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A Classification of Tsirelson Type Spaces

J. Lopez-Abad and A. Manoussakis

Abstract. We give a complete classification of mixed Tsirelson spaces T[(Fi , θi)
r
i=1] for finitely many

pairs of given compact and hereditary families Fi of finite sets of integers and 0 < θi < 1 in terms of

the Cantor–Bendixson indices of the families Fi , and θi (1 ≤ i ≤ r). We prove that there are unique

countable ordinal α and 0 < θ < 1 such that every block sequence of T[(Fi , θi)
r
i=1] has a subsequence

equivalent to a subsequence of the natural basis of the T(Sωα , θ). Finally, we give a complete criterion

of comparison in between two of these mixed Tsirelson spaces.

Introduction

The line of research we continue in this paper has been initiated by an old problem of
S. Banach asking if every Banach space contains a subspace isomorphic to c0 or some

ℓp. This problem was solved negatively by B. S. Tsirelson [19] who provided the first
example of a Banach space that does not contain any of the spaces c0, ℓp, 1 ≤ p <∞.
The idea of Tsirelson’s construction became particularly apparent after T. Figiel and
W. B. Johnson [11] showed that the norm of the dual of a Tsirelson space satisfies the

following implicit equation
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where the sequences (Ei)
d
i=1 considered above consist of successive subsets of inte-

gers with the property that d ≤ min E1, d ∈ N, and Ei(
∑

n anen) =
∑

n∈Ei
anen is

the restriction of
∑

n anen on the set Ei . We refer to [10] for an extended study of
Tsirelson space T. A first systematic abstract study on Tsirelson’s construction was
given by S. Bellenot [7] and S. A. Argyros and I. Deliyanni [4]. Given a real number
0 < θ < 1 and an arbitrary compact and hereditary family F of finite sets of integers,

one defines the Tsirelson type Banach space T(F, θ) as the completion of c00 with the
implicitly given norm (∗) replacing 1/2 by θ and using sequences (Ei)i of finite sets
of integers which are F-admissible, i.e., there is some {mi}

d
i=1 ∈ F such that

m1 ≤ min E1 ≤ max E1 < m2 ≤ min E2 ≤ max E2 < · · · < md ≤ min Ed ≤ max Ed.

In this notation, Tsirelson’s example is the space T(S, 1/2), where S = {s ⊆ N :

#s ≤ min s} is the so-called Schreier family. It was proved in [4] that if the Cantor–

Bendixson index ι(F) and θ satisfy the inequality θ · ι(F) > 1, then the space T(F, θ)
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is reflexive. Moreover, in the case of ι(F) ≥ ω, they proved that the space T(F, θ)
does not contain any of the classical spaces c0 or ℓp, 1 ≤ p < ∞. In the case that F

is chosen to be the family of the finite subsets of N with cardinality at most n ≥ 2,
denoted by [N]≤n, it was shown [4, 7] that the corresponding space T([N]≤n, θ) is
isomorphic to c0 if nθ ≤ 1 and is isomorphic to ℓp (1 < p <∞) if θ = n−1/q, where
q is the conjugate of p, i.e., 1/p + 1/q = 1.

Further examples of Tsirelson type spaces with interesting properties are the spaces
T(Sα, θ) considered in [1, 4], where the compact and hereditary families Sα are the
α-Schreier families, the natural generalizations of the Schreier family of index ωα

(S1 = S). These spaces share many properties with the original Tsirelson space, and
their natural Schauder bases are examples of w-null sequences with large oscillation
indices. A basic property of any Sα is that it is spreading (see definition below). This
is used to show that every normalized block sequence with respect to their natural

bases (en) is equivalent to a subsequence of (en), a property that c0 and ℓp also have.
From this, and the fact that the Cantor–Bendixson indices of the families Sα and
[N]≤n are very much different, it can be explained why T(Sα, 1/2) does not contain
isomorphic copies of ℓp

∼= T([N]≤n, n−1/q) or c0
∼= T([N]≤n, 1/n).

The aim of this paper is to understand in these terms the so-called mixed Tsirelson

spaces T[(Fi , θi)
r
i=1], whose norms are defined implicitly by

‖x‖(Fi ,θi )
r
i=1

=

max
{

‖x‖∞, sup
{

θi

n
∑

j=1

‖E jx‖(Fi ,θi )
r
i=1

: (E j)
n
j=1 is Fi-admissible, 1 ≤ i ≤ r

}

}

,

for arbitrary compact and hereditary families Fi and establish a criterion of compa-
rability in between them. The first step in this direction was done by J. Bernues and I.
Deliyanni [8] and J. Bernues and J. Pascual [9] who proved the following two results:

• If the Cantor–Bendixson indices of the families are finite, then T[(Fi , θi)
r
i=1] is

saturated by either c0 or some ℓp, 1 < p <∞.
• If the Cantor–Bendixson index of F is equal to ω + 1, then T(F, θ) contains a

subspace isomorphic to a subspace of T(S, θ).

The only case left is when one of the families has infinite index. Recall that every
ordinal α > 0 has a unique decomposition as α = ωβk +δ, where δ < ωβ and k ∈ N.
Using it twice it follows that every infinite ordinal α has the unique decomposition
α = ωω

γn+ξm + η (see [18]). Now given a compact family F, let γ(F) and n(F) be

ωω
γ

and n in the previous decomposition for α equal to the Cantor–Bendixson index
of F. Following this notation, our main result is the following.

Theorem Fix (Fi, θi)
r
i=1 such that at least one of the families has infinite index. Then

there is some 1 ≤ i0 ≤ r such that for every compact and hereditary family G the

following are equivalent.

(i) γ(G) = γ(Fi0
).

(ii) Every infinite-dimensional closed subspace of T[(Fi , θi)
r
i=1] contains a subspace

isomorphic to a subspace of T(G, θ
n(G)/n(Fi0

)

i0
).
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(iii) Every normalized block sequence (xn) of T[(Fi , θi)
r
i=1] has a subsequence (xn)n∈M

equivalent to the subsequence (emin supp xn
)n∈M of the basis of T(G, θ

n(G)/n(Fi0
)

i0
).

It readily follows that:

• Every normalized block sequence (xn) of T[(Fi , θi)
r
i=1] has a subsequence (xn)n∈M

equivalent to the subsequence (emin supp xn
)n∈M of the basis of T[(Fi , θi)

r
i=1].

• There are unique countable ordinal α and 0 < θ < 1 such that every normalized
block sequence with respect to the basis (en) of T[(Fi , θi)

r
i=1] has a subsequence

equivalent to a subsequence of the basis (en) of T(Sωα , θ).

So, for example T(Sω34+ω5, 1/24) and T(Sω3 , 1/2) are mutually saturated, while

T(Sω3 , 1/2) and T(Sω4 , 1/2) are totally incomparable.

Another consequence is that every subspace of T[(Fi , θi)
r
i=1] contains an Sωα − ℓ1

spreading model, that is, there exists a constant K > 1 such that for every sequence
of coefficients (an)n

∥

∥

∥

∑

n∈s

anxn

∥

∥

∥
≥

1

K

∑

n∈s

|an| (s ∈ Sωα).

In particular, every subspace of T[(Fi , θi)
r
i=1] contains an asymptotic ℓ1-subspace.

Asymptotic ℓ1-spaces, the structure of these spaces as well as the structure of the
spreading models of a Banach space is a current research topic, which provides inter-
esting examples and structural results in Banach space theory (see [2, 16]).

The proofs given in this paper use four main ingredients: we work with the equiv-

alent reformulation of the implicit norm of T[(Fi , θi)
r
i=1] given by the norming set

K((Fi , θi)
r
i=1), and the so-called tree analysis of a functional of K(F, θ) (see Sec-

tion 4). In particular, given a normalized block sequence (xn) of the basis (en) we
provide an algorithm to estimate the norm of a linear combination

∑

n anxn in terms

of a corresponding linear combination of a subsequence of the basis (en) of an aux-
iliary space T[(Gi , θi)

r
i=1], much in the spirit of well-known works in this field. Sec-

ondly, we use the well-known fact (see [6,12]) that given two compact and hereditary
families F and G, there is an infinite set M such that either F↾N = {s ∈ F : s ⊆ N} ⊆
G↾N = {s ∈ G : s ⊆ N} or vice versa. This is indeed a consequence of the fact that
for every compact and hereditary family F, there is an infinite set M such that F↾M

is, what we call here, homogeneous on M. It turns out that the ⊆-maximal elements
of such families have the Ramsey property, which we will use here to avoid some com-

binatorial computations.

Finally, we reduce the study of T[(Fi , θi)
r
i=1] for compact and hereditary families

Fi ’s to the case of T(G, θ) for some regular family G, i.e., a compact hereditary fam-
ily G that is in addition spreading (see below). This additional regularity property
of families G has two main advantages: the first is that the associated norming set

K(G, θ) has a simpler form; the second one is that their Cantor–Bendixson index is
preserved if we restrict them to an infinite set.

The paper is organized as follows: in the first section we introduce notation, ba-
sic combinatorial definitions, and mixed Tsirelson spaces. In the second section we
study the behavior of subsequences of the natural basis of T[(Fi , θi)

r
i=1] in the case
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of regular families. An important outcome of this section is the reduction we make
from finitely many families to one.

The third section is devoted to an abstract study of compact and hereditary fam-

ilies of finite sets of integers. In particular, we introduce homogeneous and uniform
families and we prove two combinatorial results, basic tools for this work. This sec-
tion provide the link between mixed Tsirelson spaces built by compact and hereditary
families with Tsirelson type spaces constructed using a regular family.

In the last section we show that every block sequence of a mixed Tsirelson space
T[(Fi , θi)

r
i=1] has a further subsequence equivalent to a subsequence of its basis. As

a consequence of this and of the results of the previous sections we provide several
saturation results. Using special convex combinations, we also give two criteria to

obtain incomparability for Tsirelson type spaces. Finally, we expose the classification
of mixed Tsirelson spaces T[(Fi , θi)

r
i=1].

1 Basic Facts

Throughout this paper we are going to deal with families of finite sets of integers.
The family of all finite sets of integers is denoted here by FIN. Given s, t ∈ FIN we
write s < t (resp. s ≤ t) to denote that max s < min t (resp. max s ≤ min t), and for
an integer n, we write n < s (n ≤ s) whenever {n} < s (resp. {n} ≤ s). These orders

can be easily extended to vectors x, y ∈ c00(N): x < y (x ≤ y) if and only if supp x <
supp y (resp. supp x ≤ supp y), where for x ∈ c00, supp x = {n ∈ N : x(n) 6= 0}.
We say that a sequence (sn) of non-empty finite sets of integers is a block sequence if
sn < sn+1 for every n. In a similar manner one defines the corresponding notion of

block sequence of vectors of c00.

Given an infinite set M and a finite set s we denote M/s = {n ∈ M : n > s}, and
for a given integer n, let M/n = M/{n}. The shift of a non-empty set A of integers
is ∗A = A \ {min A}. Given two sets A and B we set A \ B = {n ∈ A : n /∈ B}, and
M \ m = {n ∈ M : n ≥ m}. For a given family F ⊆ FIN, an infinite set M ⊆ N

and a finite set s, let F↾M = {t ∈ F : t ⊆ M} be the restriction of F in M, and
let Fs = {t ∈ FIN : s < t, s ∪ t ∈ F}. Given a finite set s we use #s to denote its
cardinality. Finally, every time we write an enumeration A = {mi} of a set A we
mean a strictly increasing enumeration.

Concerning topological aspects, observe that the family of all finite sets of in-
tegers has the natural topology induced by the product topology on the Cantor
space {0, 1}N, simply by identifying every finite set s with its characteristic function
ξs : N → {0, 1}. We say then that a family F ⊆ FIN is compact if F is closed with

respect to the previous topology. In particular, there is no infinite sequence (sn) ⊆ F

such that sn  sn+1 (this is characterization if F is a family closed under inclusion).
Given a compact family F, recall that ∂F is the set of all proper accumulation points
of F and that ∂(α)(F) =

⋂

β<α ∂(∂(β)(F)). The rank is well defined since F is count-

able and therefore a scattered compactum, so the sequence (∂(α)(F))α of iterated
derivatives must vanish. We define, as in [8], the Cantor–Bendixson index ι(F) of a
compact family F as the minimal ordinal α such that ∂(α)F ⊆ {∅}. Observe that
this definition is a slight variation of the standard one, where one considers the first
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ordinal α such that ∂(α)F vanishes. Let us point out the reason to take this defini-
tion of the index of a family F: while for families with infinite index the results we

present in this paper have exactly the same form using the standard notion of Cantor–
Bendixson index, for families with finite index the standard Cantor–Bendixson index
cannot be used to characterize the corresponding mixed Tsirelson spaces (see [8]).

A family F is called hereditary if and only if s ⊆ t ∈ F implies that s ∈ F. Another

relevant order of FIN is �: given two finite sets s and t we write s � t if and only if
|t| = |s| and the only strictly increasing map σ : t → s satisfies that n ≥ σ(n) for all
n ∈ t , or equivalently, if s = {p1, . . . , pd}, then t = {q1, . . . , qd} and pi ≤ qi for
every i ≤ d. We say that a family F of finite subsets of an infinite set M is spreading

on M if s � t ⊆ M and s ∈ F implies t ∈ F. We say that F is spreading if it is
spreading on N. We say that F is regular on M if and only if it is compact hereditary
and spreading on M, and that F is regular if it is regular on N.

Examples of regular families are the families of subsets of M with cardinality ≤ n,

denoted by [M]≤n, and with index n. Indeed, we will see that every regular fam-
ily with finite index is, when restricted to some tail N/n, of this form (see Proposi-
tion 3.4). A regular family of index ω is the well-known Schreier family

S = {s ∈ FIN : #s ≤ min s}.

In general, for a countable ordinal α we can define inductively on α an α-Schreier

family by S1 = S, Sα+1 = {s1 ∪ · · · ∪ sn : (si) ⊆ Sα is S-admissible}, and if α is
a limit ordinal, Sα =

⋃

n Sαn
↾(N \ n), where (αn) is a fixed increasing sequence of

ordinals with limit α. It can be shown that Sα is a regular family with index ωα [1].
We introduce now two well known operations between families of finite sets.

Definition 1.1 Fix two families F and G of finite sets. Recall the following from [3]:

F ⊕ G ={s ∪ t : s < t, s ∈ G, t ∈ F},

F ⊗ G ={s1 ∪ · · · ∪ sn : (si) is a block sequence, {si} ⊆ F and {min si} ∈ G}.

The operation F ⊕ G is called a block sum while the operation F ⊗ G is called
a convolution. Observe that α + 1-Schreier families are defined inductively by the
formula Sα+1 = Sα ⊗ S. Also, it is well known that the index of the families F ⊕ G

and F ⊗ G are equal to ι(F) + ι(G) and ι(F)ι(G), respectively, assuming that F,G are
regular (see Proposition 3.4). So, if α has Cantor normal form α = ωα0 n0 +· · ·+ωαk nk

(see [18] for standard properties of ordinal arithmetic), the regular family (Sα0
⊗

[N]≤n0 ) ⊕ · · · ⊕ (Sαk
⊗ [N]≤nk ) is of index α.

It is not difficult to prove that ⊕ and ⊗ share many properties with the addition
and multiplication of ordinals. For example, ⊕ and ⊗ are associative, and they have
the distributive law F ⊗ (G ⊕ H) = (F ⊗ G) ⊕ (F ⊗ H), while in general the two
operations are not commutative or (F ⊕ G) ⊗ H 6= (F ⊗ H) ⊕ (G ⊗ H) (as for the

addition and multiplication of ordinals).
We introduce the following simpliflying notation.

Notation By (Fi , θi)i∈I we shall always mean a sequence of pairs of compact and
hereditary families Fi and real numbers 0 < θi < 1 (i ∈ I). We call a sequence
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(Fi , θi)i∈I regular if in addition every Fi is regular. Given two sequences (Fi, θi)i∈I

and (Fi , θi)i∈ J we use (Fi, θi)i∈I
a(Fi , θi)i∈ J to denote the disjoint concatenation

(Fi , θi)i∈I⊔ J of the two sequences. Given F ⊆ FIN and m ∈ N let

F⊗(m)
= F ⊗

(m)
· · · ⊗ F.

We are now ready to give the definition of mixed Tsirelson spaces.

Definition 1.2 Given a sequence (Fi, θi)i∈I the norm ‖ · ‖(Fi ,θi )i∈I
on c00 is defined

as follows. For x ∈ c00 let

(1.1) ‖x‖(Fi ,θi )i∈I
=

max
{

‖x‖∞, sup
{

θi

n
∑

j=1

‖E jx‖(Fi ,θi )i∈I
: (E j)

n
j=1 is Fi-admissible, i ∈ I

}

}

.

Next, T[(Fi , θi)i∈I] denotes the completion of (c00, ‖ · ‖(Fi ,θi )i∈I
). Observe that a

Tsirelson type space T(F, θ) is nothing else but the mixed Tsirelson space T[(F, θ)].

Remark 1.3. (i) The property of being hereditary of every family Fi is not needed
for the previous definition to make sense. Moreover, if the F ′

i s are only compact, then
the standard Hamel basis (en) of c00 is a 1-sign-unconditional normalized Schauder

basis of T[(Fi , θi)i∈I] (in order to prove the unconditionality it is more convenient
to work with the equivalent presentation of the norm ‖ · ‖(Fi ,θi )i∈I

given just before
Remark 1.4). In the sequel, whenever we consider block sequences they will be with
respect the basis (en)n.

(ii) If I is finite, or if limi∈I θi = 0, then (en) is shrinking, while if there exists i ∈ I

with θi > 1/ι(Fi) (with the convention 1/ι(Fi) = 0 for ι(Fi) is infinite), then the
basis (en) is boundedly complete (see [6] for more details).

(iii) Observe that if in the previous definition of the norm ‖ · ‖(Fi ,θi )i∈I
we do not

impose that Fi are necessarily hereditary but only ⊑-hereditary (s ⊑ t if s ⊆ t and
s < t \ s), then in the corresponding completion T[(Fi , θi)i∈I] the sequence (en) is
still a bimonotone Schauder basis 1-sign unconditional.

(iv) It can be shown that the implicit formula (1.1) remains true for every x ∈
T[(Fi , θi)i∈I] (see [14] or Remark 1.4 below).

(v) If we allow some of the families Fi to be non-compact, i.e., if some of their
closures contain an infinite set, then it follows easily that T[(Fi , θi)i∈I] is ℓ1-saturated.

Indeed, every seminormalized block sequence contains a further subsequence, for
which every finite initial subsequence is Fi-admissible for a non-compact family Fi ,
and hence equivalent to the natural basis of ℓ1.

Now we present a standard alternative description of the norm of the space

T[(Fi , θi)i∈I], closer to the spirit of Tsirelson’s original definition. Let us denote by
K((Fi , θi)i∈I) the minimal subset of c00

• containing ±e∗n (n ∈ N)
• it is closed under the (Fi , θi)-operation (i ∈ I): θi( f1 + · · · + fn) ∈ K((Fi , θi)i∈I)

for every Fi-admissible sequence ( fi)
n
i=1 ⊆ K((Fi , θi)i∈I).
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The norm induced by K((Fi , θi)i∈I), i.e.,

‖x‖K((Fi ,θi )i∈I ) = sup{ f (x) : f ∈ K((Fi , θi)i∈I)}, for x ∈ c00,

is exactly the norm ‖x‖(Fi ,θi )i∈I
defined above. Given an infinite set M of integers we

set KM((Fi , θi)i∈I) = {φ ∈ K((Fi , θi)i∈I) : suppφ ⊆ M}}.

Remark 1.4. (i) It is easy to see that the closure under the pointwise convergence

topology of conv K((Fi , θi)i∈I) is the unit dual ball BT[(Fi ,θi )i∈I ]∗ . It follows that
BT[(Fi ,θi )i∈I ]∗ is closed under the (Fi , θi)-operation (i ∈ I). It is also easy to see
that even if the families Fi ’s are not necessarily hereditary, the corresponding norm-
ing set K((Fi , θi)i∈I) is closed sign modification. If (an)n∈N ∈ K((Fi , θi)i∈I), and

(εn)n ⊆ {−1, 1}, then (εnan)n∈N ∈ K((Fi , θi)i∈I). This proves that (en) is always
1-unconditional.

(ii) For every infinite set M of integers and every sequence (an)n∈M of scalars we

have
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Fi ,θi )i∈I

=

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

KM ((Fi ,θi )i∈I )
.

Observe that KM((Fi , θi)i∈I) = KM((Fi↾M, θi)i∈I) if Fi is regular for every i ∈ I, but
that in general the previous equality is not true.

Notice that, by minimality of K((Fi , θi)i∈I), every functional from K((Fi , θi)i∈I)
either has the form ±e∗n (n ∈ N), or it is the result of a (Fi , θi)-operation to some
sequence in K((Fi , θi)i∈I) and i ∈ I. This suggests that somehow every element of
K((Fi , θi)i∈I) has a complexity that increases in every use of the (Fi , θi)-operations.

This is captured by the following definition.

Definition 1.5 [3] A family ( ft )t∈T ⊆ K((Fi , θi)i∈I) is called a tree analysis of a

functional f ∈ K((Fi , θi)i∈I) if the following are satisfied:

(i) T = (T,�T) is a finite tree with a unique root denoted by∅, and f∅ = f .
(ii) For every t ∈ T maximal node, ft = εt e

∗
kt

where εt = ±1.

(iii) For every t ∈ T which is not maximal, there exists i ∈ I such that ( fs)s∈St

is Fi-admissible and ft = θi

∑

s∈St
fs, where St denotes the set of immediate

successor nodes of t .

Note that St is well-ordered by s0 < s1 if and only if supp fs0
< supp fs1

. Whenever
there is no possible confusion we will write � in order to denote �T .

It is not difficult to see, by the minimality of the set K((Fi , θi)i∈I), that every
functional of K((Fi , θi)i∈I) admits a tree analysis.

As we mentioned before in Remark 1.4, in general it is not true that

KM((Fi , θi)i∈I) = KM((Fi↾M, θi)i∈I)

for a given infinite set M of integers, so, a priori, it does not suffice to control the
restrictions Fi↾M (i ∈ I) for the understanding of norms ‖

∑

n∈M anen‖(Fi ,θi )i∈I
. We

will see soon that the following is a key definition for this purpose.
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Definition 1.6 Given a family F we define the family of all F-admissible sets as
follows. We say that a finite set t = {mi}

k−1
i=0 interpolates the block sequence (si)

k−1
i=0

of finite sets if and only if m0 ≤ s0 < m1 ≤ s1 < · · · < mn−1 ≤ sn−1. We say that
t = {ni} interpolates s = {mi} if and only if t interpolates the block sequence ({mi}).

Given a family F of finite sets, a block sequence (si)
n−1
i=0 of finite sets is F-admissible

if there is some t ∈ F which interpolates (si)
n−1
i=0 . We define

Ad(F) = {{mi}
n
i=0 ∈ FIN : ({mi})n

i=0 is F-admissible},

the family of all F-admissible finite sets.

Notice that if M ⊆ N and (si) is an F-admissible sequence of subsets of M, then
{min si} ∈ Ad(F)↾M. The converse is not true in general.

We list some properties of the F-admissible sets. Particularly interesting is the
characterization of spread of a family in terms of its F-admissible sets.

Proposition 1.7 (i) F ⊆ Ad(F).

(ii) If F is compact or hereditary, then so is Ad(F).

(iii) F is spreading on M if and only if Ad(F)↾M = F.

(iv) Set Ad(n+1)(F) = Ad(Ad(n)
F), Ad(0)(F) = F. Then

spread(F) = {s : ∃t ∈ F (t � s)} =
⋃

n

Ad(n)(F)

is the minimal spreading family on N containing F. If F is compact or hereditary,

then so is spread(F), and if F is regular on some set M, spread(F)↾M = F.

Proof (i) and (ii) are easily proved.

(iii) If F is spreading on M, and t ∈ F interpolates some s ⊆ M, then, in partic-

ular, t � s and hence s ∈ F. Suppose that Ad(F)↾M = F and suppose that s � t

with s ∈ F and t ⊆ M. Set s = {mi}
k
i=1 and t = {ni}

k
i=1. For each 0 ≤ j ≤ k let

t j = {mi : 1 ≤ i ≤ k − j} ∪ {ni : k − j + 1 ≤ i ≤ k}. Observe that t0 = s ∈ F, t j

interpolates t j+1 and that tk = t , so an easy inductive argument finishes the proof of

(iii). (iv) follows by arguments similar to (iii).

Finally, let us recall the following from [12].

Theorem 1.8 Suppose that F and G are two compact and hereditary families. Then

there is some infinite set M such that either F↾M ⊆ G↾M or G↾M ⊆ F↾M.

As for regular families F, we have that ι(F↾M) = ι(F) for every M (see Proposi-

tion 3.4), it follows that if F and G are two regular families with ι(F) < ι(G), then for
every M there is some N ⊆ M such that F↾N ⊆ G↾N . In other words, strict inequal-
ities between indices of regular families imply, modulo restrictions, strict inclusion
between those families.
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2 Subsequences of the Basis for Regular Families

The purpose of this section is to understand, for regular families, the relationship
between the operations⊕ and ⊗ on regular families and corresponding norming sets.
For example, what is the relation between K(F ⊕F, θ) and K(F, θ)? It is well known

that if the family F has finite index, then these two norming sets are, in general,
different as the corresponding Tsirelson type spaces are isomorphic to different ℓps.
However if F is, for example, the Schreier family S, then it can be easily shown that
[N]≤3 ⊗ S ⊆ S ⊗ [N]≤2, and hence

[N]≤8 ⊗ (S ⊗ [N]≤2) ⊆ ([N]≤3 ⊗ ([N]≤3 ⊗ S)) ⊗ [N]≤2

⊆ (S ⊗ [N]≤4) ⊗ [N]≤2
= S ⊗ [N]≤8.

It follows by induction on the complexity ofφ ∈ K(S⊗[N]≤2, θ) that φ = φ1+· · ·+φ8

for some block sequence (φi)
8
i=1 ⊆ K(S, θ). This clearly implies that

∥

∥

∥

∑

n

anen

∥

∥

∥

(S,θ)
≤

∥

∥

∥

∑

n

anen

∥

∥

∥

(S⊗[N]≤2,θ)
≤ 8

∥

∥

∥

∑

n

anen

∥

∥

∥

(S,θ)

for every 0 < θ < 1 and every sequence (an) of scalars. As one can guess, this
reasoning cannot be applied to an arbitrary regular family F with infinite index since
we do not have an explicit presentation of F as for the Schreier family. However, we
do have the index of the family, and by the properties of the ordinals we have that

ι([N]≤3 ⊗ (F ⊗ [N]≤2)) = 3(ι(F)2) < ι(F)2 + ω ≤ ι(F)3,

and, since F is regular, there is some infinite set M of integers such that [M]≤3 ⊗
(F↾M ⊗ [M]≤2) ⊆ F ⊗ [N]≤3, hence

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(F,θ)
≤

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(F⊗[N]≤2,θ)
≤ 3

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(F,θ)
,

so the two subsequences (en)n∈M ⊆ T(F, θ) and (en)n∈M ⊆ T(F ⊗ [N]≤2, θ) of the

corresponding natural bases are 3-equivalent.
We start with the following simple fact that readily follows from the definitions of

the norms.

Fact Suppose that (Fi , θi)i∈I , (Gi , θi)i∈I and M ⊆ N have the property that every

Gi-admissible sequence of subsets of M is Fi-admissible (i ∈ I). Then for every
sequence (an)n∈M of scalars

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Gi ,θi )i∈I

≤
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Fi ,θi )i∈I

.

The next result is a simple generalization of the above fact which will be used
repeatedly.
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Proposition 2.1 Suppose that (Fi, θi)i∈I , (Gi , θi)i∈I , M ⊆ N and k ∈ N have the

property that

(2.1) [M]≤k ⊗ Ad(Fi)↾M ⊆ Gi↾M ⊗ [M]≤k (i ∈ I).

Then for every sequence (an)n∈M of scalars

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Fi ,θi )i∈I

≤ k
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Gi ,θi )i∈I

.

Proof We are going to show, using (2.1), that for every φ ∈ KM((Fi , θi)i∈I) there are
ψ0 < · · · < ψl−1 in KM((Gi , θi)i∈I), l ≤ k, such that φ = ψ0 + · · ·+ψl−1. The proof is

by induction on the complexity of φ. If φ = e∗n , there is nothing to prove. Suppose that
φ = θi(φ0 + · · ·+φn), where (φi)

n
i=0 ⊆ KM((Fi , θi)i∈I) is Fi-admissible. By inductive

hypothesis find for every j a set u j of cardinality at most k and a block sequence
(ψs)s∈u j

⊆ KM((Gi , θi)i∈I) such that φ j =
∑

s∈u j
ψs ( j = 0, . . . , n). Observe that

since (φ j)
n
j=0 is Fi-admissible, {minφ j}

n
j=0 ∈ Ad(Fi). Hence by our hypothesis

(2.1),

t =

n
⋃

j=0

{minψs : s ∈ u j} ∈ [M]≤k ⊗ (Ad(Fi))↾M ⊆ Gi↾M ⊗ [M]≤k.

So there are t0 < · · · < tl−1 in Gi↾M (l ≤ k) such that t = t0 ∪ · · · ∪ tl−1. For

0 ≤ m ≤ l − 1 set

ψ(m)
= θi

(

∑

minψs∈tm

ψs

)

∈ KM((Gi , θi)i∈I).

Then φ = ψ(0) + · · · + ψ(l−1), as desired.

As a consequence we obtain the following two results. The first one is the general
version of the examples considered in the introduction to this section.

Corollary 2.2 Let (Bi , θi)
r
i=1 and (Ci , θi)

r
i=1 be regular sequences such that

ω ≤ ι(Ci) ≤ ι(Bi) ≤ ι(Ci)k 1 ≤ i ≤ r

for some integer k ≥ 1. Then for every M there is some N ⊆ M such that the subse-

quences (en)n∈N of the basis of T[(Bi , θi)
r
i=1] and T[(Ci , θi)

r
i=1] are 2(k+1)-equivalent.

Proof By our assumption on the indices of the families we obtain that

ι([N]≤k+1 ⊗ Bi) = (k + 1)ι(Bi) < ι(Bi) + ω ≤ ι(Ci ⊗ [N]≤k+1)

for every 1 ≤ i ≤ r. Hence there is some N0 ⊆ M such that [N0]≤k+1 ⊗ Bi↾N0 ⊆
Ci ⊗ [N0]≤k+1 for every 1 ≤ i ≤ r. Proposition 2.1 yields

∥

∥

∥

∑

n∈N0

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤ (k + 1)
∥

∥

∥

∑

n∈N0

anen

∥

∥

∥

(Ci ,θi )
r
i=1

.
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By Theorem 1.8 there exists N ⊆ N0 such that

[N]≤2 ⊗ Ci↾N ⊆ Bi ⊗ [N]≤2 for every i ≤ r.

Proposition 2.1 yields

‖
∑

n∈N

anen‖(Ci ,θi )
r
i=1

≤ 2‖
∑

n∈N

anen‖(Bi ,θi )
r
i=1

which completes the proof.

The next result says the shift operator, when restricted to some subsequence of the
basis, is always bounded. For a given set N and n ∈ N , let n+ ∈ N be the immediate
successor of n in N , i.e., n+ = min N/n.

Corollary 2.3 Let (Bi , θi)
r
i=1 be a regular sequence. Then for every M there is some

N ⊆ M such that for every sequence of scalars (an)n∈N ,

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈N

anen+

∥

∥

∥

(Bi ,θi )
r
i=1

≤ 2
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

Proof We set I = {1 ≤ i ≤ r : ι(Bi) is finite} and J for the complement of I. By
Theorem 1.8 we can find N ⊆ M such that and

[N]≤2 ⊗
(

(Bi↾N) ⊕ [N]≤1
)

⊆ (Bi↾N) ⊗ [N]≤2 (i ∈ J).

Moreover, we may assume that Bi↾N = [N]≤ι(Bi ) for every i ∈ I (see Proposi-

tion 3.4). By Proposition 2.1 we get

(2.2)
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )i∈I
a(Bi⊕[N]≤1,θi )i∈ J

≤ 2
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

For a given finite set s ⊆ N , we set s+ = {n+ : n ∈ s}. Suppose that s+ ∈ Bi . Then if
i ∈ I we have that s ∈ Bi ; if i ∈ J, then (s+) \ {max s+} � ∗s, so ∗s ∈ Bi because Bi

is spreading. This implies that in this case s ∈ Bi ⊕ [N]≤1. This fact proves that

(2.3)
∥

∥

∥

∑

n∈N

anen+

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )i∈I
a(Bi⊕[N]≤1,θi )i∈ J

.

Now, using that Bi are spreading, by (2.2) and (2.3) we get,

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈N

anen+

∥

∥

∥

(Bi ,θi )
r
i=1

≤ 2
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

We examine the effect of the power operation B⊗(m) for regular families B on the
corresponding norming set. We follow some of the ideas used in the proof of the
corresponding result for Schreier families (see [13, 15]).

https://doi.org/10.4153/CJM-2008-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-049-0


A Classification of Tsirelson Type Spaces 1119

Lemma 2.4 Fix an infinite set M of integers, m ∈ N, and a regular sequence

(Bi , θi)
r
i=1. Then for every sequence (an)n∈M of scalars

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(B⊗(m)
1 ,θm

1 ) a(Bi ,θi )
r
i=2

≤
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

Proof For simplicity, using that the families considered here are regular, we may

assume that M = N. Suppose that φ ∈ K((B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2). We will show

that

(2.4) φ
(

∑

n

anen

)

≤
∥

∥

∥

∑

n

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

It can easily be shown by induction on m that if (si)
k
i=1 is B

⊗(m)
1 -admissible, then

θm
1

k
∑

i=1

∥

∥

∥

∑

n∈si

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈
S

k
i=1 si

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

It is not difficult to show by induction on the complexity of φ that the last inequality
gives (2.4).

Lemma 2.5 Suppose that M is an infinite set and that (Bi , θi)
r
i=1 is a regular sequence

such that

(2.5) B1↾M ⊗ Bi ⊆ Bi ⊗ B1

for every 1 ≤ i ≤ r. Then for every integer m,

θm−1
1

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(B⊗(m)
1 ,θm

1 ) a(Bi ,θi )
r
i=2

≤
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

(2.6)

Proof The second inequality is given by Lemma 2.4. We assume that M = N. In
order to prove the first inequality of (2.6) we are going to show that

φ
(

∑

n

anen

)

≤
1

θm−1
1

∥

∥

∥

∑

n

anen

∥

∥

∥

(B⊗(m)
1 ,θm

1 ) a(Bi ,θi )
r
i=2)

for every if φ ∈ K((Bi , θi)
r
i=1). For suppose that (φt )t∈T is a tree analysis of φ. For

every s � t and 1 ≤ i ≤ r let

li(s, t) = #
({

u : s � u � t and φu = θi

∑

v∈Su

φv

})

.

So we have the decomposition

φ =

∑

t∈A

(

r
∏

i=1

θni (t)
i

)

(−1)εt emt
,
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where A is the set of terminal nodes of T, ni(t) = li(∅, t), εt ∈ {0, 1}, and mt is an
integer.

Claim Suppose that there is some 0 ≤ d < m such that n1(t) ≡ d (mod m) for

every t ∈ A. Then there are (ψi)
l
i=1 ⊆ K

(

(B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2

)

such that

(i) φ = θd
1(ψ1 + · · · + ψl);

(ii) (ψi)
l
i=1 is B

⊗(d)
1 -admissible.

Assuming the claim, for every t ∈ A, let 0 ≤ dt < m be such that n1(t) + dt ≡ 0
(mod m), and let

ψ =

∑

t∈A

(

θdt

1

r
∏

i=1

θni (t)
i

)

(−1)εt emt
.

By the claim we have that ψ ∈ K((B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2). Finally,

∣

∣

∣
φ
(

∑

n

anen

)
∣

∣

∣
≤

1

θm−1
1

∣

∣

∣
ψ

(

∑

n

anen

)
∣

∣

∣
≤

1

θm−1
1

∥

∥

∥

∑

n

anen

∥

∥

∥

(B⊗(m)
1 ,θm

1 ) a(Bi ,θi )
r
i=2

.

which completes the proof of the lemma.

Proof of Claim The proof is by induction on the complexity of φ. Suppose first that
φ = ±es. Then d = 0 and the desired result is clearly true. Now suppose that

φ = θ j(φ1 + · · · + φk). There are two cases to consider. If j = 1, then by inductive
hypothesis applied to each φi (1 ≤ i ≤ k), we have that for every 1 ≤ i ≤ k,

φi = θd̄
1(ψ(i)

1 + · · · + ψ(i)
si

),

where 0 ≤ d̄ < m is such that d̄ ≡ d − 1 (mod m) and

(ψ(i)
l )si

l=1 ⊆ K((B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2)

is B⊗(d̄)-admissible. It follows that

φ = θ1(φ1 + · · · + φk) =

{

θm
1 (

∑k
i=1(

∑si

l=1 ψ
(i)
l )) if d = 0,

θd
1(

∑k
i=1(

∑si

l=1 ψ
(i)
l )) if d > 0.

Using that (φi)
k
i=1 is B1-admissible we obtain that

k
⋃

i=1

{minψ(i)
j }si

j=1 ∈

{

B
⊗(m)
1 if d = 0,

B
⊗(d)
1 if d > 0.

So if d = 0, we obtain that φ ∈ K((B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2), as desired; otherwise,

(i) and (ii) in the claim are clearly true for φ.
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Now suppose that j > 1. By inductive hypothesis applied to each φi (1 ≤ i ≤ k),
we have that φi = θd

1(ψ(i)
1 + · · · + ψ(i)

si
), where

(ψ(i)
l )ki

l=1 ⊆ K((B⊗(m)
1 , θm

1 ) a(Bi , θi)
r
i=2)

is B
⊗(d)
1 -admissible. It follows that the sequence (ψ(1)

1 , . . . , ψ(1)
s1
, . . . , ψ(k)

1 , . . . , ψ(k)
sk

)

is (B⊗(d)
1 )⊗B j-admissible. Observe that (2.5) and the associative property of ⊗ give

that

(B⊗(d)
1 ) ⊗ B j = (B1 ⊗

(d)
· · · ⊗ B1) ⊗ B j ⊆ B j ⊗ (B⊗(d)

1 ),

so it follows that (ψ(1)
1 , . . . , ψ(1)

s1
, . . . , ψ(k)

1 , . . . , ψ(k)
sk

) is also B j ⊗ (B⊗(d)
1 )-admissible.

Let (ti)
h
i=1 be a block sequence of finite sets such that

{minψ(i)
p : 1 ≤ i ≤ k, 1 ≤ p ≤ si} =

h
⋃

i=1

ti

with {ti}
h
i=1 ⊆ B j and {min ti}

h
i=1 ∈ B

⊗(d)
1 . For every 1 ≤ l ≤ h let

ξl = θ j

∑

minψ(i)
p ∈tl

ψ(i)
p ∈ K((B⊗(m)

1 , θm
1 ) a(Bi , θi)

r
i=2),

whence we obtain the decomposition φ = θd
1

∑h
l=1 ξl, giving the desired result.

As a consequence of the previous lemma, we get the next proposition, which is the
natural generalization of a well-known fact for the Schreier families Sn (n ∈ N).

Proposition 2.6 Let B be a regular family. Then for every 0 < θ < 1, every m, and

every sequence of scalars (an)

∥

∥

∥

∑

n

anen

∥

∥

∥

(B⊗(m),θm)
≤

∥

∥

∥

∑

n

anen

∥

∥

∥

(B,θ)
≤

1

θm−1

∥

∥

∥

∑

n

anen

∥

∥

∥

(B⊗(m),θm)
.

The next lemma analyzes the case of indices ι(B) = ωα+β and ι(C) = ωα with
β + α = α, as for example B = Sω2+ω and C = Sω2 .

Lemma 2.7 Let M be an infinite set of integers, C, Bi be regular families (1 ≤ i ≤ r)

such that [M]≤2 ⊆ C and

(2.7) [M]≤2 ⊗ C↾M ⊗ Bi↾M ⊆ Bi ⊗ [N]≤2 (1 ≤ i ≤ r).

Then for every sequence (θi)
r
i=1 ⊂ (0, 1) and every sequence of scalars (an)n∈M ,

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(B1⊗C,θ1) a(Bi ,θi )
r
i=2

≤
2

θ1

∥

∥

∥

∑

n∈M

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.
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Proof The first inequality is clear. Let us show the second one. In order to keep the
notation simpler, we may assume, since all families here are regular, that M = N.

Claim Everyφ ∈ K((B1⊗C, θ1) a(Bi , θi)
r
i=2) has a decomposition φ = φ1 +· · ·+φn

where (φi)
n
i=1 ⊆ K((C ⊗ B1, θ1) a(Bi , θi)

r
i=2) is C-admissible.

Proof of Claim Fix φ ∈ K((B1 ⊗ C, θ1) a(Bi , θi)
r
i=2). If φ = ±e∗n , the claim is clear.

Now there are two cases to consider.

Case 1. φ = θ1(φ1 + · · · + φn), where (φi)
n
i=1 ⊆ K((B1 ⊗ C, θ1) a(Bi , θi)

r
i=2) is

B1 ⊗ C-admissible. By inductive hypothesis, for each i = 1, . . . , n,

φi =

ni
∑

j=1

ψ(i)
j

where

(ψ(i)
j )ni

j=1 ⊆ K((C ⊗ B1, θ1) a(Bi , θi)
r
i=2)

is C-admissible, i.e., si = {minψ(i)
j }ni

j=1 ∈ C. Since for every i = 1, . . . , n, min si =

min suppφi we obtain that

s1 ∪ · · · ∪ sn ∈ C ⊗ (B1 ⊗ C) = (C ⊗ B1) ⊗ C.

Hence we can find a block sequence (ti)
m
i=1 such that s1 ∪ · · · ∪ sn = t1 ∪ · · · ∪ tm and

such that (ti)
m
i=1 ⊆ C ⊗ B1 is C-admissible. For every k ∈ t1 ∪ · · · ∪ tm, let i(k), j(k)

be such that minψ(i(k))
j(k) = k. For every i = 1, . . . ,m, let

ψi = θ1

(

∑

k∈ti

ψi(k)
j(k)

)

.

Since (ψ(i(k))
j(k) )k∈ti

is a block sequence, and since {minψ(i(k))
j(k) }k∈ti

= ti ∈ C ⊗ B1 we

obtain that ψi ∈ K((C ⊗ B1, θ1) a(Bi , θi)
r
i=2). It is clear that

φ = θ1(φ1 + · · · + φn) = θ1

(

n
∑

i=1

ni
∑

j=1

ψ(i)
j

)

= θ1

m
∑

i=1

∑

k∈ti

ψ(i(k))
j(k)

=

m
∑

i=1

θ1

∑

k∈ti

ψ(i(k))
j(k) = ψ1 + · · · + ψm.

Note that minψi = min ti (1 ≤ i ≤ m), hence {minψi}
m
i=1 = {min ti}

m
i=1 ∈ C, so

we are done.

Case 2. φ = θ j(φ1 + · · · + φn), where (φi)
n
i=1 ⊆ K((B1 ⊗ C, θ1) a(Bi , θi)

r
i=2) is

B j-admissible for some 2 ≤ j ≤ r. By inductive hypothesis, for each i = 1, . . . , n,

φi =

ki
∑

j=1

ψ(i)
j
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where (ψ(i)
j )ki

j=1 ⊆ K
(

(C ⊗ B1, θ1) a(Bi , θi)
r
i=2)

)

is C-admissible, i.e.,

si = {minψ(i)
j }ki

j=1 ∈ C.

It follows by (2.7) and the fact that [N]≤2 ⊆ C that

s1 ∪ · · · ∪ sn ∈ C ⊗ B j ⊆ B j ⊗ [N]≤2 ⊆ B j ⊗ C.

Following ideas similar to those in the proof of Case 1, one can easily find the desired

decomposition of φ.

From the claim we obtain that θ1φ ∈ K((C ⊗ B1) a(Bi , θi)
r
i=2) for every φ ∈

K((B1 ⊗ C, θ1) a(Bi , θi)
r
i=2). Now this fact implies that for every sequence (an)n of

scalars

(2.8)
∥

∥

∥

∑

n

anen

∥

∥

∥

(B1⊗C,θ1) a(Bi ,θi )
r
i=2

≤
1

θ1

∥

∥

∥

∑

n

anen

∥

∥

∥

(C⊗B1,θ1) a(Bi ,θi )
r
i=2

.

Since (2.7) holds, we can apply Proposition 2.1 to get that

(2.9)
∥

∥

∥

∑

n

anen

∥

∥

∥

(C⊗B1,θ1) a(Bi ,θi )
r
i=2

≤ 2
∥

∥

∥

∑

n

anen

∥

∥

∥

(Bi ,θi )
r
i=1

.

Finally we obtain the desired inequality by joining (2.8) and (2.9).

The previous combinatorial lemma gives the following.

Theorem 2.8 Suppose that B0 and B1 are two regular families such that ι(B0) =

ωα+β , ι(B1) = ωα, with β +α = α. Then for every infinite set M of integers there is an

infinite N ⊆ M such that (en)n∈N ⊆ T(B0, θ) and (en)n∈N ⊆ T(B1, θ) are equivalent.

Proof Let C be a regular family with ι(C) = ωβ . Since ι(B1 ⊗ C) = ωα+β = ι(B0)
passing to a subset N of M if needed, we may assume, by Corollary 2.2, that the
subsequence (en)n∈N is equivalent in the spaces T(B0, θ) and T(B1⊗C, θ), and hence

we may assume that B0 = B1 ⊗ C. Then

ι([M]≤2 ⊗ C↾M ⊗ B1↾M) = 2ωβωα = ωα < ωα2.

So we may find N ⊆ M such that [N]≤2 ⊗ C↾N ⊗ B1↾M ⊆ B1 ⊗ [N]≤2, (see the
comment after Theorem 1.8). Hence the result follows from the previous lemma.

2.1 Reduction from Finite to One

The aim of this subsection is to reduce finite regular sequences to one, more pre-

cisely, we show in Theorem 2.13 that for every finite regular sequence (Fi , θi)
r
i=1

there is some 1 ≤ i0 ≤ r and some infinite set M of integers such that (en)n∈M ⊆
T[(Fi , θi)

r
i=1] and (en)n∈M ⊆ T(Fi0

, θi0
) are equivalent, where i0 will come from a

certain ordering of the pairs (Fi , θi).
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Definition 2.9 Recall that every ordinal α > 0 has the unique decomposition

α = ωλ(α)l(α) + ξ(α)

with l(α) > 0 an integer and ξ(α) < ωλ(α). Define

γ(α) =

{

α if α is finite,

ωω
λ(λ(α))

if α is infinite,

n(α) =

{

1 if α is finite,

l(λ(α)) if α is infinite,

k(α) =

{

1 if α is finite,

l(α) if α is infinite.

For example, γ(ωω
23+ω4 + ω5) = ωω

2

, n(ωω
23+ω4 + ω5) = 3 and γ(m) = m for every

integer m 6= 0. In general for an arbitrary ordinal α > 0 we have the decomposition
α = γ(α)n(α)ωξ(λ(α))k(α) + ξ(α), with the convention of ξ(0) = 0.

We want to compare two Tsirelson type spaces T(F0, θ0) and T(F1, θ1). There is
the following natural relation of domination: we write (F0, θ0) ≤ ′ (F1, θ1) if and
only if there is some C ≥ 1 such that every subsequence (en)n∈M of the basis of
T(F0, θ0) has a further subsequence (en)n∈N such that

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(F0,θ0)
≤ C

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(F1,θ1)
.

It is clear that if F0 ⊆ F1 and θ0 ≤ θ1, then (F0, θ0) ≤ ′ (F1, θ1). As we have already

seen in Proposition 2.6, for every integer n the pair (F, θ) ≤ ′-dominates (F⊗(n), θn)
and vice versa. This suggests the following more appropriate relation: (F0, θ0) ≤ ′ ′

(F1, θ1) if and only if there are n0, n1 ∈ N such that for every M there is N ⊆ M such
that F

⊗(n0)
0 ↾N ⊆ F

⊗(n1)
1 and θn0

0 ≤ θn1

1 .

As we have also shown that

(Sωα , θ) ≤ ′ ′ (Sωα+β , θ) ≤ ′ ′ (Sωα+β ⊗ [N]≤k, θ) ≤ ′ ′ (Sωα , θ),

we end up with the following definition.

Definition 2.10 For pairs (α, θ) of ordinals > 0 and real numbers we write
(α0, θ0) ≤T (α1, θ1) if and only if: α0 = 1, or 1 < α0, α1 < ω and logγ(α0) θ0 ≤

logγ(α1) θ1, or α0α1 ≥ ω and there are integers m0,m1 such that γ(α0)n(α0)m0 ≤

γ(α1)n(α1)m1 and θm0

0 ≤ θm1

1 .

We write (F0, θ0) ≤T (F1, θ1) if and only if (ι(F0), θ0) ≤T (ι(F1), θ1).

To simplify the notation we will write γ(F) for γ(ι(F)) and n(F) for n(ι(F)).
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Proposition 2.11 (i) Suppose that max{α0, α1} ≥ ω. Then (α0, θ0) ≤T (α1, θ1)

if and only if γ(α0) < γ(α1), or γ(α0) = γ(α1) and θn(α1)
0 ≤ θn(α0)

1 .

(ii) ≤T is a total pre-ordering, i.e., reflexive and transitive.

Proof (ii) We show that <T is total. So, fix two pairs (αi , θi), i = 0, 1. Suppose
first that αiω ≤ α j for i 6= j. Then let n be such that θn

i < θ j . Then clearly
αin < α j , and θn

i < θ j , so (αi , θi) <T (α j , θ j). Suppose now that γ(α0) = γ(α1).

Then if θn(α1)
0 ≤ θn(α0)

1 , we obtain that (α0, θ0) ≤T (α1, θ1), and (α1, θ1) ≤T (α0, θ0)
otherwise.

Lemma 2.12 Suppose that Γ is a finite set of countable ordinals and n ∈ N. There is

a sequence (Bγ)γ∈Γ of regular families such that:

(i) ι(Bγ) = γ for every γ ∈ Γ;

(ii) Bγ = [N]≤γ if γ ∈ Γ is finite;

(iii) for every m1,m2 ≤ n and every fi : {1, . . . ,mi} → Γ (i = 1, 2),

if
∏

i≤m1

f1(i) <
∏

i≤m2

f2(i), then B f1(1) ⊗ · · · ⊗ B f1(m1) ⊆ B f2(1) ⊗ · · · ⊗ B f2(m2).

Proof For every γ ∈ Γ, fix a regular family Cγ of index γ with the extra requirement

that if γ is finite, then Cγ = [N]≤γ . Since

{C f (1) ⊗ · · · ⊗ C f (m) : m ≤ n and f : {1, . . . ,m} → Γ, }

is a finite set of regular families, we can find an infinite set M such that for every

m1,m2 ≤ n and every fi : {1, . . . ,mi} → Γ, where i = 1, 2. If
∏

i≤m1
f1(i) <

∏

i≤m2
f2(i), then

C f1(1)↾M ⊗ · · · ⊗ C f1(m1)↾M ⊆ C f2(1)↾M ⊗ · · · ⊗ C f2(m2)↾M.

Let Θ : M → N be the unique order-preserving onto mapping between M and N.
Then (Θ ′ ′(Cγ↾M))γ∈Γ is the desired sequence.

Theorem 2.13 Suppose that (Bi , θi)
r
i=1 is a regular sequence with at least one of the

families with infinite index. Let i0 be such that

(ι(Bi0
), θi0

) = max
<T

{(ι(Bi), θi) : 1 ≤ i ≤ r}.

Then every subsequence (en)n∈M of the natural basis of T[(Bi , θi)
r
i=1] has a further

subsequence (en)n∈N equivalent to the corresponding subsequence (en)n∈N of the natural

basis of T(Bi0
, θi0

).

Proof To simplify the notation, we assume that M = N. We re-order (Bi , θi)
r
i=1 in

such a way that (Bi , θi) ≤T (B j , θ j) for every 1 ≤ i ≤ j ≤ r.

Recall the decomposition (see Definition 2.9) ι(Bi) = γni

i δiki + ξi , where γi =

γ(ι(Bi)), and if ι(Bi) is finite, then δi = ni = ki = 1, ξi = 0, while if ι(Bi) is infinite,
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then ni = n(ι(Bi)), δi = ωξ(λ(ι(Bi ))), ki = k(ι(Bi)) and ξi = ξ(ι(Bi)). Observe that
γr = max{γi : 1 ≤ i ≤ r} is infinite. Define mi ∈ N (1 ≤ i ≤ r − 1) as

mi =

{

[logθi
θr] + 1 if γi < γr,

nr if γi = γr,

where [a] stands for the integer part of a. Use the Lemma 2.12 for Γ = {γi, δi :
1 ≤ i ≤ r}∪{2} and n large enough (for example n = 2 max{nimi : 1 ≤ i ≤ r}+ 2)

to find the corresponding sequence (Hγ)γ∈Γ of regular families.

For 1 ≤ i ≤ r, let Ci = (Hγi
)⊗(ni ) ⊗ Hδi

. Observe that ι(Ci) = γni

i ω
δi for every

1 ≤ i ≤ r. It readily follows that there is N ⊆ M such that for every 1 ≤ i ≤ r, if
ι(Bi) is infinite, then

(2.10)
[N]≤2 ⊗ Ci↾N ⊆ Bi ⊗ [N]≤2,

[N]≤ki +1 ⊗ Bi↾N ⊆ Ci↾N ⊗ [N]≤ki +1,

while Bi↾N = Ci↾N if ι(Bi) is finite. Since the families Bi and Ci are regular (1 ≤
i ≤ r), Proposition 2.1 gives that for every sequence of scalars (an)n∈N we have that

1

2

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Ci ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
(

1 + max
1≤i≤r

ι(Bi ) infinite

ki

)
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Ci ,θi )
r
i=1

.

(2.11)

Let {̺i}
s
i=1 be the strictly increasing enumeration of the set

{γi : 1 ≤ i ≤ r, γi infinite}.

Define

I0 ={1 ≤ i ≤ r : γi is finite}

Ii ={1 ≤ j ≤ r − 1 : γ j = ̺i} (1 ≤ i ≤ s),

and Is+1 = {r}.

Finally, set Ji = Ii ∪ · · · ∪ Is+1 (0 ≤ i ≤ s + 1). The next result is the reduction
from (Ci , θi)

r
i=1 to (Cr, θr).

Claim For every 0 ≤ j ≤ s and every sequence of scalars (an) we have that

(2.12)
∥

∥

∥

∑

n

anen

∥

∥

∥

(Ci ,θi )i∈ J j

≤
∏

i∈I j

1

θmi−1
i

∏

i∈I j , δi>1

2

θi

∥

∥

∥

∑

n

anen

∥

∥

∥

(Ci ,θi )i∈ J j+1

.
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Proof of Claim Fix 0 ≤ j ≤ s. Let K j = {i ∈ I j : δi > 1}, and suppose it is non-
empty. This implies, in particular, that j > 0. Notice that ̺ j = min{γk : k ∈ J j}. So

it follows that δk < γk = ̺ j ≤ γi for k ∈ K j and i ∈ J j . So,

2δkγ
ni

i δi = γni

i δi < γni

i δi2 (k ∈ K j , i ∈ J j),

2δkγ
ni

i = γni

i < γni

i 2 (i, k ∈ K j).

Hence,

[N]≤2 ⊗ Hδk
⊗ Ci ⊆ Ci ⊗ [N]≤2 (k ∈ K j , i ∈ J j),

[N]≤2 ⊗ Hδk
⊗ H⊗(ni )

γi
⊆ H⊗(ni )

γi
⊗ [N]≤2 (i, k ∈ K j).

Repeated application of Lemma 2.7 gives that

(2.13)
∥

∥

∥

∑

n

anen

∥

∥

∥

(Ci ,θi )i∈ J j

≤
∏

i∈K j

2

θi

∥

∥

∥

∑

n

anen

∥

∥

∥

(H
⊗(ni )
γi

,θi )i∈K j
a(Ci ,θi )i∈ J j\K j

.

Using that γnk

k γ
ni

i δi = γni

i δi < γni

i δiγ
nk

k (k ∈ I j , i ∈ J j+1), it follows that

H⊗(nk)
γk

⊗ Ci ⊆ Ci ⊗ H⊗(nk)
γk

(k ∈ I j , i ∈ J j+1).

Since it is trivial that H⊗(nk)
̺ j

⊗H⊗(ni )
̺ j

= H⊗(nk+ni )
̺ j

= H⊗(ni )
̺ j

⊗H⊗(nk)
̺ j

(i, k ∈ I j), the
assumptions of Lemma 2.5 are fulfilled, therefore

∥

∥

∥

∑

n

anen

∥

∥

∥

(H
⊗(ni )
γi

,θi )i∈K j
a(Ci ,θi )i∈ J j\K j

=

∥

∥

∥

∑

n

anen

∥

∥

∥

(H
⊗(ni )
̺ j

,θi )i∈I j
a(Ci ,θi )i∈ J j+1

≤
∏

i∈I j

1

θmi−1
i

∥

∥

∥

∑

n

anen

∥

∥

∥

(H
⊗(ni mi )
̺ j

,θ
mi
i )i∈I j

a(Ci ,θi )i∈ J j+1

.

(2.14)

It is not difficult to see by the choice of mi ’s, that the relations

{

H⊗(ni mi )
̺ j

⊆ Cr while θmi

i ≤ θr(i ∈ I j) if j < s, or

H⊗(ni mi )
̺s

= H⊗(ni nr)
̺s

⊆ C⊗(ni )
r and θmi

i = θnr

i ≤ θni
r (i ∈ I j) if j = s.

are true. Hence, by Lemma 2.4 in the case of j = s, we obtain that

(2.15)
∥

∥

∥

∑

n

anen

∥

∥

∥

(H
⊗(ni mi )
̺ j

,θ
mi
i )i∈I j

a(Ci ,θi )i∈ J j+1

≤
∥

∥

∥

∑

n

anen

∥

∥

∥

(Ci ,θi )i∈ J j+1

.

It is clear now that (2.12) follows from equations (2.13), (2.14) and (2.15).
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Repeated application of the previous claim gives that

(2.16)
∥

∥

∥

∑

n

anen

∥

∥

∥

(Ci ,θi )
r
i=1

≤

r−1
∏

i=1

1

θmi−1
i

r−1
∏

i=1, δi>1

2

θi

∥

∥

∥

∑

n

anen

∥

∥

∥

(Cr ,θr)
.

It follows from (2.10), (2.11) and (2.16) that

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤ 2
(

1 + max
1≤i≤r

ι(Bi ) infinite

ki

)

r−1
∏

i=1

1

θmi−1
i

r−1
∏

i=1, δi>1

2

θi

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Br ,θr)
.

In Theorem 2.13 we made the assumption that at least one family Bi has infinite
index (1 ≤ i ≤ r). The conclusion of this theorem is also true for families, all of
them with finite indices, but its proof uses different methods (see [8]).

3 Topological and Combinatorial Aspects of Families of Finite Sets of
Integers

The main result of this section is that for every compact and hereditary family F there
is a regular family B with the same index as F and an infinite set M of integers such
that every B-admissible sequence of subsets of M is also F-admissible. The main tool

we use is the notion of homogeneous family.
We start with the following list of useful properties. We leave their proofs to the

reader.

Proposition 3.1 Fix a compact family F, and a countable ordinal α. Then

(i) For every m ∈ N, (∂(α)F)↾N/m = ∂(α)(F↾(N/m)).

(ii) ∅ 6= s ∈ ∂(α)F if and only if ∗s ∈ ∂(α)(F{min s}).

(iii) For every n ∈ N, ∂(α)(F{n}) = (∂(α)F){n}.

(iv) ∅ ∈ ∂αF if and only if∅ ∈ ∂α(F↾N/n) for every n ∈ N.

(v) ι(F) = α + 1 if and only if

(a) {∅}  ∂αF is finite, or

(b) there is an infinite set M such that for every m ∈ M, ∂α(F{m}) is non-empty

and finite.

(vi) Suppose that α > 0 is a limit ordinal. Then the following are equivalent:

(a) ι(F) = α.

(b) ι(F↾(N/n)) = α for every n ∈ N.

(c) ∂αF = {∅}.

(d) ∂α(F{n}) = ∅ for every n ∈ N, and for every β < α there is n with

β ≤ ι(F{n}) < α.

In the following, F is, in addition, hereditary.

(vii) If α is limit, then ι(F) = α if and only if ∂αF{n} = ∅ for every n ∈ N, and there

is an infinite set M ⊆ N and (αn)n∈M ↑ α such that αm ≤ ι(F{m}↾(N/n)) < α
for every m < n in M.
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(viii) ι(F) = α + 1 if and only if ∂α+1F{n} = ∅ for every n ∈ N, and there is an

m < n such that ∂α(F{m}↾(N/k)) = {∅} for every k ≥ n.

3.1 Homogeneous Families and Admissible Sets

For our study it would be very useful to have a characterization of every compact
hereditary family in terms of a class of families with good structural properties al-

lowing inductive arguments, as for example the Schreier families. This is indeed the
case for the class of homogeneous families. The following definition is modeled on
the notion of α-uniform family introduced by Pudlak and Rödl [6].

Definition 3.2 We say that a family F is α-homogeneous on M (α a countable ordi-

nal) if and only if∅ ∈ F and the following hold:

• if α = 0, then F = {∅};
• if α = β + 1, then F{n} is β-homogeneous on M/n for every n ∈ M;
• if α > 0 is a limit ordinal, then there is an increasing sequence {αn}n∈M of ordi-

nals converging to α such that F{n} is αn-homogeneous on M/n for all n ∈ M.

The family F is called homogeneous on M if it is α-homogeneous on M for some

countable ordinal α.

Recall the following well known combinatorial notion [6]. A family F is α-uni-

form on M (α a countable ordinal) if and only if F = {∅} for α = 0 or ∅ /∈ F and
F satisfies (b) or (c) in the other cases, where homogeneous is replaced by uniform.

Some of the similarities of uniform and homogeneous families will be exposed in
Proposition 3.6 below.

Notation If s, t ∈ FIN, we write s ⊑ t if and only if s is an initial segment of t .

Remark 3.3. (i) It is easy to see that the only n-homogeneous families on M are

the families of subsets of M with cardinality ≤ n, denoted by [M]≤n. A well-known
ω-homogeneous family on N is the Schreier family, and, in general, ω-homogeneous
families on M are of the form {s ⊆ M : #s ≤ f (min s)}, with f : M → N an un-
bounded and increasing mapping. Observe that all those examples are regular fami-

lies.

(ii) In the same way, the only n-uniform families on M, n ∈ N are the families
[M]n of subsets of M of size exactly equal to n. While the ω-uniform families on
some M are the ones of the form {s ⊆ M : #s = f (min s)}, with f : M → N an

unbounded and increasing mapping. Observe that in these two cases the maximal
nodes under the relation ⊑ of the α-homogeneous family considered coincide with
the corresponding α-uniform family. And conversely, the closure under ⊑ of the
α-uniform family is the corresponding α-homogeneous family. This is a general

phenomenon that we will expose in Proposition 3.6.

(iii) In general, an arbitrary homogeneous family does not need to be regular.
However, we will show that homogeneous families are always ⊑-closed, hence com-
pact. Also, it can be shown that if F is a homogeneous family on M, there is N ⊆ M

such that F↾N is hereditary (see [6]).
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Homogeneous and regular families have many properties in common. One of
the most remarkable is the fact that the index of these families never decreases when

taking restrictions. We expose this analogy and some others in the next proposition.

Proposition 3.4 Suppose that F and G are homogeneous (regular) families on M.

(i) If ι(F) is finite, then F = [M]≤ι(F) if F is homogeneous on M, while

F↾(M/n) = [M/n]≤ι(F) for some n ∈ M if F is regular on M.

(ii) If ι(F) 6= 0, then F{n} is homogeneous (regular) on M/n for every n ∈ M.

(iii) If F is α-homogeneous, then ∂(α)F = {∅}. Hence ι(F) = α.

(iv) if F is α-homogeneous (regular) on M and N ⊆ M, then F↾N is α-homogeneous

(regular) and ι(F↾N) = ι(F) for every N ⊆ M.

(v) F ⊕ G and F ⊗ G are homogeneous (regular), ι(F ⊕ G) = ι(F) + ι(G) and

ι(F ⊗ G) = ι(F)ι(G).

(vi) If ι(F) < ι(G), then for every M there is N ⊆ M such that F↾N  G↾N.

Proof Suppose first that F is homogeneous. (i) and (ii) can be shown by an easy
inductive argument.

(iii) Suppose first that α = β + 1. By the inductive hypothesis, for every n ∈ M we
have that (∂(β)(F)){n} = ∂(β)(F{n}) = {∅}. So, [M]≤1 = ∂(β)(F) (since ∂(β)(F) is

closed and it contains all singletons {n} (n ∈ M)). Hence ∂(β+1)(F) = {∅}. Suppose

now that α is a limit ordinal. Now by the inductive hypothesis we can conclude that
for every n ∈ M,

(3.1) ∂(αn)(F{n}) = (∂(αn)(F)){n} = {∅},

where αn = ι(F{n}) is such that (αn)n is increasing and with limit α. By (3.1),

∅ ∈ ∂(α)F. If there were some s ∈ ∂(α)F, s 6= ∅, then s ∈ ∂(αn+1)F for every n, and
hence ∂(αn)(F{min s}) 6= {∅}, a contradiction.

(iv) This follows easily by induction on α using (i).

(v) This is shown by induction on ι(G).

(vi) By Proposition 3.8, there is some N ⊆ M such that either F↾N ⊆ G↾N or
else G↾N ⊆ F↾N . The second alternative is impossible since it implies that ι(F) =

ι(F↾N) ≥ ι(G↾N) = ι(G).

Finally suppose that we are dealing with regular families.

(i) First, note that there must be some s ∈ F with |s| = ι(F), since otherwise,
F ⊆ [M]<ι(F) and so, ι(F) < ι(F) is absurd. In a similar way one shows that
F ⊆ [M]≤ι(F). All of this shows that F↾(M/s) = [M/s]≤ι(F).

(ii) This is clear.

(iv) Fix N ⊆ M, and let Θ : M → N be the unique order-preserving onto mapping
between these two sets. Since F is spreading on M, we obtain that {Θ ′ ′s : s ∈ F} ⊆
F↾N . Using that Θ ′ ′s 6= Θ ′ ′t is s 6= t we obtain that ι(F↾N) ≥ ι(F) ≥ i(F↾N), as
desired.

(vi) This follows from (iv), while (v) for regular families is a consequence of The-
orem 3.5 and (v) for homogeneous families.

The following result is a weaker form of [6, Theorem II.3.22].
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Theorem 3.5 ([6]) Suppose that F is a non-empty compact and hereditary family.

Then for every infinite subset M of N there is some infinite N ⊆ M such that F↾N is

homogeneous on N.

Proposition 3.6 Suppose that F is a family of finite sets of integers. Then for every

countable ordinal α the following conditions are equivalent:

(i) F is α-homogeneous on M.

(ii) F is the topological closure of an α-uniform family on M.

(iii) F is compact and the set F⊑− max of ⊑-maximal elements of F is α-uniform on

M. Moreover

(3.2) F = {s ⊑ t : t ∈ F⊑− max},

hence F is ⊑-hereditary, i.e., if s ⊑ t ∈ F, then s ∈ F.

Proof (i) implies (ii). The proof is by induction on α. If α = 0, the result is clear.
Suppose that α = β + 1. Then for every n ∈ M, F{n} is β-homogeneous on M/n.

Choose β-uniform families Gn on M/n (n ∈ M) such that for every n ∈ M, F{n} =

Gn. Set G = {{n} ∪ s : s ∈ Gn}. It follows readily that G{n} = Gn which yields that G

is an α-uniform family on M. To finish the proof we show that G = F. First observe

that if s ∈ F, n = min s, then ∗s ∈ F{n}. So, ∗s ∈ Gn, and hence

s = {n} ∪ ∗s ∈ Gn ⊕ {{n}} ⊆ G.

Now suppose that (sk) ⊆ G, sk →k s ∈ G. Going to a subsequence if necessary, we

may assume that (sk) is a ∆-sequence with root s, i.e., s ⊑ sk for every k, and (sk \ s)
is a block sequence. If s = ∅, then s ∈ F by hypothesis. Otherwise, let n = min s.
Then min sk = n for every k, and hence ∗sk ∈ G{n}. Hence ∗s ∈ G{n} = F{n}, and so
s ∈ F. The proof if α is limit is similar.

(ii) implies (iii). Suppose that F = G, where G is α-uniform on M. It is not
difficult to show by induction on α that G is a front on M (see [6]), i.e., for every
infinite N ⊆ M there is some s ∈ G such that s ⊑ N , and if s, t ∈ G and s ⊑ t , then
s = t . Observe that the topological closure of a front is its ⊑-downwards closure.

Indeed, suppose that s is a strict initial part of some t ∈ G. For every m > s consider
the set Mm = s ∪ M/m. Using that G is a front on M, we find tm ⊑ Mm such
that tm ∈ G, moreover s has to be initial segment of every tm. This implies that tm

converges to s.

So, we have that F = {s ⊑ t : t ∈ G}. It is clear that this implies that F⊑− max = G.
(iii) implies (i). Suppose that F is compact and F⊑− max is α-uniform on M. The

proof is an easy induction onα using that for every m ∈ M, by (3.2), F{m} = {s ⊑ t :
t ∈ G{m}}, where G = F⊑− max.

The next result is the well-known Ramsey property of uniform families (see [6]
for a more complete explanation of the Ramsey property).

Proposition 3.7 (Ramsey Property) Suppose that B is a uniform family on M, and

suppose that B = B0 ∪ B1. Then there is an infinite N ⊆ M and i = 0, 1 such that

B↾N = Bi↾N.
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Proof We use induction on α. Given B = B0 ∪ B1, using inductive hypothesis we
can find a decreasing sequence (Mk)k of infinite subsets of M, such that setting mk =

min Mk for every k, Mk+1 ⊆ ∗Mk and there is an ik ∈ {0, 1} such that B{mk}↾Mk+1 =

(Bik
){mk}↾Mk+1. Then every N ⊆ {mk}k for which ik is constant has the desired

property.

As an application of this Ramsey property we obtain the following two facts.

Proposition 3.8 (i) Suppose that F and G are two compact and hereditary families.

Then there is some infinite set M such that either F↾M ⊆ G↾M or G↾M ⊆ F↾M

(see [6, 12]).

(ii) Suppose that F is homogeneous on M. Then there is some N ⊆ M such that F↾N

is hereditary.

Proof (ii) Set B = F⊑− max, and let B0 = {s ∈ B : P(s) 6⊆ F}, B1 = B \ B0. By
Ramsey, there is N ⊆ M and i = 0, 1 such that B↾N = Bi↾N . If i = 1, then we are

done. Otherwise, fix s ∈ B↾N and t ⊆ s such that t /∈ F. Using that F⊑− max is a
front on M, we get u ∈ B↾N such that u ⊑ t ∪ (N/s). If t ⊑ u then t ∈ F, which is
impossible. So, u ⊏ t  s. This means that for every s ∈ B↾N there is some t  s,
t ∈ B↾N . Hence ∅ ∈ B↾N , which implies that B↾N = {∅} and so F↾N = {∅} is

hereditary.

3.2 The Basic Combinatorial Results

The families F and Ad(F) are in general different, unless F is spreading. Nevertheless,
as is shown in the next result, they are not so far from the topological point of view.

Proposition 3.9 Suppose that F is a compact hereditary family. Then for every infinite

set M of integers such that Ad(F)↾M is homogeneous on M,

ι(F) ≤ ι(Ad(F)↾M) ≤ 2ι(F).

Proof The proof is done by induction on ι(F) = λ + r, λ limit ordinal (including
λ = 0), and r ∈ N. Set B = Ad(F)↾M. Suppose that r = 0. So ι(F) = λ is limit. If
λ = 0, there is noting to prove. We suppose then that λ > 0. By Proposition 3.1(vii),
we can find an infinite set N ⊆ N and a sequence of ordinals λn ↑n∈N λ such that

λn ≤ ι(F{n}↾N/k) < λ

for every n < k in N . For a given n, we fix m = mn ∈ M/n, k ∈ N/m and Pn ⊆ M/k

such that (Ad(F{n}↾(N/k)))↾Pn and (Ad(F{l}))↾Pn are homogeneous on Pn for every
l ≤ m. By inductive hypothesis,

ι(Ad(F{n}↾(N/k))↾Pn) ≥ ι(Fn↾(N/k)) ≥ λn.

Now using that

B{m} = (Ad(F)↾M){m} ⊇ Ad(F{n}↾(N/k))↾Pn,

B{m}↾Pn ⊆
⋃

l≤m

(Ad(F{l}))↾Pn,
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we obtain,

λn ≤ ι(B{m}↾Pn) ≤ ι
(

⋃

l≤m

(Ad(F{l}))↾Pn

)

= max
l≤m

ι((Ad(F{l}))↾Pn)

≤ 2 max
l≤m

ι(F{l}) < λ,

the last inequality holding because λ is a limit ordinal. Since B{m} is homogeneous
on M/m, and n was arbitrary, it readily follows, by the definition of homogeneous
families, that ι(B) = λ, as desired.

Suppose now that ι(F) = λ + r + 1. We now use Proposition 3.1(viii) to find
two integers n < p such that ι(F{n}↾(N/q)) = λ + r for every q ≥ p. A similar
argument to the one for ι(F) = λ shows that for infinitely many m ∈ M we obtain
that ι(B{m}) ≥ λ + r, and this implies that ι(B) ≥ λ + r + 1, as desired.

Now we work to show the other inequality ι(B) ≤ 2ι(F) = λ + 2r + 2. We

proceed by contradiction assuming that ι(B) ≥ λ + 2r + 3. By Proposition 3.4(iv)
we may assume that ι(B{m}) ≥ λ + 2r + 2 for every m ∈ M. Let G = B⊑− max. Fix
m0 ∈ M, and define the finite coloring Θ : G{m0} → {0, . . . ,m0} by Θ(s) = k, if
and only if there is some t ∈ F{k} such that {k} ∪ t interpolates {m0} ∪ s. By the

Ramsey property of G{m0}, we may assume, going to a subset if necessary, that Θ is
constant with value k0 ∈ {0, . . . ,m0}. Suppose first that ι(F{k0}) ≤ λ + r; then by
inductive hypothesis, ι(B{m0}) ≤ λ + 2r, a contradiction with our assumption. So,

ι(F{k0}) = λ + r + 1. Moreover, ∂(λ+r+1)(F{k0}) = ∅. Since F is hereditary, this

means that {∅}  ∂(λ+r)F{k0} is finite. Let l = max(∂(λ+r)(F{k0})). Observe that by

Proposition 3.1(v),

(3.3) ∂(λ+r)(F{k0}↾(N/p)) = {∅} for every p ≥ l.

By the Ramsey property of G{m0} we may assume that either for every s ∈ G{m0}

there is some t ∈ F{k0}↾(N/l) that interpolates s, or else there is some k1 ∈ {m0 +
1, . . . , l} such that for every s ∈ G{m0} there is some t ∈ F{k0,k1} such that {k0, k1}∪ t

interpolates {m0} ∪ s. In the first case, B{m0} ⊆ Ad(F{k0}↾(N/l)); since from (3.3)
we know that ι(F{k0}↾(N/l)) = λ + r, we arrive, by inductive hypothesis, to the
contradiction ι(B{m0}) ≤ λ + 2r.

In the second case, consider m1 ∈ M/l such that the homogeneous family
B{m0,m1} has index at least λ + 2r + 1. Note that B{m0,m1} ⊆ Ad(F{k0,k1}↾(N/l)).

Since from (3.3) we know that ι(F{k0,k1}↾(N/m1)) ≤ λ + r, we obtain by inductive
hypothesis that ι(B{m0,m1}) ≤ λ + 2r, a contradiction.

Remark 3.10. The previous result is the best possible. For every limit ordinal λ and
n ∈ N there is some compact hereditary family F such that ι(F) = λ + k and
ι(Ad(F)↾M) = λ + 2k for every M, hence ι(Ad(F)↾M) = 2ι(F). The families are

closely related to [8, Example 3.10]. Consider a regular family B on {2n} of index
ι(B) = λ + k, and let F be the downwards closure of F = {s ∪ {n + 1}n∈s : s ∈ B}.
It is not difficult to prove that ι(F) = ι(B) = λ+ k and that ι((Ad(F))↾M) = λ+ 2k

for every M.
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The next result tells us that we may assume that the given family F is indeed
spreading.

Proposition 3.11 Fix an arbitrary compact hereditary family F, and an infinite set M.

(i) There is some regular family B with the same index as F and some N ⊆ M such

that every B-admissible sequence of subsets of N is also F-admissible.

(ii) For every regular family B on M with ι(B) > ι(F) there is some N ⊆ M such that

no sequence (si) of subsets of N with {min si} ∈ (B↾N)⊑− max is F-admissible.

Proof Fix M and F. Consider the unique decomposition ι(F) = λ+r with λ = λ(F)

a limit ordinal (including 0) and r = r(F) an integer. Let C be an arbitrary regular
and homogeneous family on M with ι(C) ≥ ι(F). Now let G = G(C) = C⊑− max.
It follows, by Proposition 3.6, that G is a uniform family on M, as well as [M]2 ⊗ G.
Observe that every s ∈ [M]2 ⊗ G has a unique “canonical” decomposition s = s[0] ∪
· · · ∪ s[l(s)] with s[0] < · · · < s[l(s)], #s[i] = 2, and {min s[i]}l(s)

i=0 ∈ G. Consider
the following coloring hF,C : [M]2 ⊗G → {0, . . . , r,∞} defined for s ∈ [M]2 ⊗G by
hF,C(s) = k ∈ {0, . . . r} if and only if l(s) ≥ r−1 and k is minimal with the property
that (s[k], s[k + 1], . . . , s[r − 1], s[r + 1], . . . , s[l]) is F-admissible, and hF,C(s) = ∞
otherwise.

Claim The following are equivalent.

(i) There is an infinite N ⊆ M such that hF,C ↾ ([N]2 ⊗ G↾N) is constant with value

0.

(ii) ι(F) = ι(C).

Proof of Claim The proof is by induction on ι(F). Suppose first that (i) holds but

ι(C) > ι(F). Fix N ⊆ M such that hF,C↾([N]2 ⊗ G↾N) is constant with value 0. By
Proposition 3.4, we may assume, going to an infinite subset if needed, that for every
n ∈ N , ι(C{n}) ≥ ι(F). Fix n ∈ N and consider the new coloring

d : ([N]2 ⊗ (G{n})↾N) ⊕ ([N/n]1) → {0, . . . , n},

defined for s = {k} ∪ s[1] ∪ s[2] ∪ · · · ∪ s[l] ∈ ([N]2 ⊗ (G{n})↾N) ⊕ ([N/n]1) in
its canonical form by d(s) = j if and only if there is some t ∈ F such that min t = j

and t interpolates, ({n, k}, s[1], . . . , s[r − 1], s[r + 1], . . . , s[l]). Observe that d is

well defined since we are assuming that hF,G↾[N]2 ⊗ G↾N is constant with value 0.
By the Ramsey property of the uniform family considered as domain of d there is
some infinite set P ⊆ N/n such that d is constant on ([P]2 ⊗ (G{n})↾P) ⊕ ([P/n]1)
with value j0 ∈ {0, . . . , n}. Pick some p ∈ P such that ι(F{ j0}↾(N/p)) < ι(F) (See

Proposition 3.1). Then hF{ j0}
↾(N/p),C{n}

is constant when restricted to [P]2⊗(G{n})↾P

with value 0. Observe that G{n} = G(C{n}), so, by inductive hypothesis, ι(C{n}) =

ι(F{ j0}↾(N/p))) < ι(F), a contradiction.
Now suppose (ii) holds, i.e., ι(C) = ι(F) = λ + r. The coloring hF,C is finite, so

we fix N ⊆ M such that hF,C is constant with value k0, when restricted to [N]2 ⊗
G↾N , and also that Ad(F)↾N is homogeneous on N . Our intention is to show that
k0 = 0. Set C0 = C and for every 1 ≤ i ≤ r, Ci = ∗Ci−1 = {∗s : s ∈ Ci−1}.
Since C is regular, it follows easily that Cr is regular with index λ. Consider the regular
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family D = [N]≤2 ⊗ (Cr↾N) on N with index ι(D) = λ. By (ii) and Proposition 3.9
ι(Ad(F)↾N) ≥ λ, so there is some P such that D↾P ⊆ Ad(F) ⊕ [P]≤1. It readily

follows that ∗(D↾P) ⊆ Ad(F). This shows that k0 ∈ {0, . . . , r}. If r = 0, then
we are done. Now suppose that r > 0. Let q ∈ N and n0, n1 ∈ N be such that
q < n0 < n1 and that ι(F{q}↾(N/n1)) = λ + r − 1 (see Proposition 3.1). Since C

is regular, we have that ι(C{n0}) = λ + r − 1 = ι(F{q}↾(N/n1)). So by inductive

hypothesis there is some P ⊆ N/n1 such that hF{q}↾ (N/n1),C{n0}
is constant with value

0 when restricted to [P]2 ⊗ G{n0}↾P. Take arbitrary s ∈ [P]2 ⊗ (G{n0})↾P. Then
(s[0], . . . , s[r − 2], s[r], . . . , s[l]) is F{q}↾(N/n1)-admissible, so

({n0, n1}, s[0], . . . , s[r − 2], s[r], . . . , s[l])

is F-admissible. Since {n0, n1}∪s ∈ [N]2⊗G↾N we obtain that k0 = 0, as desired.

We work now to show (i). Suppose that ι(F) = λ + r, λ limit and r ∈ N. Fix a

regular and homogeneous family D with index λ, and let C = D ⊕ [N]≤r . This is a
regular and homogeneous family whose index is λ+ r. Since hF,C is a finite coloring,
and since ι(C) = ι(F), by the Claim, we can find P ⊆ M such that

(iii) hF,C is constant on [P]2 ⊗ G↾P with value 0, where G is the set of ⊑-maximal
nodes of C, and

(iv) [P]≤2 ⊗ C↾P is homogeneous on P, and hence

[P]≤2 ⊗ C↾P = {s ⊑ t : t ∈ [P]2 ⊗ G↾P}

(see Proposition 3.6 (iii)).

Let E = ∗(D↾N) = {∗s : s ∈ D↾N}, where N = {p4k}k and {pk}k is the increas-
ing enumeration of P. It is not difficult to see that E is a regular family whose index

is λ, so we leave the details to the reader.
Let B be an arbitrary regular family such that B↾N = E ⊕ [N]≤r (see Propo-

sition 1.7). We claim that B and N fulfill the conditions required in (i). First,
by the permanence property of the index of regular families, ι(B) = ι(F). Next,

suppose that (si)
k
i=0 is a B-admissible sequence of subsets of N . Since B is regu-

lar, we have that {min si}
k
i=0 ∈ B↾N = E ⊕ [N]≤r. For every i < k let ni =

min((P \N)∩ (max si,min si+1)), and let nk > sk, nk ∈ P. Observe that if k ≥ r, then
u = {min si}r≤i≤k ∈ E = ∗(D↾N), so there is q < u in N such that {q} ∪ u ∈ D↾N .

Since D is spreading, and by the choice of N out of P, we may assume that there is
some q ′ ∈ P \ N such that sr−1 < nr−1 < q < q ′ < sr . Then

t = {q, q ′} ∪ {min si}
k
i=0 ∪ {ni}

k
i=0 ∈ [P]≤2 ⊗ C↾P.

By (iv) there is some v ∈ [P]2 ⊗ G↾N such that t ⊑ v. Let v = v[0] ∪ · · · ∪ v[l]
be the canonical decomposition of v as element of [P]2 ⊗ G↾N . By construction

we obtain that for every i ≤ min{r − 1, k}, {min si, ni} = v[i], while (if defined)
v[r] = {q, q ′} and {min si, ni} = v[i] for every i > r. By (iii) and as F is hereditary,
({min si , ni})k

i=0 is F-admissible. Since for every i ≤ k, min si ≤ max si < ni , we
obtain that our sequence (si)

k
i=0 is also F-admissible, as desired.
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Finally, we proceed to prove (ii): Suppose that B is an arbitrary regular family on
M with ι(B) ≥ ι(F). Find M ′ ⊆ M such that B↾M ′ is in addition homogeneous on

M ′, and let N ⊆ M ′ be such that hF,B↾M ′ is constant when restricted to [N]2 ⊗G↾N

with value k0, where G = (B↾M ′)⊑− max. Suppose that (si)i is a sequence of subsets
of N , #si ≥ 2, with {min si} ∈ (B↾N)⊑− max. Then t = ({min si ,max si})i ∈
[N]2 ⊗B⊑− max↾N . As B is spreading on M it follows that B⊑− max↾N = G↾N . Now

suppose that indeed (si)i is F-admissible. Then t is also F-admissible, so, since F is
hereditary, hF,B↾M ′(t) = 0, hence k0 = 0. By the claim applied to F, B↾M ′ and M ′

we obtain that ι(B) = ι(B↾M ′) = ι(F), as desired.

4 Block Sequences of T[((Fi, θi)
r
i=1)]

In this last section we show that for a given finite sequence (Fi , θi)i∈I with at least one
Fi having infinite index, there is i0 ∈ I such that every normalized block sequence

in the space T[(Fi , θi)i∈I] has a subsequence equivalent to a subsequence of the basis
of the space T(Fi0

, θi0
). We first obtain this result for the subsequences of the basis

of T[(Fi , θi)i∈I] by applying the result of the previous section, and in the sequel we
extend this result for block sequences.

To obtain the result for a given block sequence (xn)n we show first that we can
pass to a subsequence (xn)n∈M which is equivalent to the subsequence (epn

)n∈M ,
pn = min supp xn, of the basis of the space T([N]≤2 ⊗ Ad(Fi0

), θi0
), for appropri-

ate fixed 1 ≤ i0 ≤ r. Using the results for the regular families we pass to a space

T(B, θi0
) where B is a regular family with ι(B) = ι(Fi0

) and moreover the subse-
quence (epn

)n∈M is equivalent in the two spaces.
Restricting the study to the families Sξ , we obtain that if (xn)n, (yn)n are normal-

ized block sequences in the space T(Sξ , θ) such that xn < yn < xn+1 (n ∈ N), then

the two sequences are equivalent.

Proposition 4.1 Fix (Fi , θi)
r
i=1 with at least one of the families with infinite index. Let

i0 be such that (Fi0
, θi0

) = max≤T
{(Fi , θi)}

r
i=1 (See Definition 2.10). Then for every

M there is some N ⊆ M and a regular family B with the same index as Fi0
such that for

every sequence (an)n∈N of scalars,

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(B,θi0
)
≤

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Fi ,θi )
r
i=1

≤ 2C
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(B,θi0
)
.

where the constant C is given in Theorem 2.13.

Proof By Proposition 3.11 we get N0 ⊆ M and regular families Bi , with ι(Bi) =

ι(Fi) (1 ≤ i ≤ r), such that every Bi-admissible sequence of subsets of N0 is also
Fi-admissible. By Fact 2 it follows that for every sequence (an)n∈N0

of scalars,

∥

∥

∥

∑

n∈N0

anen

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈N0

anen

∥

∥

∥

(Fi ,θi )
r
i=1

.

Counting the corresponding indices we can find now N1 ⊆ N0 such that

[N1]≤2 ⊗ Ad(Fi)↾N1 ⊆ (Ci↾N1) ⊗ [N1]≤2 for every i ≤ r,
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where Ci = Bi ⊕ [N1]≤1 if ι(Fi) < ω, Ci = Bi otherwise. It follows from Proposi-
tion 2.1 that

∥

∥

∥

∑

n∈N1

anen

∥

∥

∥

(Fi ,θi )
r
i=1

≤ 2‖
∑

n∈N1

anen‖(Ci ,θi )
r
i=1
.

By Theorem 2.13, using that Fi0
has infinite index, there exist N ⊆ N1 such that

∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Ci ,θi )
r
i=1

∼
∥

∥

∥

∑

n∈N

anen

∥

∥

∥

(Bi0
,θi0

)
.

Since ‖
∑

n∈N anen‖(Bi0
,θi0

) ≤ ‖
∑

n∈N anen‖(Bi ,θi )
r
i=1

, we get the result.

Remark 4.2. It is worth mentioning that the conclusion of the above theorem does
not hold in the case that all families Fi have finite index (see [8]).

To extend the above result to block sequences, we shall need some preparatory
work. The following notion is descendant of the definition, introduced in [3], of

initial and final part of a vector with respect to a tree analysis.

Definition 4.3 Fix compact and hereditary families Fi and real numbers 0 < θi <
1, i ≤ r. Let x ∈ c00, f ∈ K((Fi , θi)

r
i=1) and ( ft )t∈T a tree-analysis for f . Suppose

that supp f ∩ran x 6= ∅. Let t ∈ T be a �-maximal node with respect to the property

that supp ft ∩ ran x = supp f ∩ ran x. It is clear that such t exists and it is unique.
Let us call it t(x). Note that if t(x) is not a maximal node of T, then, by maximality
of t(x), there are s1 6= s2 ∈ St(x) such that supp fsi

∩ ran x 6= ∅, for i = 1, 2. Observe
that the set St of immediate �-successors of t is naturally ordered according to s < t

if and only if fs < ft . Now for t = t(x) not a maximal node, let

sL(x) = min{s ∈ St : supp fs ∩ ran x 6= ∅},

sR(x) = max{s ∈ St : supp fs ∩ ran x 6= ∅},

where both minimum and maximum are with respect to the relation < on St .
Now fix a block sequence (xn)n. For a given n, let t(n) = t(xn), sL(n) = sL(xn) and

sR(n) = sR(xn). For t ∈ T, we define recursively

Dt =
⋃

t�Tu

{n : u = t(n)}

={n ∈ N : supp ft ∩ ran xn = supp f ∩ ran xn 6= ∅},

Et =Dt \
⋃

s∈St

Ds = {n : t = t(n)}.

For each n, set qn = max supp xn, Q = {qn}n∈N. Define recursively on t ∈ T

gt = θi

(

∑

n∈Et

ft (xn)

θi

e∗qn
+

∑

s∈St

gs

)

if ft = θi

∑

s∈St
fs, where ( fs)s∈St

is Fi-admissible.
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Proposition 4.4 (i) supp gt = {qn : n ∈ Dt} for every t ∈ T.

(ii) {e∗qn
}n∈Et

∪ {gs}s∈St
is a block family and

(4.1) {min qn : n ∈ Et} ∪ {min supp gs : s ∈ St , gs 6= 0} ∈ [Q]≤2 ⊗ Ad(Fi)↾Q

for every t ∈ T such that ft = θi

∑

s∈St
fs.

Proof (i) follows readily from the definitions.

(ii) Suppose that #St > 1, otherwise the result is trivial. Let us observe that for
every s ∈ St , s not being the <-maximal element of St and with gs 6= 0,

(4.2) min supp fs ≤ supp gs < min supp fs+ .

The first inequality follows readily from (i). Let us show now the last inequality.

Assume otherwise that min supp fs+ ≤ max supp gs = max{qn : n ∈ Ds}. Then there
exists n ∈ Ds such that min supp fs+ ≤ qn = max supp xn, hence supp fs+ ∩ ran xn 6=
∅, a contradiction since n ∈ Ds. It is clear that for every n ∈ Et , it holds that

(4.3) max supp fsL(n) < qn ≤ max supp fsR(n) < min supp fsR(n)+ ,

and moreover,

(4.4) qn < gsR(n), if gsR(n) 6= 0.

The definition of gt together with (4.2), (4.3) and (4.4) gives that H = {e∗qn
}n∈Et

∪
{gs : s ∈ St , gs 6= 0} is a block family. Let us prove now that the set {qn}n∈Et

∪
{min gs}s∈St

belongs to [Q]≤2 ⊗ (Ad(Fi))↾Q. First we order H = {h j}
k
j=0 according

to the block order, i.e., j < j ′ implies supp h j < supp h j ′ . For every 0 ≤ j ≤ k, let

s j ∈ St be such that either h j = gs j
or h j = e∗qn

and s j = sR(n). Observe that for every
0 ≤ j < k, either s j < s j+1 or else s j = s j+1 and this can only occur if h j = e∗qn

and
h j+1 = gs j+1

with s j+1 = sR(n). Fix t = {ms}s∈St
∈ Fi that interpolates (supp fs)s∈St

.

We claim that for every even 0 < j ≤ k we have that

(4.5) supp h j−2 < ms j
≤ supp h j .

From this we have that {ms j
} j even ∈ Fi interpolates the set {supp h j : 0 ≤ j ≤ k,

j even}, hence {min supp h j : 0 ≤ j ≤ k, j even} ∈ Ad(Fi)↾Q, and so we easily get
(4.1). Let us then show (4.5). Suppose first that s j−2 = s j−1 < s j . Then h j−2 = e∗qn

and h j−1 = gs j−1
with sR(n) = s j−1. Hence

max supp h j−2 = qn < max fs j−2
< ms j

≤ min supp fs j
≤ min supp h j ,

as desired. Suppose now that s j−2 < s j−1 < s j . Then

max supp h j−2 < min supp fs+
j−2

≤ min supp fs j−1
≤ max supp fs j−1

,

so

max supp h j−2 < max supp fs j−1
< ms j

≤ min supp fs j
≤ min supp h j .
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Finally, suppose that s j−2 < s j−1 = s j . Then h j−1 = e∗qn
and h j = gs j

with sR(n) = s j .
So

max supp h j−2 < max supp fsL(n) < msL(n)+ ≤ msR(n) = ms j
≤ min supp fs j

≤ min supp h j ,

and we are done.

Proposition 4.5 Suppose that (xn)n∈N is in addition normalized.

(i) For every sequence (an) of scalars and every t ∈ T,

ft

(

∑

n∈Dt

anxn

)

= gt

(

∑

n∈Dt

aneqn

)

.

In particular, f (
∑

n anxn) = g∅(
∑

n∈D∅
aneqn

).

(ii) For every t ∈ T, we have gt ∈ 1
θ0

B(T[([Q]≤2 ⊗ Ad(Fi)↾Q, θi)
r
i=1]∗), where

θ0 = min1≤i≤r θi .

(iii) For every sequence (an) of scalars,

∥

∥

∥

∑

n

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

≤
1

θ0

∥

∥

∥

∑

n

aneqn

∥

∥

∥

([Q]≤2⊗Ad(Fi )↾Q,θi )
r
i=1

.

Proof (i) can be shown easily by downwards induction on t ∈ T. (ii) follows from
Proposition 4.4(ii) and the fact that the dual ball of T[([Q]≤2 ⊗ Ad(Fi)↾Q, θi)

r
i=1] is

closed on the ([Q]≤2 ⊗ Ad(Fi)↾Q, θi)-operation (see Remark 1.4).

(iii) Follows from (i) and (ii).

Remark 4.6. It is worth pointing out that Proposition 4.5(iii) gives that for every
M ⊆ N and every sequence (an)n∈M of scalars

∥

∥

∥

∑

n∈M

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

≤
1

θ0

∥

∥

∥

∑

n∈M

aneqn

∥

∥

∥

([QM ]≤2⊗Ad(Fi )↾QM ,θi )
r
i=1

,

where QM = {qn}n∈M = {max supp xn}n∈M .

Before we give the proof of the main result of the section we need one more aux-
iliary lemma.

Lemma 4.7 Fix (Fi , θi)
r
i=1 with at least one of the families with infinite index and a

normalized block sequence (xn)n in the space T[(Fi , θi)
r
i=1]. Then for every i0 such that

ι(Fi0
) ≥ ω, there exists an infinite set M such that

∥

∥

∥

∑

n∈M

anepn

∥

∥

∥

(Fi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈M

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

,

where pn = min supp xn for every n.
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Proof Set P0 = {pn}. Let M0 ⊆ N be infinite and let (Bi) be a sequence of regular
families on N with ι(Bi) = ι(Fi) and such that

(4.6) every Bi-admissible block sequence of subsets of {pn}n∈M0
is Fi-admissible

for 1 ≤ i ≤ r.

Let M1 = {m2i}, where {mi} is the increasing enumeration of M0.

Claim For every sequence of scalars (an)n∈M1
,

∥

∥

∥

∑

n∈M1

anepn

∥

∥

∥

(Bi ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈M1

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

.

Proof of Claim For every n, choose φn ∈ K((Fi , θi)
r
i=1) such that φnxn ≈ 1 and

suppφn ⊆ supp xn. Let P1 = {pn}n∈M1
, and define now F : KP1 ((Bi , θi)

r
i=1) →

K((Fi , θi)
r
i=1) by F(e∗pn

) = φn, and extend it by

F(θi(ψ0 + · · · + ψn)) = θi(F(ψ0) + · · · + F(ψn))

if (ψi)
n
i=0 ⊆ KP1 ((Bi , θi)

r
i=1) is a Bi-admissible block sequence (1 ≤ i ≤ r). To see

that F is well defined, suppose that (ψi)
n
i=0 ⊆ KP1 ((Bi , θi)

r
i=1) is Bi-admissible block

sequence and set min suppψi = pm2ki
, max suppψi = pm2li

(0 ≤ i ≤ n). Then we

have that for every 0 ≤ i ≤ n,

(4.7) supp F(ψi) ⊆ [pm2ki
, pm2li +1

].

Since, by (4.6), ({pm2ki
, pm2li +1

})n
i=0 is Fi-admissible, condition (4.7) yields that

(F(ψi))n
i=0 is Fi-admissible. It is clear now that the existence of F shows the desired

result.

Let i0 be such that Fi0
has infinite index λ+r, with λ > 0 a limit ordinal and r ∈ N.

Let M2 ⊆ M1 be such that Ad(Fi0
)↾P2 is homogeneous on P2, where P2 = {pn}n∈M2

.

Then by Proposition 3.9 and the properties of the homogeneous families we know
that

ι([P2]≤2 ⊗ Ad(Fi0
)↾P2) = 2ι(Ad(Fi0

)↾P2) ≤ 2(2(λ + r)) = λ + 4r < (λ + r)2,

so by Proposition 3.8 we can find M ⊆ M2 such that, setting P = {pn}n∈M ,

[P]≤2 ⊗ Ad(Fi0
)↾P ⊆ Bi0

⊗ [P]≤2.

It follows, by Proposition 2.1 that for every sequence of scalars (an)n∈M ,

∥

∥

∥

∑

n∈M

anepn

∥

∥

∥

(Fi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈M

anepn

∥

∥

∥

(Bi0
,θi0

)
.

This, combined with the previous claim, completes the proof.

https://doi.org/10.4153/CJM-2008-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-049-0


A Classification of Tsirelson Type Spaces 1141

Theorem 4.8 Fix a finite sequence (Fi , θi)
r
i=1 of compact hereditary families and real

numbers such that there is some 1 ≤ i ≤ r with ι(Fi) infinite. Then there is 1 ≤ i0 ≤ r

such that every normalized block sequence (xn) ⊆ T[(Fi , θi)
r
i=1] has a subsequence

(xn)n∈N which is equivalent to the subsequence (epn
)n∈N of the natural basis (en)n∈N of

T(Fi0
, θi0

), and where pn = min supp xn, for every n.

Proof Let (xn) ⊆ T[(Fi , θi)
r
i=1] be a normalized block sequence. Let

(xn) ⊆ T[(Fi , θi)
r
i=1]

be a normalized block sequence. By Proposition 4.5 (see also Remark 4.6) we get that

for every W ⊆ N,

∥

∥

∥

∑

n∈W

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

≤ C
∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

([QW ]≤2⊗Ad(Fi )↾QW ,θi )
r
i=1

,

where C = max1≤i≤r θ
−1
i , qn = max supp xn for each n, and QW = {qn}n∈W . Find

an infinite set M of integers and a sequence (Gi)
r
i=1 of regular families such that for

every 1 ≤ i ≤ r

(i) Ad(Fi)↾QM is homogeneous on QM ,
(ii) ι(Gi) = ι(Ad([QM]≤2 ⊗ Ad(Fi)↾QM)) + 1,

(iii) Ad([QM]≤2 ⊗ Ad(Fi)↾QM)↾QM ⊆ Gi↾QM .

By Theorem 2.13 there is some N ⊆ M and D ≥ 1 such that

∥

∥

∥

∑

n∈N

aneqn

∥

∥

∥

(Gi ,θi )
r
i=1

≤ D
∥

∥

∥

∑

n∈N

aneqn

∥

∥

∥

(Gi0
,θi0

)
,

where i0 is such that (ι(Gi0
), θi0

) = max<T
{(ι(Gi), θi) : 1 ≤ i ≤ r}. Notice that ι(Gi0

)
and ι(Fi0

) are both infinite. By Corollary 2.3 we can find R ⊆ N such that

∥

∥

∥

∑

n∈R

aneqn

∥

∥

∥

(Gi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈R

anepn

∥

∥

∥

(Gi0
,θi0

)
,

where pn = min supp xn for every n. Now use Proposition 3.11 to find an infinite
subset S of R and a regular family B with the same index as Fi0

such that

(4.8) every B-admissible sequence of subsets of {pn}n∈R is Fi0
-admissible.

Since, by the choice of M, the family Ad(Fi0
)↾QM is homogeneous on QM we obtain

by Proposition 3.9 that

(4.9) ι(Gi0
) ≤ 2ι([QM]≤2 ⊗ Ad(Fi0

)↾QM) + 1

= 2ι([QM]≤2)ι(Ad(Fi0
)↾QM) + 1 ≤ 8ι(Fi0

) + 1.

As Gi0
and B are both regular and ι(Fi0

) is infinite, (4.9) implies that

ι([N]≤2 ⊗ Gi0
) = 2ι(Gi0

) ≤ 16ι(Fi0
) + 2 < ι(Fi0

)2 = ι(B ⊗ [N]≤2),
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so we can find an infinite V ⊆ S such that

[{pn}n∈V ]≤2 ⊗ Gi0
↾{pn}n∈V ⊆ B ⊗ [N]≤2.

Hence, by Proposition 2.1 (Gi0
is regular),

∥

∥

∥

∑

n∈V

anepn

∥

∥

∥

(Gi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈V

anepn

∥

∥

∥

(B,θi0
)
,

while by Lemma 4.7 we can find W ⊆ V such that

∥

∥

∥

∑

n∈W

anepn

∥

∥

∥

(Fi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈W

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

.

Finally, from (iii) and Proposition 2.1 we get that

∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

([QW ]≤2⊗Ad(Fi )↾QW ,θi )
r
i=1

≤
∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

(Gi ,θi )
r
i=1

.

Putting all these inequalities together and also using (4.8), we obtain

1

4CD

∥

∥

∥

∑

n∈W

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

≤
1

4D

∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

([QW ]≤2⊗Ad(Fi )↾QW ,θi )
r
i=1

≤
1

4D

∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

(Gi ,θi )
r
i=1

≤
1

4

∥

∥

∥

∑

n∈W

aneqn

∥

∥

∥

(Gi0
,θi0

)

≤
1

2

∥

∥

∥

∑

n∈W

anepn

∥

∥

∥

(Gi0
,θi0

)
≤

∥

∥

∥

∑

n∈W

anepn

∥

∥

∥

(B,θi0
)

≤
∥

∥

∥

∑

n∈W

anepn

∥

∥

∥

(Fi0
,θi0

)
≤ 2

∥

∥

∥

∑

n∈W

anxn

∥

∥

∥

(Fi ,θi )
r
i=1

.

So, (xn)n∈W ⊆ T[(Fi , θi)
r
i=1] and (epn

)n∈W ⊆ T(Fi0
, θi0

) are equivalent, as desired.

We recall from Definition 2.9 that for a given compact and hereditary family F

we define γ(F) = ι(F) and n(F) = 0 if F has finite index, and γ(F) = ωω
γ

and
n(F) = n satisfying that ωω

γn ≤ α < ωω
γ (n+1), if F has infinite index. Using this

terminology we can reformulate a result from [8, 9] as follows.

Theorem Suppose that (Fi , θi)
r
i=1 is such that all Fi have finite index. Let i0 be such

that (Fi0
, θi0

) = max≤T
{(Fi , θi)}

r
i=1, and G be an arbitrary regular family such that

γ(G) = γ(Fi0
). Then every normalized block sequence (xn) of T[(Fi , θi)

r
i=1] has a block

subsequence (yn)n equivalent to the basis of T(G, θi0
).

Notice that in that case, the family G is on a tail equal to [N]≤ι(Fi0
). We present

now the natural generalization of this theorem.
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Corollary 4.9 Fix (Fi , θi)
r
i=1. Let i0 be such that (Fi0

, θi0
) = max≤T

{(Fi , θi)}
r
i=1.

Suppose that G is an arbitrary compact and hereditary family. If γ(G) = γ(Fi0
), then

every normalized block sequence (xn) of T[(Fi , θi)
r
i=1] has a subsequence (xn)n∈M equiv-

alent to the subsequence (emin supp xn
)n∈M of the basis of T(G, θ

n(B)/n(Fi0
)

i0
), where we use

the convention 0/0 = 1.

Proof We may assume that at least one of the families Fi has infinite index. By
Theorem 4.8, it is enough to have the conclusion for subsequences of the basis of
T(Fi0

, θi0
), and by Proposition 4.1 we may assume that Fi0

and G are both regular

families. Let
ι(Fi0

) = ωω
αm+βn + δ, ι(G) = ωω

ᾱm̄+β̄ n̄ + δ̄

be canonical decompositions. This is possible since γ(Fi0
) = γ(B) is infinite. More-

over ᾱ = α. Using

ωω
αm ≤ ι(Fi0

) = ωω
αm+βn + δ < ωω

αm+β+1

and the corresponding inequality for G, by Theorem 2.8 we may assume that
ι(Fi0

) = ωω
αm, and ι(G) = ωω

αm̄ Now the result follows from the application of
Proposition 2.6 to the families Fi0

and G.

In particular for Schreier families we obtain the following.

Corollary 4.10 Fix (Fi , θi)
r
i=1 such that at least one of the families has infinite index.

Let i0 be such that (Fi0
, θi0

) = max≤T
{(Fi , θi)}

r
i=1, and set ι(Fi0

) = ωω
αk+δm + γ

in canonical form. Then every normalized block sequence (xn) of T[(Fi , θi)
r
i=1] has

a subsequence (xn)n∈M equivalent to the subsequence (emin supp xn
)n∈M of the basis of

T(Sωα , θ
1/k
i0

).

The last result of the section concerns equivalence of block sequences in the spaces
T(Sξ , θ).

Proposition 4.11 Let (xn), (yn) be two normalized block sequences in the space

T(Sξ , θ) such that xn < yn < xn+1 for every n. Then (xn) and (yn) are 24θ−2-equi-

valent.

Proof For the proof we shall use the following two relations concerning the Schreier
families Sξ , and infinite subsets N of integers with min N ≥ 3.

[N]≤3 ⊗ Sξ ⊆ Sξ ⊗ [N]≤2,(4.10)

[N]≤3 ⊗ (Sξ ⊕ [N]≤1) ⊆ Sξ ⊗ [N]≤3.(4.11)

The proofs of these two relations follow easily by induction on ξ. Now we show that

a normalized block sequence (xn) is equivalent to the subsequence (epn
)n of the basis,

pn = min supp xn, and this implies the result. Without loss of generality we may
assume that pn ≥ 3 for every n. It follows easily from the spreading property of the
families Sξ that

∥

∥

∥

∑

n

anepn

∥

∥

∥

(Sξ ,θ)
≤

∥

∥

∥

∑

n

anxn

∥

∥

∥

(Sξ ,θ)
.
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For the reverse inequality, by Proposition 4.5 we get

∥

∥

∥

∑

n

anxn

∥

∥

∥

(Sξ ,θ)
≤ θ−1

∥

∥

∥

∑

n

aneqn

∥

∥

∥

([N]≤2⊗Sξ ,θ)
,

where qn = max supp xn for each n. By (4.10) and Proposition 2.1, we get

∥

∥

∥

∑

n

aneqn

∥

∥

∥

([N]≤2⊗Sξ ,θ)
≤ 2

∥

∥

∥

∑

n

aneqn

∥

∥

∥

(Sξ ,θ)
.

As in the proof of Corollary 2.3, we get that

∥

∥

∥

∑

n

aneqn

∥

∥

∥

(Sξ ,θ)
≤

∥

∥

∥

∑

n

anepn

∥

∥

∥

(Sξ⊕[N]≤1,θ)
.

Now by (4.11) and again Proposition 2.1, we get that

∥

∥

∥

∑

n

anepn

∥

∥

∥

(Sξ⊕[N]≤1,θ)
≤ 3

∥

∥

∥

∑

n

anepn

∥

∥

∥

(Sξ ,θ)
.

and this completes the proof.

4.1 Incomparability

The goal here is to turn the implication presented in Corollary 4.9 into an equiva-
lence. So we are now going to deal with the incomparability of the Tsirelson-type

spaces. The main tools to distinguish two such spaces are the special convex combi-
nations, introduced in [3]. The following lemma provides the existence of the special
convex combinations, in a more general setting than the one in [3], and it is a version
of the well-known Pták’s lemma (see [6] for a proof).

Lemma 4.12 Suppose that F0 and F1 are two regular families with indices ι(Fi) =

ωαi ni + βi , αi > 0, ni ∈ N βi < ωαi (i = 0, 1). If α0 < α1, then for every ε > 0 there

is a convex mean µ such that suppµ ∈ F1 and such that supt∈F0

∑

n∈t µ(n) < ε.

The first case where the spaces are going to be totally incomparable is if the index
of one of the families is at least the ω-power of the other.

Lemma 4.13 Suppose that F0,F1 are two regular families such that ι(F0)ω ≤ ι(F1).

Then T(F0, θ0) and T(F1, θ1) are totally incomparable.

Proof Suppose that the desired result does not hold. By standard arguments we may
assume that there exists a normalized block sequence (xn)n ∈ T(Fi , θi) equivalent to

a normalized block sequence (zn)n of T(F j , θ j), j 6= i. By Theorem 4.8, passing to
subsequences if necessary, we may assume that (xn)n is equivalent to a subsequence
(en)n∈Mi

of the natural basis (en) of T(Fi , θi) and that (zn) is equivalent to a subse-
quence (en)n∈M j

of the natural basis (en) of T(F j , θ j).

https://doi.org/10.4153/CJM-2008-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-049-0


A Classification of Tsirelson Type Spaces 1145

For k = 0, 1, let ϕk : Mk → N be the unique order-preserving onto mapping
between Mk and N. Note that for k = 0, 1 the family φ−1

k Fk is regular on Mk,

ι(ϕ−1
k Fk) = ι(Fk) and (en)n∈Mk

⊆ T(Fk, θk) is 1-equivalent to

en)n∈N ⊆ T(ϕ−1
k Fk, θk).

So, without loss of generality, we may assume that M1 = M2 = N. So, we are
supposing that (en) ⊆ T(F0, θ0) is, say, C-equivalent to (en) ⊆ T(F1, θ1) i.e., for all

scalars (an),

1

C

∥

∥

∥

∑

n

anen

∥

∥

∥

(F0,θ0)
≤

∥

∥

∥

∑

n

anen

∥

∥

∥

(F1,θ1)
≤ C

∥

∥

∥

∑

n

anen

∥

∥

∥

(F0,θ0)
.

Let l ∈ N be such that θl
0 < θ1/(2C). By our hypothesis over the indices, ι(F0)l <

ι(F1). So, by Lemma 4.12 there is some convex mean µ such that suppµ ∈ F1,
and

∑

n∈t µ(n) < θ1

2C
for every t ∈ F

⊗(l−1)
0 . Observe that every φ ∈ K(F0, θ0)

has a decomposition φ = φ0 + φ1, where suppφ0 ∈ F
⊗(l−1)
0 , ‖φ1‖∞ ≤ θl and

suppφ0 ∩ suppφ1 = ∅. So, for every φ ∈ K(F0, θ0),

∣

∣

∣
φ
(

∑

n∈s

µ(n)en

)
∣

∣

∣
=

∣

∣

∣
φ0

(

∑

n∈s

µ(n)en

)

+ φ1

(

∑

n∈s

µ(n)en

)
∣

∣

∣

≤
∑

n∈supp φ0∩s

µ(n) + ‖φ1‖∞
∑

n∈s

µ(n) <
θ1

2C
+ θl

0 <
θ1

C
,

while
∥

∥

∥

∑

n∈s

µ(n)en

∥

∥

∥

(F1,θ1)
≥ θ1

∑

n∈s

µ(n) = θ1,

and so, by (4.1),

θ1 ≤
∥

∥

∥

∑

n∈s

µ(n)en

∥

∥

∥

(F1,θ1)
≤ C

∥

∥

∥

∑

n∈s

µ(n)en

∥

∥

∥

(F0,θ0)
< C

θ1

C
,

a contradiction.

The second case of total incomparability we consider is when the two families have
the same index, but the corresponding θ’s are different.

Lemma 4.14 Suppose that F0 and F1 are two regular families with the same index,

and suppose that θ0 6= θ1, and max{θ0, θ1} > 1/ι(F0), where by convention, 1/α = 0
if α is an infinite ordinal. Then the corresponding spaces T(F0, θ0) and T(F1, θ1) are

totally incomparable.

Proof Suppose first that ι(F0) = ι(F1) is finite. Then T(F0, θ0) and T(F1) are iso-
morphic to different classical spaces c0 or ℓp (p > 1), and the conclusion of the
lemma trivially holds.
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Suppose that ι(F0) = ι(F1) is infinite. As in the previous lemma, we may assume
that F0 = F1 = F and that (en) ⊆ T(F, θ0) is C-equivalent to (en) ⊆ T(F, θ1), i.e.,

for all scalars (an),

(4.12)
1

C

∥

∥

∥

∑

n

anen

∥

∥

∥

(F,θ0)
≤

∥

∥

∥

∑

n

anen

∥

∥

∥

(F,θ1)
≤ C

∥

∥

∥

∑

n

anen

∥

∥

∥

(F,θ0)
.

Suppose that θ0 < θ1. Let l ∈ N, l > 1 be such that (θ1/θ0)l > 2C . Let (an)n∈s be a

convex mean such that s ∈ F⊗(l) and
∑

n∈t an < θl
1/(2C) for every t ∈ F⊗(l−1). As

before, any functional φ ∈ K(F, θ0) is decomposed φ = φ0 +φ1, suppφ0∩suppφ1 =

∅, suppφ0 ∈ F⊗(l−1) and ‖φ1‖∞ ≤ θl
0. Then

∣

∣

∣
φ
(

∑

n∈s

anen

)
∣

∣

∣
=

∣

∣

∣
φ0

(

∑

n∈s

anen

)

+ φ1

(

∑

n∈s

anen

)
∣

∣

∣
<

θl
1

2C
+ θl

0 <
θl

1

C
.

Finally, by (4.12),

θl
1 ≤

∥

∥

∥

∑

n

anen

∥

∥

∥

(F,θ1)
≤ C

∥

∥

∥

∑

n

anen

∥

∥

∥

(F,θ0)
< C

θl
1

C
,

a contradiction.

4.2 Main Result

We collect in a single result the facts we have so far. It is written in terms of the ordinal
invariants γ and n introduced in Definition 2.9, and using the convention 0/0 = 1.

Theorem 4.15 (Classification theorem) Fix two sequences (Fi , θi)
r
i=1 and (Gi , ηi)

s
i=1

of pairs of compact and hereditary families and real numbers in (0, 1). Let 1 ≤ i0 ≤ r

and 1 ≤ j0 ≤ s be such that (Fi0
, θi0

) = max≤T
{(Fi , θi) : 1 ≤ i ≤ r}, and (G j0

, η j0
) =

max≤T
{(Gi , ηi) : 1 ≤ i ≤ s}. The following are equivalent:

(i) Either

(a) γ(Fi0
), γ(G j0

) ≥ ω, γ(Fi0
) = γ(G j0

) and θ
n(G j0

)

i0
= η

n(Fi0
)

j0
, or else

(b) both Fi0
,G j0

have finite index, and either

(1) θi0
γ(Fi0

), ηi0
γ(G j0

) ≤ 1, or else

(2) logγ(Fi0
) θi0

= logγ(G j0
) η j0

.

(ii) Every closed infinite dimensional subspace of T[(Fi , θi)
r
i=1] contains a subspace

isomorphic to a subspace of T[(Gi , ηi)
s
i=1].

(iii) For every regular family B such γ(B) = γ(G j0
) and every normalized block se-

quence of T[(Fi , θi)
r
i=1] there is a block subsequence (subsequence if Gi0

has infinite

index) equivalent to a subsequence of the natural basis of T(B, η
n(B)/n(G j0

)

j0
).

Proof (ii) implies (iii). Fix a regular family B with same index as G j0
, and fix a

normalized block sequence (xn) of T[(Fi , θi)
r
i=1]. By (b), there is some block se-

quence (yn) of (xn) which is equivalent to a semi normalized block sequence (zn) of
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T[(Gi , ηi)
s
i=1]. By Corollary 4.9, we can find a further block subsequence (wn) of (zn),

which is equivalent to a subsequence of the natural basis of T(B, η
1/n(G j0

)

j0
), as desired.

(iii) implies (i). First, fix a regular family C with index γ(Fi0
). By Corollary 4.9 we

know that T((Fi , θi)
r
i=1) is saturated by subsequences of the basis of T(C, θ

1/n(Fi0
)

i0
).

Notice that (iii) implies that T(B, η
1/n(G j0

)

j0
) and T(C, θ

1/n(Fi0
)

i0
) are not totally incom-

parable. Suppose first that G j0
has finite index. Lemma 4.13 gives that Fi0

has also
finite index, and in particular n(Fi0

) = 1. Now (b) follows from the properties of ℓp’s
and c0.

Assume now that G j0
is infinite. In this case Lemma 4.13 implies that γ(Fi0

) =

γ(G j0
). It follows, by Corollary 4.9 that T[(Fi , θi)

r
i=1] is saturated by subsequences of

T(B, θ
1/n(Fi0

)

i0
). Hence T(B, θ

1/n(Fi0
)

i0
) and T(B, η

1/n(G j0
)

j0
) are not totally incompara-

ble, so by Lemma 4.14, θ
1/n(Fi0

)

i0
= η

1/n(G j0
)

i0
.

(i) implies (ii) follows from Corollary 4.9.

Remark 4.16. (i) If the families F are compact but not necessarily hereditary,
Theorem 4.15 remains true. The main observation is that if F is an arbitrary com-
pact family, then there is some infinite set M such that F[M] = {s ∩ M : s ∈ F}
is hereditary (see [5]). This fact, when applied to the family Ad(F) of F-admissible
sets, guarantees we can follow the same arguments we use for the case of hereditary
families, starting with Proposition 4.5.

(ii) The problem of classification of full mixed Tsirelson spaces T[(Fi , θi)
∞
i=0]

seems rather unclear. There are several obstacles for someone wanting to extend
the techniques presented in this paper to the general case.
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