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Abstract

The recent work of Cheng and Stokes on the processing of clipped
signals from two or three receivers is extended and generalised by removing
a number of restrictions. In particular, there is no restriction on the number
of receivers and the restrictions on the statistical properties of the signal and
noise processes have been considerably relaxed.

Mathematically — Plackett's result is used to expand the orthant prob-
abilities involved in increasing powers of the input signal to noise ratio.

1. Introduction

The application of statistical hypothesis testing to the detection of signals
in additive background noise is well established, see, for example, Helstrom
[8], Van Trees [21], and more recent work by Kailath [9], [10], [11]. In many
of these applications the outputs of a number of receivers are combined and
processed to give a quantity on which a decision concerning the presence or
absence of a signal may be based. This paper is concerned with sum and
square law processors as illustrated in Figure (1), and in particular, a
comparison is made of the performance of two such processors; viz., the
analogue sum and square law processor (A.S.S.P.), and the polarity sum and
square law processor (P.S.S.P.). This latter processor (P.S.S.P.) has several
attractive features in practical realisations, notably a considerable reduction
in the amount of computing equipment required, and there is, therefore,
continuing interest in its comparative performance. Similar signal processors
involving clipping will also be of interest for many years, since much new
equipment presently being designed incorporates such processing, e.g. [1].
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[2] Sum and square law signal processors 295

Early work in this field was described by Faran and Hills [7] and other
authors; for example, [6], [12], [17], [19], [20]. This work was continued by
Cheng [3] and both he and Stokes give extensive resumes of this and related
work in their theses, Cheng [2] and Stokes [18]. The approach in this paper
was first presented to the Australian Conference on Signal Processing for
Arrays, Keats [13].

The measure, used by many authors, of the performance of processors
similar to those discussed in this paper, is the ratio of signal power to noise
power at the output of the processor. The signal power is defined as the
square of the difference between the mean output in the presence of signal
and the mean output in the absence of signal. The noise power is defined as
the variance of the output in the presence of signal [6], [7], [19]. This
choice of signal to noise ratio, in particular the definition of noise power, leads
to an interesting mathematical problem, which the authors believe has not
been seriously tackled before. A new and unexpected result, which is
discussed in section 4 and appendix 3, arises directly from this choice. Other
measures of performance have also been used by various authors, in
particular the signal to noise ratio as above but with the noise power defined
as the variance of the output in the absence of signal [5]. Although this
definition of signal to noise ratio has as milch justification as the one used in
this paper, it does not lead to any unexpected or new results.

The operation of the class of processors discussed here is shown in Figure
(1). The inputs to each receiver, R,, consist of a signal S plus noise N,; the
subscript i indicates that the noise inputs at each receiver may differ, whereas
the signal input S is the same at each receiver. These inputs are assumed to be
realisations of stationary random processes. Although the signals at each
receiver are identical realisations of the same process, it is possible that they
are shifted in time relative to each other. It will be assumed that this shift is
not present, or, alternatively, delays are inserted immediately following each
receiver to synchronize the signals from all receivers. Following the time
delay the input to each receiver may be transformed linearly or non-linearly;
the members of the class of processors studied here differ only in the type of
transformation used at this point. In the case of the A.S.S.P. the transforma-
tion is the identity; whereas the P.S.S.P. incorporates the transformation

A, =sgn[/,];

where /, = S + A/,, and the function sgn is defined by

sgn(x)=l, xi?0,

sgn(x)= - 1 , J C < 0 .
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x(t)|
• Y d )

Figure 1 —A sum and square law processor

Although one of the two cases compared in this paper uses the identity
transformation, any linear transformation may be studied similarly and with
very little added complication, since the relation between the statistics of a
Gaussian input to a linear filter and its output is well known; see, for example,
Laning and Battin [14].

Following these transformations, the outputs A, are summed and
squared to give the quantity X = [XA,]2 which is then integrated, using the
weighting function

to give the processor output

The following additional assumptions will be made.
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[4] Sum and square law signal processors 297

(a) The signal S(t) and the noise Ni(t) present at each receiver are
stationary normal random processes with zero mean, variances cr|; <x2, and
normalized correlation functions ps (T) for the signal and p, (T) for each N, (/).
(b) All cross-correlation functions are identically zero.

Stokes [18], following the example of earlier authors [3], [7], considered
the special case in which the noise variances were all equal and the
normalized correlation functions of both signal and noise were identical. The
method used in this paper generalises the problem considerably, but does
involve the further assumption:
(c) the input signal to noise ratio is small.

This last assumption is not restrictive in most, if not all, practical cases.

2. Previous relevant results

The following results will be used in this paper without derivation. They
have been quoted and used by many authors and can all be found in Stokes
[18]; some, as indicated can be found in more readily available publications.
Denoting the number of receivers by n,

E[Y} = E[X] = E(± AY =± E[A>] + Z E[A,A,l (1)
\ / 1 = 1 i/;

[6]; [7], (2)

where: px(n) is the covariance function of X.
If we define B, to be the quantity A, delayed by /n. then

'A,A,B,Bk] + 4E[1'A,A,BkB,)- E2[1 A2 + 21'A,A,],
(3)

where £' indicates that the summation is to be taken over all terms such that
i </ , k < I and all distinct indices take different values.

The nub of the problem thus becomes the calculation of this covariance
function px(/x).

In the case of the A.S.S.P. the following results are fairly trivial
extensions of those appearing' in the literature [7], [18]. For this case the
following results apply,
(a) In the absence of signal,
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(b) In the presence of signal,

E[Y(t)] = E[X(t))= n2al+t a2,
1 - 1

while the autocorrelation function

px(r)=2[n2cr2
sps(T)+± <T*Pi(T)]2.

From these relations the signal to noise ratio at the output of this
processor may be found to be

SNRASSP(n, = -yjz J-^P- , (4)

j ( £ )
where:

K, (/A ) = nalps (JLI ) + cr2 p, (/x ).

In the case considered by several authors; e.g. [2], [7], [18], viz.,

) , all / , (5)
and

a2 = cr2
N, all /, (6)

the signal to noise ratio for this processor becomes

where:

and

^ J " ( £ ) (7)

2K[l

a —

n
+ [

2 i

l)af

2 )

Cheng [2] has solved the problem of the P.S.S.P. in the case of two inputs
and the assumptions (5) and (6). His result can be written

(arcsina)2

hi
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[6] Sum and square law signal processors 299

where:

P* (/"•)= —2 {[arcsin p(/x )]2 - [arcsin ap (fi )]2}.

Stokes endeavoured to extend Cheng's results to n = 3 but was unable to
find a closed form expression for the term E[Z'A,A,BjBk] in px(/x), (3); he
obtained numerical values by a most complicated computational programme.
This difficulty again arose when he endeavoured to extend the problem to
higher values of n, but as can be seen from (3) modified by the assumptions (5)
and (6) no further difficulties arise. In fact, Stokes' expression for px(/^) [18, p.
152] becomes

(n-l)(n-2)E[A,AiBiBk]2n(n -

+ n(n - (n - 3)E[A,A,BkB,] - —2 n\n - I)2[arcsin a ]2. (8)

Closed form expressions are known [4] in this case for E\AiA,B,Bl] and
E[A,A,BkB,], but after a long search no closed form could be found for
E[AA,B,Bk].

These three expectations all depend on the evaluation of orthant
quadrivariate probabilities; i.e., the evaluation of fourfold integrals of the
form

where Q = R ' and R is the correlation matrix of four jointly normal variates
having zero mean and unit variance. For the three expectations above, the
matrix R has the form

(10)

1

a

b

- ab

1

a

ab

ab

a

1

ab

-b

a

1

b

ab

b

ab

1

— a

ab

b

1

a

-ab

-b

— a

1 .

ab

ab

a

1 .

(11)

and
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1 a ab — ab

a 1 ab - ab

ab ab 1 — a

- ab - ab -a 1

The one involving matrix (11) proved intractable.

3. Output signal to noise ratio of the P.S.S.P.(n,

Progress in the general P.S.S.P. problem became possible when attempts
to obtain a closed form expression for all the relevant orthant probabilities
were abandoned and a new approach adopted [13]. Since the cases of
practical interest were confined to those where the signal to noise ratio, and
therefore the parameter a, were small, it was decided to look for a series
expansion of expressions like (9). In this general case the matrices have five
parameters and are, for example, of the form

1 abc + d ab

a

abc + d

ab

1

ab

\- e
c

ab

1

a

aft
V e

c

a

1

(13)

To avoid confusion in notation, we will take advantage of the fact that
correlation matrices are symmetric and write the general orthant probability
for four variates as

,2, Pl3, Pl4, P23, p24, P34),

i.e., F is a function of the six correlation coefficients of the four variates
involved. In particular cases we may also use notations such as <P(a, b, c, d, e)
so that in the case (13)

F( a, abc + d,ab,ab, 1- e, a I = 4>(a, b,c,d,e).

We will also use the notation <J>, <t>', $", • • •,<t>("') to represent the function
<P(a, b, c, d,e) or its partial derivatives evaluated at a = 0.

Expanding <t>(a, b, c, d, e) at a = 0

y i < t > " + ••• (14)

and the problem reduces to evaluating the expressions 4>, <t>', etc.
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Plackett's result [16] may be applied to the evaluation of these expres-
sions, since in general

' dp,, da / a-o
(15)

with more complicated but still manageable expressions for higher deriva-
tives. Expressions for dp,, Ida are trivial while expressions such as d2F/dp,,dpki
follow from [16].

For example, following Plackett [16], we have

Qx)dx

and the value of this expression at a = 0 is easily obtained in the following
way. Since a is not involved in either the integrations or the differentiations
we are only concerned with the matrix Qo; i.e., Q evaluated at a = 0; e.g., in
the example (13).

Oo' =

Furthermore, if all the indices i,j,k,l are distinct it is easily seen that

1

0

d

0

0

1

0

e

d

0

1

0

0 "

e

0

1 .

dp,,dpki

Similarly if < = k = 1, j = I = 2, we have

0 -d 0
]-d2 \-d2

1 „ -e
0

-d

1 - e

0

2 0

1
o1 - d 2 " \~d2

-e „ 1
0 \-e2 0

l - e 2
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So that

WJ W0 | JJ J?J--o~ W 0 o | J J o Jo ( l -

Returning to the general P.S.S.P.(tl) we wish to determine expressions for
the terms involved in px{\i). In this case equation (3) becomes

+ 4E[Z' A,A,B,Bk]+ 4E[2' A,A,BkB,] - (n + 2E[Z' A,A,]f.

Using the result

E[A,A,] = E[B,B,] = — arcsina,,

we obtain the following expression for px(n):

' A,A,B,B, + Z'A,A,B,Bk + Z'A,A,BkB,] - A(S'2arcsin a,,)2. (18)
v
v

Accordingly, we require expressions for the three quantities E[A,A,B,B,],
E[A,A,B,Bk] and E[AlAlBkB,\. These expectations may be written in terms
of orthant probabilities as below, where the following notation in addition to
(17) has been introduced:

AfrBj = 1] - 1

= 4[O,(a,;, b, cm d,, 4 ) + ^.(a , , - b, c,,, - d,, - d,)

+ <!>,(- a;, fr, - c,,, rf,, 4 ) + <!>,(- a,;, - b, - c,,, - 4 , - 4 ) ] " 1 (19)

where:

<l>i(a, b,c,d,e)= F a, abc + d, afc, afc, — + e, a ,

and therefore
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<J>,(0, b,c,d,e) = F[0, d, 0,0, e, 0]. (20)

Similarly E\A,AjBlBk\ is given by

4[4>2(ai;, b, c,k, c,h d,) + <t>2(a,,, - b, c,k, c,,, - d,)

+ * 2 ( - a,,, - b , - c,k, - c,,, - d,) + 4>2( - a,,, b, - c,k, - c,h d,)]-\ (21)

where:

<t>2(,a, b, c, d, e) = F[a, ab, abc, abd + e, abed, acd],

and therefore

<P2(0, b,c,d,e) = F[0,0,0, e, 0,0]. (22)

Finally

3(a1/, b, clk, clh c,k) + <t>3(a.,, - b, c,k, clh c,k)

+ d>3( - a,,, b, - c,k, clh c,k) + * 3 ( - a,h - b, - clk, c,,, c,k)] - 1 (23)

where:

<I>3(a, b,c,d,e)= F[a, abc, abd, abe, , ade],

<&3(0,6,c,d,e) = F[0,0,0,0,0,0]. (24)

It is the simple form of the expressions (20), (22) and (24) which makes
the calculation of the required partial derivatives a practical proposition.

It is easily seen that:

<1>I(0, b, c,,, d,, d,) = -—5arccos(- d,)arccos(- dt),

* 2 ( 0 , b, clk, c,,, d,) = ^ arccos ( - d,)

and

<l>3(0, b, cik, c,,, c,k) = -^.

Appendix (1) contains the first three partial derivatives required for the
evaluation of $ ' , <t>" and <$>'" and the required expectations follow in Appendix

(2).
In order to evaluate the output signal to noise ratio for the P.S.S.P.(n) it

remains to determine:
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(a) the square of the difference between the mean output in the
presence of signal and the mean output in the absence of signal,

(b) ^Jo~exp(-£)Px0x)d/u.

The first of these quantities is easily seen to be [(n + (4/7r)S'arcsin a,,)— n]2

while the second may be found by substituting the appropriate expectations in
the expression (18) for PX(M) ar>d carrying out the single integration,
numerically if necessary.

4. Discussion and an example

The work reported here describes a general method of computing the
output signal to noise ratio of the P.S.S.P.(n) and comparing it with the same
ratio for the A.S.S.P.<n>. The assumptions (a), (b), (c) listed in section 1 are not
restrictive and will cover many practical examples. The problem could be
further generalised by removing assumption (b), but the matrices Q<> would
then no longer have the simple forms given in section 3.

As an example we will consider the less complicated problem studied by
Stokes [18]. The following restrictions are introduced solely to reduce the
amount of calculation involved. There is no additional difficulty when all
parameters have different values. Accordingly, it will be assumed:

cr2 = a2
N, all /',

all /.

Under these circumstances the signal to noise ratio of the A.S.S.P.(n)

becomes

2K[l + (n-l)a]2 (ZV

as given in section 2.
The signal to noise ratio of the P.S.S.P.(n) after neglecting terms of order

a4 and higher may be written in the form

\ / —
an2 + (in + y '

where:

a = 2a 2 K( l -2a ) ,

/3 = 4a/, + a2(4/3 - 10K - 4) + a\lh - 4/4 + 20K),

y = 2/5 - 8a/, +.a
2(10/C - 8/, + 8) + a3(8/4 - 5/2 - 24K);

the quantity K was defined in section 2.

(26)
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The integrals /, to /5 are of the form

=— exp( --£
1 Jo \ I

= — I expl -y j fe '

All these integrals may be evaluated once the correlation function b = P(AO is
given.

Three separate cases with corresponding approximations for (26) may be
recognised. For n large, say n > 10, we have

Case

na

na — 1

na

The expression (26) has been evaluated for a range of values of n using
the parameter values,

a = 4 b

and for T = both 5 and 100. The results appear in logarithmic form in Figures
(2) and (3). The quotient of the signal to noise ratio of the A.S.S.P.(n) divided
by that of the P.S.S.P.(n) appears in Figure (4); the graph for T = 5 has been
reproduced here; that for T = 100 is very little different.

As would be expected, the performance of each processor improves as

S.N.R. P.S.S

n2a2

2/5

2Kn2

2K(l

n2a2

1
-2a)

•P-(-)

na +2 /5
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10 20 30 40

NUMBER OF RECEIVERS

-6

-8

Figure 2 — Output signal to noise ratio of the polarity sum and square law processor for T — 5

the number of receivers, n, increases. More importantly, however, the
performance of the P.S.S.P.,n) relative to the A.S.S.P.(ri) improves as n
increases. The most surprising result, however, is that for large n the
performance of the P.S.S.P.(n) is, using this signal to noise criterion, better
than that of the A.S.S.P.(n). In fact, as n - » » the quotient mentioned above
approaches 1 - 2a. This result is discussed further in appendix 3. A similar
result noted by Cheng [3] has been dismissed since, unlike the present case, it
appeared to apply only for large values of the input signal to noise ratio. An
examination of the expressions (25) and (26) shows that, in this present case
also, the phenomenon could have been expressed in terms of a; 1 - 2a
becomes smaller as a increases. However, the present work is only valid for
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DC

Z
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O 10-

8-

20 30 40

NUMBER OF RECEIVERS

50

Figure 3 — Output signal to noise ratio of the polarity sum and square law processor for T = 100

small a, although it is probable that increasing a does have a similar effect to
increasing n.

Usher [20] also reports a case where the performance of a system with
infinite clipping is generally superior on a signal to noise basis. In his work the
noise power input was allowed to vary between channels and the above effect
was noted especially when this variation was large. This phenomenon may be
studied more closely using the techniques of this paper. It may be worth
commenting that in cases where one set of receivers has a much higher signal
to noise ratio than the others, there may be advantage in only processing the
output from the former. Such a procedure would be the extreme case of
shaping the input signal and noise before clipping — an obvious extension of
the present study.
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10 20 30 40""
NUMBER OF RECEIVERS

Figure 4 — Comparison of output signal to noise ratio of analogue and polarity sum and square
law processors for T = 5
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Appendix 1 —partial derivatives of orthant probabilities
needed for the calculation of the required expectations

<t>i[a, b, c, d,e] = F[a, abc + d, ab, ab, 1- e, a]

4>2[a, b, c, d, e] = F[a, ab, abc, abd + e, abed, acd]

<t>i[a, b, c,d,e] = F[a, abc, abd, abe, , ade]
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Tables giving the required partial derivatives for $i(a, b, c,d,e) follow; those
for 4>2(a, b, c, d, e) may be found by equating d to zero and replacing the
subscript 3 with 4 and 4 with 3; those for <J>3(a, b, c, d, e) follow by equating
both d and e to zero.

<t>,[0, b, c, d, e] = 77— {̂TT + 2arcsind)(7r + 2arcsine)

dp, J.-o

ij Value

12, 14, 23, 34 ~

, TT + 2 arcsin e

8TT2Vl-d2

TT + 2 arcsin d
24

L dp,,dpki J a _o

jy7c/ Value

1212, 1414, 2323, 3434

1214, 2334

1223, 1434

1234, 1324, 1423

4TT-2

4TT2

4TT2

d(v
81

e(7r

V(l-d2)(l-

-d
V(l-d2)(\-

1

• + 2 arcsin e)

+ 2 arcsin d)

e2)

e2)

e2)

e2)

Z 8 7 r 2 ( l - e 2 ) 3 / 2
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33<t>,
[dp,,dpkidpmn

ijklmn Value

1_
8v

121212, 141414, 232323, 343434 ~-

121213, 131414, 132323, 133434

121224, 141424, 232324, 243434

121314, 132334

121323,131434

121334, 131324, 131423

121424, 232434

122324, 142434

122434, 132424, 142324

242424

131313

4TT

4TT

4TT

4-rr

4TT

4TT

4TT

4v

(1-

2V(l-d2

d
2V(l-d2

-1
2V(l-d2

-di

)\\-e

m-e
7

2V(l-d2y(l-e

d
2V(\-d2f(\-e

-de
2V(l-d2

- 1
2 V(1 — d'

e
2V(l-d2

87T2V(1

\-2d2)(nA

)(l-e>

2)

)3

2)

2)

2)

y

r

w-e2y
- 2arcsin d)
-e2f

f- 2arcsin e)

8n2V(l-d2Y
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Appendix 2 — expectations evaluated using the first three
terms in the Taylor series approximation of <t>,, <t>2 and 4>3

4
E [AiA/B,B, ] = —2 arcsin (4 ) • arcsin (d,)

4fr[~c,, • arcsin (4) arcsin (4) 1
°" n2I Vl-d2 c,, • Vl-d] J

2\2b2\c2id, • arcsin(4) d, arcsin(4)1

. =
TT2V(l-d2,)(l-d2,)

, f 2b3 [ cl(2d2 + 1)

d,d, - 2bd, - 2bd, + 2b2 + b2d,d,]

(2df+ 1) . , . J
.

f—£ii— (24 + 24 - Ab - 4bd,d,

+ 3b2d,+2b2d,)

\ 2J2di + 2d, -Ab- Abd,d, + 2b2d, + 3b2d,)] }

E[AA,B,Bk) = a,, ̂ ^ arcsin (4)+ a2, 2
Ac'^L—1[\-2bdl+2b2]

IT IT V I — d ,

E[A,A,BkB,} = a2

Appendix 3 — the apparent superiority of the P.S.S.P.
for large values of n.

The authors are grateful to one of their referees for drawing attention to
the apparent paradox inherent in one of the remarks in section 4, viz. "The
most surprising result, however, is that for large n the performance of the
P.S.S.P.,,,) is, using this signal to noise criterion, better than that of the
A.S.S.P.(n)". As this referee remarked, under the stated assumptions it has
been well documented, e.g. [17], that the A.S.S.P. detector is identical to the
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likelihood ratio detector which is known to be optimal. In view of this
paradox it will be useful to discuss this matter in more detail.

Two questions arise:
(1) is the analysis correct?
(2) if so, how is the paradox explained?

A 3.1 The signal to noise ratio of the P.S.S.P.(n) for large n

From equation (8), neglecting all powers of n less than the fourth it can
be seen that the output signal to noise ratio of the P.S.S.P.(n) is:

—5 (arcsin a)2

77

Now in this case a closed form expression for E[A,A,BkBi] can be derived
from the work of Cheng [4].

Cheng [4] has shown that the orthant quadrivariate probability corres-
ponding to the correlation matrix

1 a ab ab

a 1 ab ab

ab ab 1 a

. ab ab a 1

is

— + -—[arcsin (a) + 2arcsin (ab)]

+ jp [{arcsin (a )}2 - 2 {arcsin (ab )}2]

+ —2{lLl2(-h
2) + 2L,2{h,arccosab)- L,2[h2,arccos(a)]};

7T

while Stokes [18] has noted that

EiA.AfrB,} = 1 - 16F(a, ab, - ab, ab, - ab, -a).

Li2 here denotes the dilogarithm functions of Lewin [15] defined by
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L,.

and

T / ^ i fMn(l-2ucos0 + v2) .
Ll2(x, 6) = -1 —^ L dv,

Jo V

while

, x Pln(l-tj) j,2(x)= - —^—Ldv,
Jo V

From these two results it can be shown that

^-E[A,A,BkB,] - (arcsin a)2

= 2[ - (arcsin abf + Ll2( - h2) + 4L,2(h, arccos ab) - 2Ll2(h
2, arccos a)].

A simple series expansion will then give, neglecting powers of a greater than
the third, the following expression for the signal to noise ratio of the
P.S.S.P.<n) as

1
2K(l-2ay

This alternative approach confirms this aspect of the analysis of the main text
so the paradox remains.

A 3.2 The paradox

The authors were careful to include the words 'using this signal to noise
criterion'* in the sentence, quoted from the text, at the beginning of this
appendix. Clearly different criteria lead to different conclusions and, in
particular, the likelihood ratio detector employs a different criterion which
involves not only the signal to noise ratio in the presence of signal but also the
noise power in the absence of signal.

An examination of equations (25) and (26) will show that, in the absence
of signal, the noise variance of the P.S.S.P.(n) is larger than that of the

'These words were not italicized in the paper as originally submitted.
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A.S.S.P.(n). Accordingly, the probability of false alarm in the case of the
P.S.S.P.(n) is greater than that of the A.S.S.P.,n) or, alternatively, if the
P.S.S.P.(n) is adjusted to give the same probability of false alarm as the
A.S.S.P.(n) then its apparent superior probability of detection will no doubt
disappear. One of us (Keats) has pursued this matter in more detail and it may
form the basis of a future paper.
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