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Much current research is concerned with the fixed points of contractive mappings 
(mappings which shrink distance in some manner) from a metric space into itself. 
In this remark we shall point out that most mappings treated in the literature are 
very special in the sense that all these mappings satisfy a condition which is rather 
severe: every periodic point must necessarily be a fixed point. 

We list some of these contractive conditions below. 

(1) (Banach): There is a number a, 0 < a < l such that d(Tx9Ty)<ad(x9y)9 

x9yeX9 

(2) (Rakotch [6]): There exists a decreasing function a(d(x, y)) depending on the 
metric d(x, y)9 0 < a(d(x, y)) < 1, such that d(Tx, Ty) < a(d(x9 y))d(x9 y)9 x9y e X9 

(3) (Boyd and Wong [7]): For x^y9 d(Tx9 Ty)<^(d(x9 y))9 where 0(d) is an 
upper semicontinuous function of the metric d and ip(d)<d for d>0; furthermore 
lim infd_> „ {d- ift(d)} > 0, 

(4) (Meir [5]): Given e>0, there exists A(e)>0 such that d(x,y)>e implies 
d(Tx9 Ty) < d{x9 y) - A(e), 

(5) (Edelstein [3]): d(Tx9 Ty)<d(x9 y) for all x^y9 

(6) (Bailey [1]): For all x^y9 there exists n=n(x9y) such that d(Tnx9T
ny) 

<d(x9y)9 

(7) (Belluce and Kirk [2], [4]): If 3(0(*))>0 then lim^oo KO(Tnx))<8(0(*)), 
where 0{x)={x9 Tx9 T

2x9..., Tnx9...} and S(A) is the diameter of a set A. 
It is obvious that a mapping satisfying any one of (1), (2), (3), and (4) will 

satisfy (5) and in turn, condition (5) implies condition (6). 

DEFINITION. A mapping T:X->X is called non-periodic if x^Tx implies 
x=£Tnxforsdln=l929.... 

We now show that a mapping satisfying any one of the conditions (1) to (7) is a 
nonperiodic mapping. It is sufficient to show this for mappings satisfying condition 
(6) and (7). 

THEOREM 1. A mapping T:X-> X is nonperiodic if it satisfies condition (6): for 
x^y there exist n=n(x9 y) such that 

d(Tnx9 T
ny) < d(x9 y). 
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Proof. Suppose x^Tx and there exists some positive integer K which is the 
smallest such that TKx=x. 

By hypothesis we can choose n±(x) which is the least positive integer such that 
d(x, Tx)>d(Tnix, Tni + 1x). Observe that n±<K and d(Tnix,Tni + 1x)>0.Indeed, 
if nx>K, then n1 = rK+q where r,q are positive integers, 0<q<K<n1\ con­
sequently 

d(x9 Tx) > d(Tnix, Tn* + 1x) = d(Tqx9 Tq + 1x)9 

contradicting minimality of nx. Also, if d(Tnix9 Tni + 1x) = 09 then Tnix=Tni + 1x, 
hence Tni+(K~ni)x=Tni + 1+iK~'ni)x, i.e. x=Tx, contradicting our assumption on x. 

Now since d(Tnix, r n i + 1jc)>0, we can select n2(x) as the smallest positive 
integer such that 

d(Tnix, Tni + 1x) > d(Tn*x, Tn* + 1x). 

The same argument as above is used to deduce that n2 < K and d(Tn*x9 Tn*+ xx) > 0. 
Proceeding in this manner, we can find a sequence {nt} of positive integers such 

that rii<K and 

d(x9y) > d(Tnix, Tni + 1x) > d(Tn2x9 Tn*+1) > . . . . 

But then there must be two indices, say i>j such that n{ = nj9 since rii<K, 
i = l , 2 , . . . . This is a contradiction, for then d(TnJx9 Tni + 1x) = d(Tnix9 Tni + 1x). 

THEOREM 2. A mapping T. X-> X is nonperiodic if it satisfies condition (7): // 
h(O(x))>0 then 

lim S(0(Tnx)) < 8(0(JC)). 
n-»co 

Proof. We first note that S(O(x))>0 if and only if x^=Tx. Also, by definition of 
0(x), 

KO(x)) > 8(0(7*)) >•••> S(0(Tnx)) >•> lim B(0(Tnx)). 
n-+ oo 

Suppose x^Tx, then by hypothesis we have 

8(0(JC)) > lim S(0(Tnx)). 
n->co 

Hence there is an N such that 8(0(x))>S(0(TNx))9 so we have 0(x)^0(TNx). 
This implies that x £ 0(TNx), i.e. x^TNx, TN + 1x9.... 

Finally, it is impossible that x=Tmx for m<N. For if so, let p>0 be an integer 
such that m divides N+p, then x = TN + px9 contradicting the argument in the 
previous paragraph. 
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