0, 
a\ 7̂  0 and a2 > 0 gives H6 — G^ = a2d\d\ < 0. 

Next since Hn = - ^ + £ d][n <^-Ed
njd it need not be true that Hn > - &•, so that the 

d>\ 
analogue of Proposition 2.6 does not hold for inverse PPE's. However, it is still possible 
to deduce sharper corollaries from Theorem 3.6 in the manner used below. 

COROLLARY 3.7. a) Iff(z) is an odd function then the inverse PPE (1.7) converges 
at least for \z\ < 4;, where </> = ^y^-. 

b) Iff(z) is an even function then the inverse PPE (1.7) converges at least for 

N < TTs-
PROOF. Suppose that 

1 ,y ~2 OO , 

(3.15) g(z) = 2 = II (1 + Ë(ny) 
I Z n=\ 

Then as in Theorem 3.6, for/(z) an odd function, we have, 

\hn\<Hn<Ë(n)5T. 

Now using the result (3.3) we find that (3.15) converges at least for \z\ < K from 

which we can deduce as in Theorem 3.6 that/(z) converges for \z\ < + . The proof of b) 

using (3.3) andg(z) = j^p- is similar. • 
We conclude this section by briefly considering some simple upper bounds for the 

radius of convergence (which we shall denote by p) of an inverse PPE (1.7) for/(z). 
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PROPOSITION 3.8. a) pis less than or equal to the radius of convergence off (z) jf(z). 

b) p is less than or equal to the radius of convergence of the product I I^ i (1 — Kzn) 
(which corresponds formally to 4-?). 

PROOF, a) The convergence of the product (1.7) for \z\ < p implies that the power 
series (1.1) for/(z) converges and has no zeros within \z\ < p. Hence the power series 
for/'(z), 4 T and their Cauchy product must also converge for \z\ < p. 

b) In order for n^L^l — hnz
n)~l to converge in some domain, it is necessary that 

each term (1 — hnz
n)~l converge within this domain. Hence we require that \z\ < TAÏJÏ, 

n = 1,2,3,. . . . Thus p < infwGN l/\hn\
l/n < 1/ lim s u p ^ ^ \hn \

x l\ from which the 
result follows. • 

Let us denote the radius of convergence of the PPE (1.2) by R. In view of Proposi­
tion 3.8b) one may be tempted to believe that the inequality p < R must also be true. 
Proposition 2.6 in conjunction with Proposition 2.8a) shows that this is indeed the case 
for the class of functions denoted by/(z). However the following example shows that it 
need not hold for arbitrary functions: 

Let 
J « + 1 -

/(*)=! + £ z". 

Then it is easily verified that/(z) = (1 — z)_1(l — z2) - 1 , with p— 1. On the other hand 
since g\ = a\ and gi — #2 the PPE for/(z) has the form (1 + z)(l + 2z2) • • •. In view of 
the zeros of the second term we see that R< -jz< p. 

Nevertheless, we show that for functions/(z) whose PPE coefficients are "nicely be­
haved" we do have p < R. In particular this holds in the case that lim^oo \gn\

x^n exists. 

PROPOSITION 3.9. Letf(z) be a function whose PPE (1.2) satisfies 

(3.16) lim sup \g2n | à < lim sup \g2n-11 ^ • 
n—>oo n—>oo 

Then p < R. 

PROOF. We have 

R-1 = l imsup^l 1 / " > l imsuplg^- i l 1 ^" 1 

n—->oo n—>oo 

= limsup|A2»-i|3^T =^C*-

Now as in the proof of Proposition 3.8b) we require that p < infwG^ 1 / |/*2«-i 12n~l £ 

Now our assumption (3.16) implies that R0 = R and hence that p < R. m 
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4. Combinatorial products. Various product expansions of types (1.2) and (1.7) 
arise as generating functions in combinatorial problems. In such cases it is usually the 
product and its coefficients which are known explicitly, the reverse of the situation stud­
ied in the previous sections. In such counting problems the product coefficients gn or hn 

are normally non-negative real or ever rational numbers. For product expansions such 
as these with non-negative coefficients, the following result provides a simple but useful 
tool for deducing the analytic behaviour of the corresponding power series/(z). 

THEOREM 4.1. a) If 

oo oo 

f(z)=l + j:anz"=l[(l+gnz") 
n=\ n=\ 

where gn > Ofor n>\, then the series and the product have the same radius of conver­
gence. 

b) Similarly if 
OQ OO 

/(z) = i+Sa/ = n(i-A/rl 

where hn > Ofor n > 1, then the series and the product have the same radius of conver­
gence. 

In fact we will deduce Theorem 4.1 from the following result which applies also to 
much more general classes of product expansions, such as those treated for example in 
[KKR, K]. 

THEOREM 4.2. Letgi(z) = £ ^ gin2" be an infinite sequence of formal power series 
with g£„ > Ofor each I andn in N. Suppose that the formal product expansion 

oo oo 

(4-1) f{z) = 1 + £ <w" = II (l +8t(zj) 

holds in the sense that 

(4- 2) an = X]geinig£2n2 ' - ' gtrnr 

where the summation is over all (n\9ri2,..., nr) with n = n\ + ni + - • - + nr, 1 < n\ < 

n2 < ' • • < nr and 1 < tx < i2 < - - • < U-
(i) IfZT=i gt(z) is absolutely convergent for 0 < z < R, then 1 + £ ^ i anz" with 

coefficients satisfying (4.2) converges in \z\ < R. 
(ii) Iff(z) is an analytic function in \z\ < R then for each I, ge(z) converges absolutely 

in\z\<Rand\lT=l{\+gi{zj) converges absolutely in \z\ < R tof(z). 

PROOF, (i) Under these conditions the product expansion on the right hand side is 
absolutely convergent and thus defines an analytic function in \z\ <R. The Taylor series 
expansion of this analytic function (see e.g. Knopp [Kn]) coincides with that of/(z) and 
the result follows. 
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(ii) Firstly the sum in (4.2) for an consists of finitely many terms since gin — 0 for 
I > n. Moreover, (4.2) implies that 

n 

Un > J^gtn-

Therefore, 
oo oo oo 

n=\ n=l £=1 

The absolute convergence of the right hand side for 0 < z < R implies that the left hand 
side is absolutely convergent. Hence we may interchange the order of summation on the 
right to obtain 

oo oo oo oo 

oo >£>»*"> E E glnz" = E g*(z). 

This then implies that II£Li (l + ge(z)) is absolutely convergent for \z\ < R. m 
Using Theorem 4.1 we deduce for example that the generating functions for partitions 

and distinct partitions each have radius of convergence 1. Such results are frequently 
given independent derivations in textbooks on number theory and combinatorics. More 
generally we can deduce the following Theorem of Groswald [G, p. 114] concerning 
partitions with parts belonging to any finite of infinité set A — {a\,a29...} of positive 
integers: 

THEOREM. The generating functions of the partition functions converge inside the 
unit circle. 

We remark finally that results analogous to the above hold also for products whose 
coefficients alternate in sign. For example setting z = — / in Theorem 4.1a) leads to the 
result: 

If 
oo oo 

i+x:a„z" = n( i + ( -D"g^) 

where g„ > 0, n > 1 then the series and product have the same radius of convergence. 
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