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The Noether Theorems in Context

yvette kosmann-schwarzbach

Methodi in hoc libro traditæ, non solum maximum
esse usum in ipsa analysi, sed etiam eam ad resolutionem
problematum physicorum amplissimum subsidium afferre.

Leonhard Euler (1744)

‘The methods described in this book are not only of great use in analysis, but are also most
helpful for the solution of problems in physics.’ Replacing ‘in this book’ by ‘in this article’,
the sentence that Euler wrote in the introduction to the first supplement of his treatise
on the calculus of variations in 1744 applies equally well to Emmy Noether’s ‘Invariante
Variationsprobleme’, published in the Nachrichten von der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse in 1918.

1.1 Introduction

In this talk,1 I propose to sketch the contents of Noether’s 1918 article, ‘Invariante Varia-
tionsprobleme’, as it may be seen against the background of the work of her predecessors
and in the context of the debate on the conservation of energy that had arisen in the general
theory of relativity.2

Situating Noether’s theorems on the invariant variational problems in their context re-
quires a brief outline of the work of her predecessors, and a description of her career,
first in Erlangen, then in Göttingen. Her 1918 article will be briefly summarised. I have
endeavoured to convey its contents in Noether’s own vocabulary and notation with minimal
recourse to more recent terminology. Then I shall address these questions: how original
was Noether’s ‘Invariante Variationsprobleme’? How modern were her use of Lie groups
and her introduction of generalised vector fields? And how influential was her article? To
this end, I shall sketch its reception from 1918 to 1970.

1 This text is a revised version of the lecture I delivered at the international conference, ‘The Philosophy and Physics of
Noether’s Theorems’, a centenary conference on the 1918 work of Emmy Noether, London, 5 October 2018.

2 An English translation of Noether’s article together with an account of her work and the history of its reception, from Einstein
to Deligne, may be found in my book, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century,
translated by Bertram E. Schwarzbach (Kosmann-Schwarzbach 2010). This book contains an extensive bibliography, only a
small part of which is reproduced in the list of references below. It is an expanded version of my earlier book in French, Les
Théorèmes de Noether, Invariance et lois de conservation au XXe siècle (2004).
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1 The Noether Theorems in Context 5

For many years, there was practically no recognition of either of these theorems. Then
multiple references to ‘the Noether theorem’ or ‘Noether’s theorem’ – in the singular –
began to appear, referring either to her first theorem, in the publications of those mathemati-
cians and mathematical physicists who were writing on mechanics – who ignored her second
theorem – or to her second theorem by those writing on general relativity and, later, on gauge
theory. I shall outline the curious transmission of her results, the history of the mathematical
developments of her theory, and the ultimate recognition of the wide applicability of ‘the
Noether theorems’. To conclude, in the hope of dispelling various misconceptions, I shall
underline what Noether was not, and I shall reflect on the fortune of her theorems.

1.2 A Family of Mathematicians

Emmy Noether was born to a Jewish family in Erlangen (Bavaria, Germany) in 1882. Her
life was described in Hermann Weyl’s obituary (Weyl 1935). In a manuscript curriculum
vitae, written for official purposes circa 1917, she described herself as ‘of Bavarian nation-
ality and Israelite confession’.3 She died in Bryn Mawr (Pennsylvania) in the United States
in 1935, after undergoing an operation. Why she had to leave Germany in 1933 to take up
residence in America is clear from the chronology of the rise of the Nazi regime in Germany
and its access to power and has, of course, been told in the many accounts of her life that
have been published,4 while numerous and sometimes fanciful comments have appeared in
print and in the electronic media in recent years.

She was the daughter of the renowned mathematician, Max Noether (1844–1921), pro-
fessor at the University of Erlangen. He had been a privatdozent, then an ‘extraordinary
professor’ in Heidelberg before moving to Erlangen in 1875, and was eventually named an
‘ordinary professor’ in 1888. Her brother, Fritz, was born in 1884 and studied mathematics
and physics in Erlangen and Munich. He became professor of theoretical mechanics in
Karlsruhe in 1902 and submitted his Habilitation thesis in 1912. Later, he became professor
in Breslau, from where he, too, was forced to leave in 1933. He emigrated to the Soviet
Union and was appointed professor at the University of Tomsk. Accused of being a German
spy, he was jailed and shot in 1941.

1.3 The Young Emmy Noether

Emmy Noether first studied languages in order to become a teacher of French and En-
glish, a suitable profession for a young woman. But from 1900 on, she studied mathe-
matics, first in Erlangen with her father, then audited lectures at the university. For the
winter semester in 1903–4, she travelled to Göttingen to audit courses at the university.
At that time, new regulations were introduced which enabled women to matriculate and
take examinations. She then chose to enroll at the University of Erlangen, where she listed

3 Declaring one’s religion was compulsory in Germany at the time.
4 The now classical biographies of Noether can be found in the book written by Auguste Dick (1970), translated into English in

1981, and in the volumes of essays edited by James W. Brewer and Martha K. Smith (1981), and by Bhama Srinivasan and
Judith D. Sally (1983).
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6 Y. Kosmann-Schwarzbach

mathematics as her only course of study,5 and in 1907, she completed her doctorate un-
der the direction of Paul Gordan (1837–1912), a colleague of her father. Here I open a
parenthesis: One should not confuse the mathematician Paul Gordan, her ‘Doktorvater’,
with the physicist Walter Gordon (1893–1939). The ‘Clebsch–Gordan coefficients’ in quan-
tum mechanics bear the name of Noether’s thesis adviser together with that of the physi-
cist and mathematician Alfred Clebsch (1833–72). However, the ‘Klein–Gordon equation’
is named after Walter Gordon and the physicist Oskar Klein (1894–1977) who, in turn,
should not be confused with the mathematician Felix Klein, about whom more will be said
shortly.

1.4 Noether’s 1907 Thesis on Invariant Theory

Noether’s thesis at Erlangen University, entitled ‘Über die Bildung des Formensystems der
ternären biquadratischen Form’ (“On the Construction of the System of Forms of a Ternary
Biquadratic Form”), dealt with the search for the invariants of those forms (i.e., homoge-
neous polynomials) which are ternary (i.e., in 3 variables) and biquadratic (i.e., of degree 4).
An extract of her thesis appeared in the Sitzungsberichte der Physikalisch-medizinischen
Societät zu Erlangen in 1907, and the complete text was published the following year in
the Journal für die reine und angewandte Mathematik (Crelle’s Journal). She later dis-
tanced herself from her early work as employing a needlessly computational approach to the
problem.

After 1911, her work in algebra was influenced by Ernst Fischer (1875–1954), who was
appointed professor in Erlangen upon Gordan’s retirement in 1910. Noether’s expertise in
invariant theory revealed itself in the publications in 1910, 1913, and 1915 that followed her
thesis, and was later confirmed in the four articles on the invariants of finite groups that she
published in 1916 in the Mathematische Annalen. She studied in particular the determination
of bases of invariants that furnish an expansion with integral or rational coefficients of each
invariant of the group, expressed as a linear combination of the invariants in the basis.

At Erlangen University from 1913 on, Noether occasionally substituted for her ageing
father, thus beginning to teach at the university level, but not under her own name.

1.5 Noether’s Achievements

Her achievement of 1918, whose centenary was duly celebrated in conferences in London
and Paris, eventually became a central result in both mechanics and field theory and, more
generally, in mathematical physics, though her role was rarely acknowledged before 1950
and, even then, only a truncated part of her article was cited. On the other hand, her articles
on the theory of ideals and the representation theory of algebras published in the 1920s
made her world famous. Her role in the development of modern algebra was duly recognised
by the mathematicians of the twentieth century, while they either considered her work on
invariance principles to be an outlying and negligible part of her work or, more often, ignored

5 On this, as well as on other oft-repeated facts of Noether’s biography, see Dick (1970), English translation, p. 14.
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1 The Noether Theorems in Context 7

it altogether. In fact, the few early biographies of Noether barely mention her work on
invariant variational problems, while both past and recent publications treat her fundamental
contributions to modern algebra. I shall not deal with them here. They are, and will no doubt
continue to be, celebrated by all mathematicians.

1.6 In Göttingen: Klein, Hilbert, Noether, and Einstein

In 1915, the great mathematicians Felix Klein (1849–1925) and David Hilbert (1862–1943)
invited Noether to Göttingen in the hope that her expertise in invariant theory would help
them understand some of the implications of Einstein’s newly formulated general theory of
relativity. In Göttingen, Noether took an active part in Klein’s seminar. It was in her 1918
article that she solved a problem arising in the general theory of relativity and proved ‘the
Noether theorems’. In particular, she proved and vastly generalised a conjecture made by
Hilbert concerning the nature of the law of conservation of energy. Shortly afterwards, she
returned to pure algebra.

At the invitation of Hilbert, Einstein had come to Göttingen in early July 1915 to de-
liver a series of lectures on the general theory of relativity, which is to say, on the ver-
sion that preceded his famous paper, ‘Die Feldgleichungen der Gravitation’ (“The Field
Equations of Gravitation”), of November of that year. Noether must have attended these
lectures. It is clear from Hilbert’s letter to Einstein of 27 May 1916 that she had by then
already written some notes on the subject of the problems arising in the general theory of
relativity:

My law [of conservation] of energy is probably linked to yours; I have already given Miss Noether
this question to study.

Hilbert adds that, to avoid a long explanation, he has appended to his letter ‘the enclosed
note of Miss Noether’. On 30 May 1916, Einstein answered him in a brief letter in which
he derived a consequence of the equation that Hilbert had proposed ‘which deprives the
theorem of its sense’, and then asks, ‘How can this be clarified?’ He continues,

Of course it would be sufficient if you asked Miss Noether to clarify this for me.6

Thus, her expertise was conceded by both Hilbert and Einstein as early as her first year in
Göttingen, and was later acknowledged more explicitly by Klein when he re-published his
articles of 1918 in his collected works (Klein 1921), a few years before his death.

1.7 Noether’s Article of 1918

In early 1918, Noether published an article on the problem of the invariants of differen-
tial equations in the Göttinger Nachrichten, ‘Invarianten beliebiger Differentialausdrücke’
(“Invariants of Arbitrary Differential Expressions”), which was presented by Klein at the
meeting of the Königliche Gesellschaft der Wissenschaften zu Göttingen (Royal Göttingen

6 Einstein, Collected Papers, 8A, nos. 222 and 223.

https://doi.org/10.1017/9781108665445.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108665445.002


8 Y. Kosmann-Schwarzbach

Scientific Society) of 25 January. It was then, in the winter and spring of 1918, that Noether
discovered the profound reason for the difficulties that had arisen in the interpretation of
the conservation laws in the general theory of relativity. Because she had left Göttingen for
a visit to Erlangen to see her widowed and ailing father, her correspondence remains and
yields an account of her progress in this search. In her postcard to Klein of 15 February, she
already sketched her second theorem, but only in a particular case. It is in her letter to Klein
of 12 March that Noether gave a preliminary formulation of an essential consequence of
what would be her second theorem, dealing with the invariance of a variational problem
under the action of a group which is a subgroup of an infinite-dimensional group. On
23 July, she presented her results to the Mathematische Gesellschaft zu Göttingen (Göt-
tingen Mathematical Society). The article which contains her two theorems is ‘Invariante
Variationsprobleme’ (“Invariant Variational Problems”). On 26 July, Klein presented it at
the meeting of the more important – because it was not restricted to an audience of pure
mathematicians – Göttingen Scientific Society, and it was published in the Nachrichten
(Proceedings) of the Society of 1918, on pages 235–47. A footnote on the first page of her
article indicates that ‘The definitive version of the manuscript was prepared only at the end
of September.’

1.8 What Variational Problems Was Noether Considering?

We consider variational problems which are invariant under a continuous group (in the sense of Lie).
. . . What follows thus depends upon a combination of the methods of the formal calculus of variations
and of Lie’s theory of groups.7

Noether considers a general n-dimensional variational problem of order κ for an R
μ-valued

function, where n, κ , and μ are arbitrary integers, defined by an integral,

I =
∫

· · ·
∫

f

(
x,u,

∂u

∂x
,
∂2u

∂x2 , . . . ,
∂κu

∂xκ

)
dx,

where x = (x1, . . . ,xn) = (xλ) denote the independent variables, and where u = (u1, . . . ,

uμ) = (ui) are the dependent variables. In footnotes, she states her conventions and explains
her abbreviated notations: ‘I omit the indices here, and in the summations as well whenever
it is possible, and I write ∂2u

∂x2 for ∂2uα

∂xβ∂xγ
, etc’, and ‘I write dx for dx1 . . . dxn for short’.

Noether then states her two theorems:

In what follows we shall examine the following two theorems:
I. If the integral I is invariant under a [group] Gρ , then there are ρ linearly independent combinations
among the Lagrangian expressions which become divergences – and conversely, that implies the
invariance of I under a [group] Gρ . The theorem remains valid in the limiting case of an infinite
number of parameters.

7 I cite the English translation of Noether’s article that appeared in The Noether Theorems (2010).
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1 The Noether Theorems in Context 9

II. If the integral I is invariant under a [group] G∞ρ depending upon arbitrary functions and their
derivatives up to order σ , then there are ρ identities among the Lagrangian expressions and their
derivatives up to order σ . Here as well the converse is valid.8

Noether proves the direct part of both theorems in section 2, then the converse of theorem
I in section 3 and that of theorem II in section 4. In section 2, she assumes that the action
integral I = ∫

f dx is invariant. Actually, she assumes a more restrictive hypothesis, the
invariance of the integrand, f dx, which is to say, δ(f dx) = 0. This hypothesis is expressed
by the relation

δ̄f + Div(f · �x) = 0.

Here Div is the divergence of vector fields and δ̄f is the variation of f induced by the
variation

δ̄ui = �ui −
∑ ∂ui

∂xλ

�xλ.

Thus, Noether introduced the evolutionary representative, δ̄, of the vector field δ, and δ̄f is
the Lie derivative of f in the direction of the vector field δ̄. What she introduced, with the
notation δ̄, is a generalised vector field, which is not a vector field in the usual sense, on the
trivial vector bundle R

n × R
μ → R

n. In fact, if

δ =
n∑

λ=1

Xλ(x)
∂

∂xλ
+

μ∑
i=1

Y i(x,u)
∂

∂ui
,

then δ̄ is the vertical generalised vector field

δ̄ =
μ∑

i=1

(
Y i(x,u) − Xλ(x)ui

λ

) ∂

∂ui
,

where ui
λ = ∂ui

∂xλ . It is said to be ‘generalised’ because its components depend on the deriva-

tives of the ui(x). It is said to be ‘vertical’ because it contains no terms in ∂
∂xλ .9

By integrating by parts, Noether obtains the identity∑
ψi δ̄ui = δ̄f + Div A,

where the ψi’s are the ‘Lagrangian expressions’, i.e., the components of the Euler–Lagrange
derivative of f , and A is linear in δ̄u and its derivatives. In view of the invariance hypothesis
which is expressed by δ̄f + Div(f · �x) = 0, this identity can be written as∑

ψi δ̄ui = Div B, with B = A − f · �X.

8 In a footnote, Noether announces that she will comment on ‘some trivial exceptions’ in the next section of her article.
9 The evolutionary representative of an ordinary vector field has also been called the vertical representative. Both terms are

modern. Noether does not give δ̄ a name. An arbitrary vertical generalised vector field is written locally,

Z = ∑μ
i=1 Zi

(
x,u, ∂u

∂x
, ∂2u

∂x2 , · · ·
)

∂

∂ui
.
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10 Y. Kosmann-Schwarzbach

Therefore, B is a conserved current for the Euler–Lagrange equations of f , and the proof
of the direct part of Theorem I is complete: the equations Div B = 0 are the conservation
laws that are satisfied when the Euler–Lagrange equations ψi = 0 are satisfied.

Noether then proves the converse of Theorem I. The existence of ρ ‘linearly independent
divergence relations’ implies the invariance under a (Lie) group of symmetries of dimension
ρ, by passing from the infinitesimal symmetries to invariance under their flows, provided
that the vector fields �u and �x are ordinary vector fields. In the general case, the existence
of ρ linearly independent conservation laws yields the infinitesimal invariance of f under
a Lie algebra of infinitesimal symmetries of dimension ρ. Equivalence relations have to be
introduced to make these statements precise.

Theorem II deals with a symmetry group depending on arbitrary functions, such as
the group of diffeomorphisms of the spacetime manifold and, more generally, the groups
of all gauge theories that would be developed, beginning with the article of Chen Ning
Yang and Robert L. Mills, ‘Conservation of Isotopic Spin and Isotopic Gauge Invariance’
(1954). Noether showed that to such symmetries there correspond identities satisfied by the
variational derivatives, and conversely. The assumption is that ‘the integral I is invariant
under a [group] G∞ρ depending upon arbitrary functions and their derivatives up to order
σ ’. In other words, Noether assumes the existence of ρ infinitesimal symmetries of the
variational integral, each of which depends linearly on an arbitrary function p (depending
on λ = 1,2, . . . ,ρ) of the variables x1,x2, . . . ,xn, and its derivatives up to order σ . Such
a symmetry is defined by a vector-valued linear differential operator, D, of order σ , with
components Di , i = 1,2, . . . ,μ. Noether then introduces, without giving it a name or a
particular notation, the adjoint operator, (Di)∗, of each of the Di’s. By construction, (Di)∗

satisfies

ψi Di(p) = (Di)
∗(ψi) p + Div i,

where i is linear in p and its derivatives. The symmetry assumption and, again, an inte-
gration by parts imply

μ∑
i=1

ψi Di(p) = Div B.

This relation implies

μ∑
i=1

(Di)
∗(ψi) p = Div

(
B −

μ∑
i=1

i

)
.

Since p is arbitrary, by Stokes’s theorem and the Du Bois–Reymond lemma,

μ∑
i=1

(Di)
∗(ψi) = 0.

Thus, for each λ = 1,2, . . . ,ρ, there is a differential relation among the components ψi of
the Euler–Lagrange derivative of the Lagrangian f that is identically satisfied.
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1 The Noether Theorems in Context 11

Noether explains the precautions that must be taken – the introduction of an equivalence
relation on the symmetries – for the converse to be valid. She then observes that each identity
may be written as

∑μ
i=1 aiψi = Div χ , where χ is defined by a linear differential operator

acting on the ψi’s. She shows that each divergence, Div B, introduced above, is equal to the
divergence of a quantity C, where C vanishes once the Euler–Lagrange equations, ψi = 0,
are satisfied. Furthermore, from the equality of the divergences of B and C, it follows that

B = C + D

for some D whose divergence vanishes identically, which is to say, independently of the
satisfaction of the Euler–Lagrange equations or ‘off-shell’ in modern terminology. These
are the conservation laws that Noether called improper divergence relations. In the modern
terminology, there are two types of trivial conservation laws. If the quantity C itself, and
not only its divergence, vanishes on ψi = 0, then C is a trivial conservation law of the first
kind. If the divergence of D vanishes identically, i.e., whether or not ψi = 0, then D is a
trivial conservation law of the second kind or Div D is a null divergence.

1.9 Hilbert’s Conjecture, Groups, and Relativity

The last section of Noether’s article deals with Hilbert’s conjecture. He had asserted, without
proof, in early 1918 that, in the case of general relativity, ‘the energy equations do not exist
at all’, that is, there are no proper conservation laws:

Indeed I claim that for general relativity, that is, in the case of the general invariance of the Hamil-
tonian function, energy equations which, in your sense, correspond to the energy equations of the
orthogonally invariant theories, do not exist at all; I can even call this fact a characteristic feature of
the general theory of relativity.10

Noether shows that the situation is better understood ‘in the more general setting of group
theory’. She explains the apparent paradox that arises from the consideration of the finite-
dimensional subgroups of groups that depend upon arbitrary functions. She emphasises the
conclusion of her argument by setting it as follows, with italics in the original:

Given I invariant under the group of translations, then the energy relations are improper if and only
if I is invariant under an infinite group which contains the group of translations as a subgroup.

Noether concludes by quoting in her final footnote Klein’s striking formula from page 287
of his 1910 paper, ‘Über die geometrischen Grundlagen der Lorentzgruppe’:

The term ‘relativity’ as it is used in physics should be replaced by ‘invariance with respect to a group’.

1.10 How Original Were Noether’s Two Theorems?

Noether’s article did not appear in a vacuum. Analysing the contributions of her predeces-
sors requires a detailed development.11 Here, I shall give only a very brief account of some

10 Klein (1918, p. 477), citing Hilbert.
11 See The Noether Theorems (2010, pp. 29–39).
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12 Y. Kosmann-Schwarzbach

of the most important points of this history. Lagrange, in his Méchanique analitique (1788),
claimed that his method for deriving ‘a general formula for the motion of bodies’ yields
‘the general equations that contain the principles, or theorems known under the names of
the conservation of kinetic energy, of the conservation of the motion of the center of mass,
of the conservation of the momentum of rotational motion, of the principle of areas, and
of the principle of least action’.12 In the second edition of his Mécanique analytique, in
1811, as a preliminary to his treament of dynamics, he presented a detailed history of the
diverse ‘principes ou théorèmes’ (principles or theorems) formulated before his Mécanique,
thus recognising the contributions of his predecessors in the discovery of these principles –
Galileo, Huyghens, Newton, Daniel Bernoulli, Maupertuis, Euler, the Chevalier Patrick
d’Arcy and d’Alembert – and in this second edition, he explicitly observed a correlation
between these principles of conservation and invariance properties. After Lagrange, the
correlation between invariances and conserved quantities was surveyed by Jacobi in several
chapters of his Vorlesungen über Dynamik, lectures delivered in 1842–3 but published
only posthumously in 1866. The great advances of Sophus Lie (1842–99) – his theory of
continuous groups of transformations that was published in articles and books that appeared
between 1874 and 1896 – became the basis of all later developments, such as the work of
Georg Hamel (1877–1954) on the calculus of variations and mechanics in 1904, and the
publication of Gustav Herglotz (1881–1953) on the 10-parameter invariance group of the
[special] theory of relativity in 1911. In her 1918 article, Noether cited Lie very prominently,
as his name appears three times in the eight lines of the introductory paragraph, but with no
precise reference to his published work. Both Hamel and Herglotz were cited by her. In her
introduction, she also referred to publications, all of them very recent, by ‘[Hendrik] Lorentz
and his students (for example, [Adriaan Daniel] Fokker), [Hermann] Weyl, and Klein for
certain infinite groups’ and, in a footnote, she wrote, ‘In a paper by [Adolf] Kneser that
has just appeared (Math. Zeitschrift, vol. 2), the determination of invariants is dealt with
by a similar method.’ In fact, while Noether was completing the definitive version of her
manuscript, in August 1918, Kneser had submitted an article, ‘Least Action and Galilean
Relativity’, in which he used Lie’s infinitesimal transformations and, as Noether would
do, emphasised the relevance of Klein’s Erlangen program, but he did not treat questions
of invariance. Noether stressed the relation of her work to ‘Klein’s second note, Göttinger
Nachrichten, 19 July 1918’, stating that her work and Klein’s were ‘mutually influential’ and
referring to it for a more complete bibliography. In section 5 of her paper, she cited an article,
‘On the Ten General Invariants of Classical Mechanics’ by Friedrich Engel (1861–1941),
that had appeared two years earlier. Indeed, scattered results in classical and relativistic
mechanics, tying together properties of invariance and conserved quantities, had already
appeared in the publications of Noether’s predecessors which she acknowledged. However,
none of them had discovered the general principle contained in her Theorem I and its
converse. Her Theorem II and its converse were completely new. In the expert opinion of

12 Lagrange (1788, p. 182), italics in the original.
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1 The Noether Theorems in Context 13

the theoretical physicist Thibaut Damour,13 the second theorem should be considered the
most important part of her article. It is certainly the most original.

1.11 How Modern Were Noether’s Two Theorems?

What Noether simply called ‘infinitesimal transformations’ are, in fact, vast generalisations
of the ordinary vector fields, and they are now called generalised vector fields. They would
eventually be re-discovered, independently, in 1964 by Harold H. Johnson, then at the Uni-
versity of Washington, who called them ‘a new type of vector fields’, and in 1965 by Robert
Hermann (1931–2020). They appeared again in 1972 as Robert L. Anderson, Sukeyuki
Kumei, and Carl Wulfman published their ‘Generalization of the Concept of Invariance of
Differential Equations. Results of Applications to Some Schrödinger Equations’ in Physical
Review Letters. In 1979, R. L. Anderson, working at the University of Georgia in the United
States, and Nail Ibragimov (1938–2018), then a member of the Institute of Hydrodynamics
at the Siberian branch of the USSR Academy of Sciences in Novosibirsk – such east-west
collaboration was rare at the time – in their monograph, Lie-Bäcklund Transformations
in Applications, duly citing Klein and Noether while claiming to generalise ‘Noether’s
classical theorem’, called them ‘Lie-Bäcklund transformations’, a misleading term because
Albert V. Bäcklund (1845–1922) did not introduce this vast generalisation of the concept of
vector fields, only infinitesimal contact transformations. The concept of a generalised vector
field is essential in the theory of integrable systems which became the subject of intense
research after 1970. On this topic, Noether’s work is modern, half a century in advance of
these re-discoveries. Peter Olver’s book, Applications of Lie Groups to Differential Equa-
tions (1986a), is both a comprehensive handbook of the theory of generalised symmetries
of differential and partial differential equations, and the reference for their history, while
his article of the same year on ‘Noether’s theorems and systems of Cauchy–Kovalevskaya
type’ is an in-depth study of the mathematics of Noether’s second theorem. His article (Olver
2018), written for the centenary of Noether’s article, stresses the importance of her invention
of the generalised vector fields.

In Göttingen, Noether had only one immediate follower, Erich Bessel-Hagen (1898–
1946), who was Klein’s student. In 1921, he published an article in the Mathematische
Annalen, entitled ‘Über die Erhaltungssätze der Elektrodynamik’ (“On the Conservation
Laws of Electrodynamics”), in which he determined in particular those conservation laws
that are the result of the conformal invariance of Maxwell’s equations. There, Bessel-Hagen
recalls that it was Klein who had posed the problem of ‘the application to Maxwell’s equa-
tions of the theorems stated by Miss Emmy Noether about two years ago regarding the
invariant variational problems’ and he writes that, in the present paper, he formulates the
two Noether theorems ‘slightly more generally’ than they had been formulated in her article.
How did he achieve this more general result? By introducing the concept of ‘divergence
symmetries’ which are infinitesimal transformations which leave the Lagrangian invariant

13 Damour is a professor at the Institut des Hautes Études Scientifiques and a member of the Académie des Sciences
de l’Institut de France.
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up to a divergence term, or ‘symmetries up to divergence’. They correspond not to the
invariance of the Lagrangian f dx, but to the invariance of the action integral

∫
f dx, i.e.,

instead of satisfying the condition δ(f dx) = 0, they satisfy the weaker condition δ(f dx) =
Div C, where C is a vectorial expression. Noether’s fundamental relation remains valid
under this weaker assumption, provided that B = A − f · �x is replaced by B = A +
C − f · �x. Immediately after he stated that he had proved the theorems in a slightly more
general form than Noether had, Bessel-Hagen added: ‘I owe these [generalised theorems]
to an oral communication by Miss Emmy Noether herself’. We infer that, in fact, this more
general type of symmetry was also Noether’s invention. Bessel-Hagen’s acknowledgment
is evidence that, to the question, ‘Who invented divergence symmetries?’, the answer is:
Noether.

1.12 How Influential Were Noether’s Two Theorems?

The history of the reception of Noether’s article in the years 1918–70 is surprising. She
submitted the ‘Invariante Variationsprobleme’ for her Habilitation, finally obtained in 1919,
but she never referred to her article in any of her subsequent publications. I know of only
one mention of her work of 1918 in her own writings, in a letter she sent eight years
later to Einstein, who was then an editor of the journal Mathematische Annalen. In this
letter, which is an informal referee report, she rejects a submission ‘which unfortunately is
by no means suitable’ for the journal, on the grounds that ‘it is first of all a restatement
that is not at all clear of the principal theorems of my “Invariante Variationsprobleme”
(Gött[inger] Nachr[ichten], 1918 or 1919), with a slight generalization – the invariance of
the integral up to a divergence term – which can actually already be found in Bessel-Hagen
(Math[ematische] Ann[alen], around 1922)’.14

I found very few early occurrences of Noether’s title in books and articles. While Her-
mann Weyl, in Raum, Zeit, Materie, first published in 1918, performed computations very
similar to hers, he referred to Noether only once, in a footnote in the third (1919) and
subsequent editions. It is clear that Richard Courant must have been aware of her work
because a brief summary of a limited form of both theorems appears in all German, and later
English editions of ‘Courant–Hilbert’, the widely read treatise on methods of mathematical
physics first published in 1924. It is remarkable that we found so few explicit mentions of
Noether’s results in searching the literature of the 1930s. In 1936, the little-known physicist
Moisei A. Markow (1908–94), who was a member of the Physics Institute of the USSR
Academy of Sciences in Moscow, published an article in the Physikalische Zeitschrift der
Sowjetunion in which he refers to ‘the well-known theorems of Noether’. Markow was a
former student of Georg B. Rumer (1901–85), who had been an assistant of Max Born
in Göttingen from 1929 to 1932. Rumer, in 1931, had proved the Lorentz invariance of the
Dirac operator but did not allude to any associated conservation laws, while in his articles on
the general theory of relativity published in the Göttinger Nachrichten in 1929 and 1931, he

14 For a facsimile, a transcription, and a translation of Noether’s letter, see Kosmann-Schwarzbach (2010, pp. 161–5), and see
comments on this letter, Kosmann-Schwarzbach (2010), pp. 51–2.
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cited Weyl but never Noether. Similarly, it seems that V. A. Fock (1898–1974) never referred
to Noether’s work in any of his papers to which it was clearly relevant, such as his celebrated
‘Zur Theorie des Wasserstoffatoms’ (On the Theory of the Hydrogen Atom) of 1935. Was
it because, at the time, papers carried few or no citations? Or because Noether’s results
were considered to be ‘classical’? The answers to both questions are probably positive, this
paucity of citations being due to several factors.

An early, explicit reference to Noether’s publication is found in the article of Ryoyu
Utiyama (Utiyama 1916–90), then in the department of physics of Osaka Imperial Uni-
versity, ‘On the Interaction of Mesons with the Gravitational Field. I’, which appeared in
Progress of Theoretical Physics (Utiyama 1947), four years before he was awarded the
PhD. His paragraph I begins with the ‘Theory of invariant variation’ for which he cites
both Noether’s 1918 article and page 617 of Pauli’s ‘Relativitätstheorie’ (1921). Following
Noether closely, he proves the first theorem, introducing ‘the substantial variation of any
field quantity’, which he denotes by δ∗ – i.e., what Noether had denoted by δ̄ – and also
treats the case where the dependent variables ‘are not completely determined by [the] field
equations but contain r undetermined functions’. This text dates, in fact, to 1941, as the
author reveals in a footnote on the first page: ‘This paper was published at the meeting[s] of
[the] Physico-mathematical Society of Japan in April 1941 and October 1942, but because of
the war the printing was delayed’. Such a long delay in the publication of this scientific paper
is one example – among many – of the influence of world affairs on science. It appears that
this publication is a link in the chain leading from Noether’s theorems to the development,
by the physicists, of the gauge theories, where the variations of the field variables depend
on arbitrary functions. Episodes in this history, told by Utiyama himself, were published
in Lochlainn O’Raifeartaich’s book (1997), from which we learn that, although Utiyama
published his important paper ‘Invariant Theoretical Interpretation of Interaction’ in the
Physical Review only in 1956, two years after the famous article of Yang and Mills, he had
worked independently and had treated more general cases, showing that gauge potentials
are in fact affine connections. In this paper, Utiyama gave only six references: one is (nec-
essarily) to the publication of Yang and Mills, another is to his own 1947 paper, clearly
establishing the link from his previous work to the present one, and another reference is to
page 621 of Pauli (1921). This time, however, a reference to Pauli serves as a reference to
Noether, so that her name does not appear.

In later developments, in the Soviet Union in 1959, Lev S. Polak published a translation
of Noether’s 1918 article into Russian and, in 1972, Vladimir Vizgin published a historical
monograph whose title, in English translation, is The Development of the Interconnection
between Invariance Principles and Conservation Laws in Classical Physics, in which he
analysed both of Noether’s theorems. At that time, new formulations of Noether’s first
theorem had started to appear with the textbook of Israel M. Gel’fand and Sergeı̆ V. Fomin
on the calculus of variations, published in Moscow in 1961, which contains a modern
presentation of Noether’s first theorem – although not yet using the formalism of jets as
would soon be the case – followed by a few lines about her second theorem. This book
appeared in an English translation two years later. In the 1970s, Gel’fand published several
articles with Mikhael Shubin, Leonid Dikiı̆ (Dickey), Irene Dorfman, and Yuri Manin on the
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‘formal calculus of variations’, not mentioning Noether because they dealt mainly with the
Hamiltonian formulation of the problems, while Manin’s ‘Algebraic Theory of Nonlinear
Differential Equations’ (1978) as well as Boris Kupershmidt’s ‘Geometry of Jet Bundles and
the Structure of Lagrangian and Hamiltonian Formalisms’ (1980) both contain a ‘formal
Noether theorem’, which is a modern, generalised version of her first theorem. A few
years earlier already, in the article ‘Lagrangian Formalism in the Calculus of Variations’
(1976), Kupershmidt had presented an invariant approach to the calculus of variations in
differentiable fibre bundles, and Noether’s first theorem was formulated for the Lagrangians
of arbitrary finite order.

Further research in geometry in Russia yielded new genuine generalisations of the con-
cepts introduced by Noether and of her results. Alexandre Vinogradov (1938–2019), who
had been a member of Gel’fand’s seminar in Moscow, left the Soviet Union for Italy in
1990 and the second part of his career was at the University of Salerno. Beginning in 1975,
Vinogradov, together with Joseph Krasil’shchik – who worked in Moscow, then for several
years in the Netherlands, and again in Moscow at the Independent University – published ex-
tensively on symmetries, at a very general and abstract level, greatly generalising Noether’s
formalism and results, and on their applications, a theory fully expounded in their book
(Krasil’shchik and Vinogradov 1997).

Searching for other lines of transmission of Noether’s results, one finds that in the early
1960s Enzo Tonti (later professor at the University of Trieste) translated Noether’s article
into Italian, but his translation has remained in manuscript. It was transmitted to Franco
Magri in Milan who, in 1978, wrote an article in Italian where he clearly set out the rela-
tion between symmetries and conservation laws for non-variational equations, a significant
development, but he did not treat the case of operators defined on manifolds. In France,
Jean-Marie Souriau (1922–2012) was well aware of ‘les méthodes d’Emmy Noether’ which
he cited as early as 1964, on page 328 of his book, Géométrie et relativité. In 1970, inde-
pendently of Bertram Kostant (1928–2017), Souriau introduced the concept of a momentum
map. The conservation of the momentum of a Hamiltonian action is the Hamiltonian version
of Noether’s first theorem. Souriau called that result ‘le théorème de Noether symplectique’,
although there is nothing Hamiltonian or symplectic in Noether’s article! Souriau’s funda-
mental work on symplectic geometry and mechanics was based on Lagrange, as he himself
claimed, but it was also a continuation of Noether’s theory.

1.13 From General Relativity to Cohomological Physics

The history of the second theorem – the improper conservation laws – belongs to the history
of general relativity. In the literature on the general theory, the improper conservation laws
which are ‘trivial of the second kind’ are called ‘strong laws’, while the conservation laws
obtained from the first theorem are called ‘weak laws’. The strong laws play an important
role in basic papers of Peter G. Bergmann in 1958, of Andrzej Trautman in 1962, and of
Joshua N. Goldberg in 1980. While the second theorem, which explained in which cases
such improper conservation laws would exist, had been known among relativists since
the early 1950s, it became an essential tool in the non-Abelian gauge theories that were
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developed by the mathematical physicists, following the publication of Utiyama’s 1956
paper that generalised the Abelian theory of Yang and Mills (1954) to not necessarily com-
mutative gauge groups.

The identities that were proved by Noether in her second theorem are at the basis of
Jim Stasheff’s ‘cohomological physics’. They appeared already in his lecture at Ascona
(Stasheff 1997). Later, in Stasheff’s article with Ronald Fulp and Thomas Lada (2003),
‘Noether’s Variational Theorem II and the BV Formalism’, Noether’s identities associated
with the infinitesimal gauge symmetries of a Lagrangian theory appear as the antighosts in
the Batalin–Vilkovisky construction for the quantisation of Lagrangians with symmetries.
The validity of Noether’s second theorem is extended to ever more general kinds of sym-
metries, interpreting physicists’ constructions in gauge theories of increasing complexity.

1.14 Have the Noether Theorems Been Generalised?

Whether the Noether theorems have been generalised has a straightforward answer: except
for Bessel-Hagen (and we have seen that his generalisation was certainly suggested and
probably entirely worked out by Noether herself), they were not, until the 1970s. Until
then, the so-called generalisations were all due to physicists and mathematicians who had
no direct knowledge of her article but still thought that they were generalising it, while in
fact they were generalising the truncated and restricted version of her first theorem that had
appeared in Edward L. Hill’s article, ‘Hamilton’s Principle and the Conservation Theorems
of Mathematical Physics’, in 1951.

In the late 1970s and early 1980s, using different languages, both linguistically and
mathematically, Olver in Minneapolis and Vinogradov in Moscow made great advances
in the Noether theory. Equivalence classes were defined for symmetries on the one hand
and for conservation laws on the other, bringing precision to the formulation of Noether’s
results. In order to set up a one-to-one map between symmetries and conservation laws,
it is appropriate to first consider the enlarged class of the divergence symmetries (which
are the infinitesimal transformations that leave the Lagrangian invariant up to a divergence
term, i.e., the concept of symmetry to be found in Bessel-Hagen’s article of 1921). Define a
divergence symmetry of a differential equation to be trivial if its evolutionary representative
vanishes on the solutions of the equation or if its divergence vanishes identically, indepen-
dently of the field equations, and consider the equivalence classes of divergence symmetries
modulo the trivial symmetries. Recall the definition of the trivial conservations laws of
the first and of the second kind and consider the equivalence classes of conservation laws
modulo the trivial ones. Restrict the consideration of Lagrangians to those whose system
of Euler–Lagrange equations is ‘normal’, meaning roughly that the highest-order partial
derivatives of the unknown functions are expressed in terms of all the other derivatives.
Then one can formulate what can be called ‘the Noether–Olver–Vinogradov theorem’ which
took the following form both rigorous and simple, first in the article of Luis Martínez-
Alonso (1979), then in versions of increasing generality, circa 1985: For Lagrangians such
that the Euler–Lagrange equations are a normal system, Noether’s correspondence induces
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a one-to-one map between equivalence classes of divergence symmetries and equivalence
classes of conservation laws.

Concerning the extension to non-variational equations of Noether’s correspondence
between symmetries and conservation laws, we find the early work of Magri (1978), who
showed that, if D is a differential operator and VD is its linearisation, searching for the
restriction of the kernel of the adjoint (VD)∗ of VD to the solutions of D(u) = 0 is an
algorithmic method for the determination of the conservation laws for a possibly non-
variational equation, D(u) = 0. For an Euler–Lagrange operator, the linearised operator
is self-adjoint. Therefore, this result generalises the first Noether theorem. This idea is to
be found later and much developed in the work of several mathematicians, most notably
Vinogradov, Toru Tsujishita, Ian Anderson, and Olver.

Meanwhile, Noether’s theory was being set in the modern language of differential geom-
etry and generalised. Trautman, in his ‘Noether Equations and Conservation Laws’ (1967),
followed by ‘Invariance in Lagrangian Systems’ (1972), was the first to present even a
part of Noether’s article in the language of manifolds, fibre bundles, and, in particular, the
jet bundles that had been defined and studied around 1940 by Charles Ehresmann (1905–
79) and his student Jacques Feldbau (1914–45), and by Norman Steenrod (1910–71). In
1970, Stephen Smale published the first part of his article ‘Topology and Mechanics’ in
which he proposed a geometric framework for mechanics on the tangent bundle of a mani-
fold. Hubert Goldschmidt and Shlomo Sternberg wrote a landmark paper in 1973 in which
they formulated the Noether theory, for first-order Lagrangians, in an intrinsic, geometric
fashion. Jerrold Marsden published extensively on the theory and important applications
of Noether’s correspondence between invariance and conservation, from 1974 until his
death at the early age of 68 in 2010. In the 1970s, several other authors contributed to
the ‘geometrisation’ of Noether’s first theorem, notably Jedrzej Śniatycki, Demeter Krupka,
and Pedro García. The ideas that permitted the recasting of Noether’s theorems in geometric
form and their genuine generalisation were first of all that of smooth differentiable manifold
(i.e., manifolds of class C∞), and then the concept of a jet of order k of a mapping (k ≥ 0)
defined as the collection of the values of the components in a local system of coordinates
of a vector-valued function and of their partial derivatives up to the order k, the concept
of manifolds of jets of sections of a fibre bundle, and finally of jets of infinite order. The
manifold of jets of infinite order of sections of a fibre bundle is not defined directly but as the
inverse limit of the manifold of jets of order k, when k tends to infinity. It was Vinogradov
(1977) who showed that generalised vector fields are nothing other than ordinary vector
fields on the bundle of jets of infinite order of sections of a bundle. Both Lagrangians and
conservation laws then appear as special types of differential forms. The divergence operator
may be interpreted as a horizontal differential, one that acts on the independent variables
only, and thus one obtains a cohomological formulation of Noether’s first theorem. The
study of the exact sequence of the calculus of variations, and of the variational bicomplex,
which constitutes a vast generalisation of Noether’s theory, was developed in 1975 and later
by Włodzimierz Tulczyjew in Warsaw, Paul Dedecker in Belgium, Vinogradov in Moscow,
Tsujishita in Japan, and, in the United States, by Olver (1986b) and by Ian Anderson, as
well as by Kupershmidt (1976, 1980).
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In the discrete versions of the Noether theorems, the differentiation operation is replaced
by a shift operator. The independent variables are now integers, and the integral is replaced
by a sum, L[u] = ∑

n L(n, [u]), where [u] denotes u(n) and finitely many of its shifts.
The variational derivative is expressed in terms of the inverse shift. A pioneer was John
David Logan, who published ‘First Integrals in the Discrete Variational Calculus’ in 1973.
Much more recent advances on the discrete analogues of the Noether theorems, an active
and important field of research, may be found in a series of papers by Peter Hydon and
Elizabeth Mansfield (2001), published since 2001, including a discrete version of the second
theorem.

1.15 Were the Noether Theorems Ever Famous?

Whereas both theorems were analyzed by Vizgin in his 1972 monograph on invariance
principles and conservation laws in classical physics, it appears that the existence of the
first and second theorems in one and the same publication was not expressed in written
form in any language other than Russian before the first edition of Olver’s book in 1986
and his contemporaneous article where ‘Noether’s theorems’ appear in the title. At roughly
the same time, one can find ‘theorems’, in the plural, in a few other publications: in Hans
A. Kastrup’s contribution to Symmetries in Physics (1600–1980), the text of a 1983 com-
munication finally printed in 1987 in this extremely rich collection of essays, and in my
mathematical paper, ‘Sur les théorèmes de Noether’, presented in Marseille-Luminy in
1985 at the ‘Journées relativistes’ organised by André Lichnerowicz, which also appeared
in 1987. Then came David Rowe’s survey (Rowe 1999).

Fame came eventually. I quote from Gregg Zuckerman’s ‘Action Principles and Global
Geometry’ (1987):

E. Noether’s famous 1918 paper, ‘Invariant variational problems’ crystallized essential mathemati-
cal relationships among symmetries, conservation laws, and identities for the variational or ‘action’
principles of physics. … Thus, Noether’s abstract analysis continues to be relevant to contemporary
physics, as well as to applied mathematics.15

Therefore, approximately 70 years after her article had appeared in the Göttingen
Nachrichten, fame came to Noether for this (very small) part of her mathematical œuvre.
In the 20 page contribution of Pierre Deligne and Daniel Freed to the monumental treatise,
Quantum Fields and Strings: A Course for Mathematicians (1999), she was credited not
only with ‘the Noether theorems’ but also with ‘Noether charges’ and ‘Noether currents’.
For as long as gauge theories had been developing, these terms had, in fact, been in the
vocabulary of the physicists, such as Utiyama, Yuval Ne’eman (1999), or Stanley Deser
whose discussion of ‘the conflicting roles of Noether’s two great theorems’ and ‘the physical
impact of Noether’s theorems’ continues to this day in articles (Deser 2019) and preprints.
At the end of the twentieth century, the importance of the concepts she had introduced was

15 Here Zuckerman cites Olver’s book.
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finally recognised, and her name was attached to them by mathematicians and mathematical
physicists alike.

1.16 In Lieu of Conclusion

One can read in a text published as late as 2003 by a well-known philosopher of science that
‘Noether’s theorems can be generalised to handle transformations that depend on the u(n) as
well.’ Any author who had only glanced at Noether’s paper, or read parts of Olver’s book,
would have been aware that Noether had already proved her theorems under that generalised
assumption. This, in fact, is one of the striking and important features of Noether’s 1918
article. Therefore, caveat lector! It is better to read the original than to rely on second-
hand accounts. For my part, I shall not attempt to draw any philosophical conclusions from
what I have sketched here of Noether’s ‘Invariante Variationsprobleme’, its genesis, its
consequences, and its influence, because I want to avoid the mistakes of a non-philosopher,
of the kind that amateurs make in all fields.16

It is clear that Noether was not a proto-feminist. She was not a practicing Jew. Together
with her father, she converted to Protestantism in 1920, which did not protect her from
eventual dismissal from the University of Göttingen by the Nazis. She was not an admirer
of American democracy, and her sympathies were with the Soviet Union. Even though her
1918 work was clearly inspired by a problem in physics, she was never herself a physicist
and did not return to physics in any of her subsequent publications. She never explored the
philosophical underpinnings or outcomes of her work – in a word, she was not a philoso-
pher. She was a generous woman admired by her colleagues and students, and a great
mathematician.

While the Noether theorems derive from the algebraic theory of invariants developed in
the nineteenth century – a chapter in the history of pure mathematics – it is clear from the
testimony of Noether herself that the immediate motivation for her research was a question
that arose in physics, at the time when the new general theory of relativity was emerging –
a fact that she stated explicitly in her 1918 article. The results of this article have indeed
become – in increasingly diverse ways which deserve to be much more fully investigated
than time and space permitted – a fundamental instrument for mathematical physicists. On
the one hand, these results are essential parts of the theories of mechanics and field theory
and many other domains of physical science, and on the other, in a series of mainly separate
developments, her results have been generalised by pure mathematicians to highly abstract
levels, but that was not accomplished in her lifetime. Had she lived longer, she would have
witnessed this evolution and the separate, then re-unified, paths of mathematics and physics,
and we are free to imagine that she would have taken part in the mathematical discoveries
that issued from her 23 page article.

16 For a philosophical outlook, see, e.g., Brading and Brown (2003).
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