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TOPOLOGICAL SPACES 

DANIEL H. GOTTLIEB 

1. I n t r o d u c t i o n . In 1961, S. T. Hu published a paper (1) in which he 
discussed the desirability of discovering those topological properties which 
are preserved under homotopy and isotopy equivalences. In t h a t paper he 
gave general tests in terms of weakly hereditary and hereditary topological 
properties for homotopy and isotopy properties. 

In this paper, general tests for homotopy and isotopy properties in terms of 
weakly hereditary properties and of a class of properties which the au thor 
calls open properties are given. In the last sections, we shall show the strong 
role played by the notions of dimension and separating subsets in forming 
isotopy properties. 

T h e following notat ions will be used: / = unit interval and lx will s tand 
for the identi ty map of X. 

T h e definition of homotopy equivalence, etc., can be found in (1), bu t for 
convenience we shall give the definition for isotopy equivalence here. 

An imbedding f:X —> F is said to be an isotopy equivalence if there exists 
an imbedding g:Y^X such t ha t the composite imbeddings g of and fog 
are isotopic to lx and 1Y respectively. We shall call g an isotopy inverse of/. 
Two spaces, X and F, are said to be isotopically equivalent if there is an isotopy 
equivalence f:X —> F. A property P of topological spaces is called an isotopy 
property provided tha t it is preserved by all isotopy equivalences. Precisely, 
P is an isotopy property provided tha t , for an arbi t rary isotopy equivalence 
f:X - » F, X has P implies t ha t F also has P . 

2. Weakly heredi tary propert ies . A non-trivial topological proper ty is 
one which is enjoyed by a t least one non-empty topological space and which 
is not enjoyed by all non-empty topological spaces. A non-trivial proper ty P 
is said to be hereditary if every subspace of a space with P enjoys P; it is 
said to be weakly hereditary if every closed subspace of a space with P also 
possesses P. Several examples of these properties are mentioned in (1). 

Hu , in (1), has shown the following theorem. 

T H E O R E M 2.1. Let P be a weakly hereditary property which is possessed by 
the singleton space; then P is not a homotopy property. 

Hu has also shown in (1) the following theorem. 
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THEOREM 2.2. Every hereditary topological property is an isotopy property. 

The purpose of this section is to investigate weakly hereditary properties 
which are not hereditary properties (henceforth these will be called properly 
weakly hereditary) to find which are isotopy properties. 

First we note that if we restrict ourselves to the class of compact Hausdorff 
spaces, then any weakly hereditary property is an isotopy property. This 
follows as a corollary to the following proposition. 

PROPOSITION 2.3. If X is compact and Hausdorff and if Y has a weakly here­
ditary property P, then X has property P if X is isotopically equivalent to Y 

Proof. Since the property of being Hausdorff is hereditary, it is an isotopy 
property and so Y is Hausdorff. 

Now the image of any mapping of a compact space into a Hausdorff space 
must be closed, so since X is isotopically equivalent to F, X may be considered 
as a closed subspace of Y. Thus X must inherit P. 

In spite of this theorem, it turns out that most of the elementary properly 
weakly hereditary properties are not isotopy properties, as the following 
theorem will show. In particular, compactness is not an isotopy property and 
so the previous theorem loses much of its force. 

THEOREM 2.4. Let P be a weakly hereditary property which holds on some space 
X and on X X I, but not on S C. X. Then P is not an isotopy property. 

Proof. Consider the subspace Y of X X I such that 

Y = {CM)|0 < t < 1 or x 6 5}. 

Y does not possess P since 5 X 1 = { f e l ) | » ê S j is closed in Y and 
homeomorphic to 5, so if we assume that Y possesses P we see that 5 X 1 
possesses P and thus 5 possesses P, a contradiction. 

However, Y is isotopically equivalent t o l X i " and this proves that P 
cannot be an isotopy property. 

To show that Y is isotopically equivalent to X X I consider the following 
maps: 

i: Y —> X X I such that i(x, t) = (x, t), 
j:X X I'-> Y such that j(x, t) = (x, t/2), 
hs:X X I-+X X I such that h8(x, t) = (x, (1 + s)t/2), 
k8:Y-> Y such that ks(x, t) = (x, (1 + s)t/2). 

It can easily be shown that i and j are imbeddings and that hs and ks are 
isotopies. Now we have 

ho = i of and hi = the identity map of X X I, 
kQ = j o i and k\ = the identity map of F. 

So we have XXI isotopically equivalent to F. 
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COROLLARY 2.5. The following properties are not isotopy properties: 

(1) normality, 
(2) compactness, 
(3) the property of being a Lindelôf space, 
(4) local compactness, 
(5) paracompactness. 

Proof. All these properties are properly weakly hereditary. The Tychonoff 
plank, T, enjoys all the above properties and contains a subspace which does 
not enjoy any of the above properties, except for local compactness, and 
T X I supports all the properties. For the case of local compactness, I and 
I X I are locally compact, but the rationals are not. Applying the previous 
theorem proves the corollary. 

COROLLARY 2.6. Let P be a weakly hereditary property such that X has P 
implies XXI has P. Then P is an isotopy property if and only if P is hereditary. 

Proof. If P is hereditary it must be an isotopy property. If P is not hereditary, 
then there exists a space X possessing P and a subspace S not possessing P. 
Since XXI has P, by Theorem 2.4, P is not an isotopy property. 

There is a large class of properly weakly hereditary properties which are 
isotopy properties. 

THEOREM 2.7. If P is a weakly hereditary property not enjoyed by the unit 
interval I, and if X is Hausdorff and enjoys P, then any isotopy equivalence 
f\X —> Y is a homeomorphism. 

Proof. Let f:X-* F and g:Y -> X and let ht\X->X and kt:Y-^Y be 
isotopies such that h0 = lx and hi = g of, and k0 = 1Y and ki = / o g. 

Let x G X. Let z = gof(x). We can define a path <r:I-+X between x 
and z by <r(t) — ht(x). Now a (I) is a compact connected and locally con­
nected metric space by the Hahn-Mazurkiewicz theorem and hence there is 
an arc (an imbedding of I) with end points x and z if x and z are distinct. But 
this implies that I possesses P. Hence, z = x or gof = lx. 

Similarly, let y £ Y. Let w = f o g(y). We can define a path y:I —> Y such 
that y(t) = kt(y). Now Y is Hausdorff by Theorem 2.2 and so there exists 
an arc a in 7(7) with y and w as end points if y ^ w. But then g o a is an arc 
of X and since it must be closed in X, I has P. Therefore, fog = l r . Thus 
/ has a two-sided inverse and so is a homeomorphism. 

COROLLARY 2.8. If P is a weakly hereditary property not possessed by I, then 
P plus Hausdorff is an isotopy property. 

3. Open properties. There is a class of topological properties for which 
analogous theorems to those for weakly hereditary properties hold. 
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DEFINITION. A non-trivial topological property which is inherited by open 
sets and preserved by open maps will be called an open property. That is, if 
P is an open property and if S is a topological space with P , then any open 
set of S possesses P and f(S) possesses P if / is an open map. 

Some examples of open properties are: 

(1) separability, 
(2) local connectedness, 
(3) local path wise connectedness, 
(4) first countability, 
(5) second countability. 

First we have the analogous theorem to 2.1 for homotopy properties. 

THEOREM 3.1. Open properties are not homotopy properties. 

Proof. Let P be an open property. 
The singleton space {v\ must have P , for there exists a space X with P 

and the constant map C:X —* {v} is open. 
Let 5 be a space without P . 
S X J, where J is the open unit interval, cannot have P since 5 = T(S X / ) , 

where w is the projection ol S X J onto S. Since T is an open map, 5 without P 
implies that S X J does not possess P . 

Consider C(5), the cone over S. S X J is homeomorphic to an open subset 
of C(S), so C(S) does not possess P since P is open. 

Since C(S) is homotopically equivalent to {v}, P cannot be a homotopy 
property. 

We can get a somewhat more general result by using the same method of 
proof. 

THEOREM 3.2. Let P be a property such that the singleton space, {v}, has P , 
P is inherited by open sets, and such that there exists a space S where S X J does 
not possess P. Then P is not a homotopy property. 

With regard to isotopy properties, the next theorem is analogous to Theorem 
2.4. 

THEOREM 3.3. Any open property P is not an isotopy property if there exists 
a space X and a subspace S such that X X I enjoys P but S does not. 

Proof. Let 5 and X be chosen as in the hypothesis. 
Consider the subspace Y of X X I such that 

Y = {(x, t)\0 < / < 3/4 or x G S}. 

Now 5 X (3/4, 1] is open relative to Y and would have P if Y had P . 
But S X (3/4, 1] is also a product space and since S is the image of an open 
projection map from S X (3/4, 1], we see that S would have P if 6* X (3/4, 1] 
had P . Since 5 does not have P , Y does not possess P . 
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We now prove the theorem by showing that F is isotopically equivalent to 
XXL Consider the following maps: 

i:Y^X X I such that i(x, t) = (x, t), 
j:X X I-* Y such that j(x, t) = (x, t/2), 
hs:X X I-*X X I such that h8(x, t) = (x, (1 + s)t/2), 
& s:F-> Y such that ks(s, i) = (x, (1 + s)t/2). 

It can easily be shown that i and j are imbeddings and hs and ks are isotopies 
and that 

ho = ioj, hi = identity map on X X / ; 
ko = j o i, hi = identity map on F. 

This shows that X X / is isotopically equivalent to F, thus proving the 
theorem. 

COROLLARY 3.4. Let P be an open property such that X has P implies XXI 
has P. Then P is an isotopy property if and only if P is hereditary. 

Proof. If P is hereditary, it is an isotopy property by Theorem 2.2. 
If P is not hereditary, there exists a space X enjoying P with a subspace 5 

not possessing P. Since X X I has P, all the conditions of the preceding theorem 
are satisfied and so P is not an isotopy property. 

COROLLARY 3.5. Separability, local connectedness, and local pathwise con­
nectedness are not isotopy properties. 

Proof. If X is a space possessing one of the above properties, XXI must 
also possess it. Since none of the above properties is hereditary, they are not 
isotopy properties. 

4. Dimension. Thus far, aside from hereditary properties, we have shown 
that large groups of elementary topological properties are not isotopy pro­
perties. The next sections will demonstrate many isotopy properties related 
to concepts of dimension and separating properties. There are many other 
isotopy properties lurking about in this area which are not mentioned here. 

The word dimension in this section will refer to inductive dimension, defined 
as follows: dim X = — 1 if X is empty and dim X < n if for every point 
point P G X and every open neighbourhood U of P there exists an open 
neighbourhood V C U of P such that dim d F < n — 1, where dV denotes 
the boundary V - V of V in X (2, p. 153). 

THEOREM 4.1. Let F be a family of topological spaces and let Q be any partially 
ordered class of elements. Let $ be a function from F to Q satisfying the following 
two properties: 

(1) if X is homeomorphic to Y, then $(X) = $ (F ) . 
(2) if X can be imbedded in Y, then $(X) < $ (F ) . 

Then $ (X) is an isotopy invariant of the family F. 
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Proof. Letf:X —» F be an isotopy equivalence between two spaces belonging 
to F. We must show that $ (Z) = $ ( F ) . 

Now, by (1), *(X) = *(f(X)) and since/(X) C F, (2) states that $(f(X)) 
< $ (F) or $(X) < $ ( F ) . 

Let g :F —-> X be an isotopy inverse for/ . Then $ ( F ) = $(g(10) < $(X). 
Hence $(X) = $ ( F ) . 

COROLLARY 4.2. Cardinality is an isotopy invariant. 

Proof. Cardinality is a function from the class of all topological spaces to 
the class of cardinal numbers; hence by 4.1 cardinality is an isotopy invariant. 

COROLLARY 4.3. Inductive dimension of a topological space is an isotopy 
invariant. 

Proof. Inductive dimension is a function from the class of all topological 
spaces to the integers satisfying (1) and (2); hence dim X is an isotopy 
invariant. 

COROLLARY 4.4. For the class C of compact Hausdorff spaces, the covering 
dimension, Dim X (1, p. 170), is an isotopy invariant. 

Proof. Let F — C and Q = the integers. The covering dimension certainly 
satisfies (1) and for C it satisfies (2) since it is weakly hereditary. 

Corollary 4.3 is the main result of this section and it was shown by Hu 
in (1). 

5, Separating subsets and dimension. The next two theorems show 
how inductive dimension and separating subsets combine to form isotopy 
properties of exceedingly general topological spaces. 

THEOREM 5.1. Let X be a topological space. Suppose that there is an open set C 
of inductive dimension <?z which separates X into two subsets, each of whose 
complements has dimension greater than n. Then any Y isotopically equivalent 
to X will have the same property. 

Proof. We first note the following general fact: 
(1) If X has a point of inductive dimension w at x G I , then any open set 

U containing x must have dimension at least n: 
If { Va} is a basis of open neighbourhoods of x in X, then { Va\Va C U] is 

a basis of open neighbourhoods of x both in X and in U. If there exists no 
basis of open neighbourhoods of x in X whose boundaries have dimension 
n — 2, then there cannot be one of x in U. Hence, U has dimension greater 
than n — 1 at x. 

(2) We proceed to prove the theorem. By the hypothesis, let X — C 
= X\\J X2, where X\ C\ X2 = 0 and Xi\J C and I 2 U C are open and 
have dimensions mi and w2, respectively, greater than n. 
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(3) Let ht:X—>X be an isotopy with ho = lxî then there is a point xt 

G ht(Xi) H Xt of dimension mt (i = 1, 2) for any / G / . Let xt G X* \J C 
be a point of dimension mt. Suppose there is a t £ I such that ht{xt) ^Xt. 
Then there must be an s G / such that hs(xt) G C. Now since hs is an imbed­
ding, X must have dimension >Wj at hs(xi), so by (1), C has dimension at 
least mt > n. This is a contradiction. 

(4) Let f:X —* Y be an isotopy equivalence with g'.Y —>X an isotopy 
inverse and ^ : I - > I a n isotopy such that A0 = lx and hi = g of. From (1) 
and (3), we know that g of(Xi) P\ {Xt\J C) has dimension at least mt and 
so g(Y) ^ (Xi^J C) has dimension at least mt > n. Hence ht(xt) G Xt. 

(5) C C\ g(Y) is open relative to g(Y) and has dimension less than n. 
Furthermore, 

g ( F ) - ( C n g ( F ) ) = ( Z 1 n g ( F ) ) W ( X 2 n g ( F ) ) 

and 

[ i . n g t F j m u ^ g t F ) ] = 0. 
(6) We have just shown that the space g(Y) can be separated by an open 

set C r\ g(Y) of dimension at most n into two subsets each of whose comple­
ment has dimension greater than n. Since Y is homeomorphic to g(Y), our 
proof is complete. 

This theorem tells us that the following two-dimensional subsets of the 
plane are not isotopically equivalent: X = two disks of radius one tangent 
to each other, Y = two disks of radius one which do not intersect and the 
line joining their centre. 

Definition. A compact w-space, n > 1, is called an n-dimensional Cantor 
manifold if it cannot be separated by a subset of dimension < n — 2. 

The property of being an n-Cantor manifold is not an isotopy property 
even for the family of compact spaces; but on the other hand, a somewhat 
similar property remains invariant under isotopy equivalences. 

THEOREM 5.2. Let X be a Hausdorff space separated by a closed sub space C 
of dimension less than or equal to n — 2 into two sets, each of whose complement 
contains an n-Cantor manifold. Then if Y is isotopically equivalent to X, Y has 
the same separation property. 

Proof. (1) X - C = Xx KJ X2j where Xx H X2 = 0. Xx and X2 are both 
open in X since C is closed. 

(2) Let A be an ^-Cantor manifold contained in Xi KJ C. Let ht:X —* X 
be an isotopy such that h0 = lxî then ht(A) CI X\ \J C for all t G i": Define 
J\A X /—-> X by J(x, t) = ht(x) and let p:A X /—•> / be the projection, i.e. 
p (x, t) = t. 

Clearly, pJ~l(Xi) and pJ~l{X2) are both open sets in / . 
We wish to show that pJ~l(Xi) VJ pJ~1(X2) = / . If this were not the case, 

then there would be a t' G / such that J {A, tf) = ht>{A) Ç C. But ht>(A) is 
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a subspace of C of dimension n since h t> is an imbedding. Since C has dimension 
< n — 2, this is a contradiction. 

So / is the union of two open sets which must intersect if they are both 
non-empty. That is, there must be a t' £ pJ~x{X\) C\ pJ~l{X2). Hence, 
ht.(A) C\ Xx ^ 0 and hv{A) C\ X2 ^ 0. But ht>(A) is an w-Cantor manifold 
which is separated by a subset ht>{A) C\ C of dimension < n — 2. This 
contradiction forces us to assume that pJ~l(X2) = 0 or, equivalently, that 
ht(A) C Z i U C for all * 6 I. 

(3) Similarly, if B is an w-Cantor manifold contained in X2 ^J C, ht(B) 
C I 2 U C for all L 

(4) Let f:X —» F be an isotopy equivalence with g'.Y —> X an isotopy 
inverse. By (2) and (3), g of {A) C Xx U C and g o/(B) Ç I 2 U C . There­
fore, g o / (4 ) C (Xi U C ) H g(F) and g o / (5) C (X2 W C ) H g{Y). 

(5) We see that C C\ g(Y) is a closed set relative to g(Y) of dimension less 
than or equal to n — 2 which separates g(Y) into two subsets g(Y) H I i 
and g ( F ) n i 2 each of whose complement, g(Y) H (X2 W C) and g(F) 
Pi (Xi U C) respectively, contains an w-dimensional Cantor manifold. Since 
g(Y) is homeomorphic to F, F has the required property. 

COROLLARY 5.3. Let X he a locally compact metric space which can be separated 
by a closed subspace C of dimension < n — 2 into two sets each of whose comple­
ment is a set of dimension at least n. Then, if Y is isotopically equivalent to X, 
it can be separated by a closed set of dimension < n — 2 into two subsets, each 
of whose complement is of dimension at least n. 

Proof. Suppose C separates X into Xi and X2. Now Xt VJ C (i = 1, 2) is 
closed in X and hence is locally compact. 

I j U C has dimension mt > n at some point x?. We can find a compact 
neighbourhood Vt about xt. V\ must be of dimension at least miy and so it 
contains an m r Cantor manifold by the following theorem (2, p. 94): Any 
compact ^-dimensional metric space contains an ^-dimensional Cantor 
manifold. 

If F is isotopically equivalent to X, Theorem 5.2 states that F can be 
separated by a closed subset of dimension < n — 2 in the required way. 

6. Branch points. 

Definition. 
(i) Let 5 be a pathwise connected space. A point x of 5 is called a branch 

point of 5 if 5 — {x} has at least three path-components. Note that this is 
not the same concept as that of a cut point. 

(ii) For any general topological space, a point will be called a branch point 
if it is a branch point of the path-component containing it. 

(iii) Let X be an arbitrary topological space and let x be a branch point of 
X. A created path-component of X — {x} is a path-component of X — {x} 
which is not a path-component of X. 
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(iv) A point x of X is called a local branch point of X if there exists a neigh­
bourhood N of x such that x is a branch point of N. 

LEMMA 6.1. Suppose that X is a T\ space and ht:X —> X is an isotopy such 
that ho = lx. Let x0 be a local branch point of X; then ht(xo) = Xo for all t. 

Proof. Let H (x, t) = ht(x). Let TV be a neighbourhood of which x0 is a branch 
point. We define a path 

o-:/ —» X:/ —> ht(x0). 

Let /o be the greatest lower bound of (j_1(X — {x0}). The case /0 = 1 being 
trivial, assume that to < 1. 

Since JÏ is continuous and [0, /0] compact, there exists a neighbourhood 
U X Q oî {xo} X [0, /o] in TV X / such that: H(U X Q) C N. Let \Ca) be 
the created path-components of X — {x0}. Note that C« P\ f/ ^ 0 for any 
a, and any neighbourhood U about x0. 

There exists a created path-component C\ and an open interval (to, ti) C Q 
such that H(xo, t) 6 C\ for all / G (to, ti). Then, for any two other created 
path-components C2 and C3, it is possible to choose points x2 and x3 such that 
Xi G Pi , a created path-component oî U r\ Ciy and such that H(xif ^(to + /i)) 
Ç Ci, i = 2, 3. Define paths gt(t) = H(xt, t) and let rt be the smallest / such 
that gi(t) = x0. At / = r3, if(x3, 3̂) = #o, so that H(P2, rs) Ç Ci. Hence, 
#(#2, 3̂) € Ci, and hence r2 < rz. But, similarly, r2 > r3. This contradiction 
proves the lemma. 

LEMMA 6.2. With the same notation as in the preceding lemmas, there exist 
Pa Çz Ca such that Pa \J [xo\ is path-connected and ht(Pa) Ç Ca for all t £ I 
and for all a. 

Proof. By the preceding lemma, since H:X X I —> X is continuous, 
H(U X I) Q N for some neighbourhood U of x0. Define Pa to be a created 
path-component of U r\ C«. Let x 6 Pa. Then a(t) = ht(x) defines a path 
which must remain entirely in Ca since its only possible exit passes over x0 

and ht(xo) = x0 for all /. Therefore, ht(Pa) £ Ca. 

THEOREM 6.3. 77z£ cardinality of local branch points is an isotopy invariant 
for Tx-spaces. 

Proof. L e t / : X —» Y be an isotopy equivalence and g: Y —•> X be an isotopy 
inverse. Let x0 6 X be a local branch point; then we will show that / (x 0 ) is 
a local branch point of Y using the notation of the lemmas. 

By the preceding lemmas and the definition of isotopy equivalence, g(/(x0)) 
= Xo and g o/(P«) Ç Ca. 

Now N C\ g(Y) is a neighbourhood of x0 relative to g(Y), and x0 is a branch 
point of N r\ g(Y) with the path-components Ca* of g(F) C\ Ca (for which 
C** 3 gof(Pa), where P« is a created path-component of N r\ U) serving 
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as created path-components. Thus, g~l(xQ) must be a local branch point of 
F since g~l:g(Y) —* Y is a homeomorphism. But g~~l(xo) = / (x 0 ) . 

Thus, for every local branch point x0 of X, f(x0) is a local branch point of 
Y and similarly for every local branch point y0 of F, g(yo) is a local branch 
point of X. 

We can sharpen the concept of branch point by the following definition. 

Definition. Let n be any cardinal number. An n-branch point x of X is 
a branch point of X such that there are ^-created path-components of 
X - {*}. 

THEOREM 6.4. The cardinality of n-branch points is an isotopy invariant for 
Ti-spaces. 

Proof. Suppose that f:X —> F is an isotopy equivalence and suppose that 
Xo is an n-branch point of X with {Ca\a Ç A } the created path-components. 
By Lemma 6.2 with N = U = X we have g of(Ca) ÇI C«, where g is an isotopy 
inverse of / . 

We know that /(xo) is a local branch point of Y and it is easy to see that 
f(xo) is, in fact, a branch point of Y. Let \Dp\l3 £ J3} be the created path-
components of F — {/(xo)} • 

Now, for any a £ A, there is a (3 £ I? such that f(Ca) Ç^ £V Also, for any 
0 £ B, there is a 7 G i such that g(D&) C CT. Since C7 3 g(D^) 3 g(f(Ca)) 
Ç Ca, a = 7. This shows that the cardinality of A is not greater than the 
cardinality of B. 

By symmetry, the latter is not greater than the former. Hence they are 
equal. 

In extending the concept of n-branch point to local n-branch point, one must 
guard against spaces such as five different circles tangent at one point. 

As an example of the application of this theorem, consider the family of 
spaces B(n, I) of I71, 1, > 0, with / rays emanating from ( 1 , 1 , . . . , 1) with 
the inherited topology of Rn. Now, B(n,l) is homeomorphic to B(nf,lf) if 
and only if n = nf and / = /'. On the other extreme, B(n, I) is contractible, 
so the family lies in just one homotopy equivalence class. However, by use 
of the previous theorem and the invariance of dimension, we see that B(n, I) 
is isotopically equivalent to B(n', V) if and only if n = n' and I = V when 
/ > 2. Since B(n, 0) is isotopically equivalent to B(n, 1), we have an example 
of a family of spaces whose isotopy type is different from both the homotopy 
type and the homeomorphism type. 

We end this paper by showing that perfection itself is an isotopy property. 
A space X is called perfect if every point is a limit point of X. 

PROPOSITION. 6.5 The property of being perfect is an isotopy property for 
Ty-spaces. 

Proof. Let X be isotopically equivalent to F. Suppose F is a perfect 7\-
space and X is not. X must be T\ since 7\ is an isotopy property. 
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Let Xo G X be a point which is not a limit point; that is, there exists a 
neighbourhood N of XQ such that N C\ {X — {%}) = 0. Hence, x0 is an open 
set of X. Since X is Ti, #0 is closed. Therefore, any continuous mapping of the 
unit interval into X which contains x0 in its image must be the constant map. 

Now, l e t / :X —> F be an isotopy equivalence and let g: Y —* X be an isotopy 
inverse. Now g must map the point/(xo) G F to x0, i.e., g(f(xo)) = x0 by the 
following argument. We know there exists a map H:X X I—> X such that 
H(x, 0) = g of(x) and H(x, 1) = x. Define a: I —» X such that <r(T) = H(x0, t). 
a is continuous and <r(l) = H(XQ, 1) = x0. Now o- must be a constant map, 
SO cr(0) = Xo = gof(xo). 

Since x0 G g(F) is open in X, g-1(xo) is open in F. This means that F is 
not perfect. 

This contradiction proves the proposition. 

PROPOSITION 6.6. The cardinality of non-limit points is an isotopy invariant 
for I\-spaces. 

Proof. It was shown in the proof of the preceding proposition that if X = Y 
with f\X —> Y an isotopy equivalence, the image of any non-limit point of 
X is a non-limit point of F. Hence, for every non-limit point of X there is a 
non-limit point of F and, symmetrically, for every non-limit point of F there 
corresponds a non-limit point of X. Hence, X and F have the same number 
of non-limit points. 
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