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We characterize Fredholmness of Toeplitz operators acting on generalized Fock
spaces of the n-dimensional complex space for symbols in the space of vanishing
mean oscillation VMO. Our results extend the recent characterizations for Toeplitz
operators on standard weighted Fock spaces to the setting of generalized weight
functions and also allow for unbounded symbols in VMO for the first time. Another
novelty is the treatment of small exponents 0 < p < 1, which to our knowledge has
not been seen previously in the study of the Fredholm properties of Toeplitz
operators on any function spaces. We accomplish this by describing the dual of the
generalized Fock spaces with small exponents.
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1. Introduction

The Fock space (also known as the Segal–Bargmann space) consists of all holomor-
phic functions in the n-dimensional complex Euclidean space Cn square-integrable
with respect to the Gaussian measure exp(−|z|2) dv, where dv is the Lebesgue mea-
sure on Cn. It plays an important role in many areas of analysis and its applications,
especially in quantum mechanics. Its study is genuinely different from other func-
tion spaces, such as the Hardy space of the unit circle or the Bergman space of the
unit ball, and features unique phenomena that require a distinct set of tools and
techniques. Some of these applications arise from the theory of operators, such as
Toeplitz and Hankel operators, and there is currently considerable interest in the
study of these operators on the Fock space and its generalizations, which illustrates
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the fruitful interplay between geometry, function theory of several complex variables
and functional analysis; see [18].

Indeed, relatively recently, Schuster and Varolin [15] began the study of Toeplitz
operators Tf with symbol f on generalized Fock spaces F p

ϕ of Cn with respect to the
measure exp(−pϕ) dv, where the weight function ϕ is of C2 with ddcϕ comparable
to the Euclidean Kähler form. When n = 1, this simply means that m � Δϕ �
M for some positive constants m and M . Their results characterize boundedness
and compactness of Tμ in terms of the so-called Carleson and vanishing Carleson
conditions for symbols that are positive measures. This was followed by the work [6]
of Lv and one of the present authors, in which similar characterizations are given
for bounded and compact Toeplitz operators between possibly different Fock spaces
F p

ϕ and F q
ϕ, covering the full range of parameters 0 < p, g <∞ and also symbols of

bounded mean oscillation when p = q. For further results and recent developments
in the study of operators and operator algebras on these function spaces, we refer
to the papers [8,9] and the references therein.

The goal of the present paper is to study the Fredholm properties of Toeplitz
operators Tf on generalized Fock spaces in terms of the Berezin transform of f
at infinity for symbols of vanishing mean oscillation. Fredholm theory of Toeplitz
operators originated in the works of Coburn, Douglas, Gohberg and Krupnik in the
late 1960s, and it is closely connected with (singular) integral operators, Hankel
operators and the theory of function spaces, such as Hardy, Bergman and Fock
spaces.

In the late 1980s, Berger and Coburn [3], who were the first to study Fredholm
Toeplitz operators on the Fock space F 2, showed that for f ∈ L∞ ∩ VMO, the
Toeplitz operator is Fredholm if and only if there are positive numbers R and ε
such that |f(z)| � ε whenever |z| > R. Their approach was based on C∗-algebra
techniques and Hilbert space methods, which they used to obtain isomorphic rep-
resentations as quotients of function algebras for the image in the Calkin algebra
generated by Toeplitz operators with symbols in L∞ ∩ VMO. A few years later,
Stroethoff [16] obtained the same characterization using methods more suited
to operators on Banach spaces. Indeed, very recently, the Fredholm theory was
extended to the setting of standard weighted Fock spaces F p

α for 1 < p <∞ in [2]
(in the one-dimensional setting) using similar ideas and elementary methods and
in [4] using newly developed limit operator techniques. It is worth noting that
analogous characterizations are well known in Hardy spaces of the unit circle for
symbols in the Douglas algebra C +H∞ and in Bergman spaces of the unit ball
for symbols in the algebra L∞ ∩ VMO.

In the present paper, we prove that the Toeplitz operator Tf with f ∈ VMO is
Fredholm on the generalized Fock space F p

ϕ with 0 < p <∞ if and only if

0 < lim inf
|z|→∞

|f̃(z)| and lim sup
|z|→∞

|f̃(z)| <∞, (1.1)

where f̃ is the Berezin transform of the symbol f . Our result covers Berger and
Coburn’s characterization and its recent generalizations to standard weighted Fock
spaces F p

α. Another important feature of our analysis is the discovery of the second
inequality in (1.1), which allows us to treat Toeplitz operators with all symbols
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in VMO, in contrast to the previous results, which are all restricted to bounded
symbols in VMO. Finally, we emphasize that our results remain valid for any
parameter 0 < p <∞, which to our knowledge is a novelty in the study of the
Fredholm properties of Toeplitz operators on any function space. For this reason,
we also provide an account of the theory of Fredholm operators on quasi-Banach
spaces in § 4 and show that the dual of F p

ϕ with 0 < p < 1 can be identified with
F∞

ϕ ; the dual spaces of the other generalized Fock spaces F p
ϕ with 1 � p � ∞ were

described in [15] while the treatment of the standard weighted Fock spaces can be
found in [10,17]. This will likely stimulate new interest and research activity in
the study of operators on these and other small exponent function spaces.

In what follows, we first introduce basic background material that is essential to
the rest of the paper. In § 3, we discuss some more advanced preliminary results,
such as characterizations of boundedness and compactness of Toeplitz and Hankel
operators in terms of functions of bounded and vanishing oscillation and the Berezin
transform. In § 4, we recall the basic Fredholm theory both in the Banach and quasi-
Banach space settings, describe the dual of F p

ϕ for 0 < p < 1 and then proceed to
prove our main result (theorem 4.5). We conclude the paper with a list of open
problems related to our work and other important questions about Toeplitz and
Hankel operators on Fock spaces.

2. Notation and definitions

In this section, we define the generalized Fock spaces, Toeplitz and Hankel
operators, the spaces of mean oscillation, and their close relatives.

Let Cn be the n-dimensional complex Euclidean space. For z = (z1, . . . , zn) and
w = (w1, . . . , wn) in Cn, we write

(z, w) = z1w1 + · · · + znwn

and |z| =
√

(z, z). We denote by B(z, r) the Euclidean ball in Cn, that is,

B(z, r) = {w ∈ Cn : |w − z| < r} .

We write ω0 = ddc|z|2 for the Euclidean Kähler form on Cn, where dc =
√−1

4 (∂ −
∂). Throughout the paper, we assume that ϕ ∈ C2(Cn) is real-valued and

ddcϕ � ω0, (2.1)

that is, there are two positive numbers M1,M2 satisfying the two inequalities

M1ω0 � ddcϕ � M2ω0 (2.2)

in the sense of currents; see [15] for more details. For 0 < p <∞, the space Lp
ϕ

consists of all Lebesgue measurable functions f on Cn for which

‖f‖p,ϕ =
(∫

Cn

∣∣∣f(z)e−ϕ(z)
∣∣∣p dv(z)

)1/p

<∞,

where v is the Lebesgue volume measure on Cn. With the norm ‖·‖p,ϕ, it is easy
to check that Lp

ϕ is a Banach space when p � 1 and a quasi-Banach space when
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0 < p < 1 (see definition 4.1). We denote by L∞ the usual space of all bounded
Lebesgue measurable functions f on Cn with the norm given by

‖f‖∞ = sup
z∈Cn

|f(z)| <∞.

Finally, we denote by H(Cn) the family of all holomorphic functions on Cn. We
can now define the weighted Fock spaces.

Definition 2.1. For 0 < p <∞, the Fock space with weight ϕ is defined by

F p
ϕ = Lp

ϕ ∩H(Cn).

It is well known that each F p
ϕ is a closed subspace of Lp

ϕ, and hence it is a Banach
space when p � 1 and a quasi-Banach space when 0 < p < 1.

Functions of bounded and vanishing mean oscillation, which we will define next,
play an important role in our analysis, and can be used to characterize boundedness
and compactness of large classes of Toeplitz and Hankel operators. The mean oscil-
lation MOp

r (f) of a locally integrable function f on Cn for r > 0 and 1 � p <∞ is
defined by

MOp
r (f)(z) =

(
1

v(B(z, r))

∫
B(z,r)

|f(w) − f̂r(z)|p dv(w)

)1/p

where the averaging function f̂r is given by

f̂r(z) =
1

v(B(z, r))

∫
B(z,r)

f(w) dv(w).

Definition 2.2. Let 1 � p <∞. The space of functions of bounded mean oscilla-
tion BMOp consists of all f in L1

loc for which

‖f‖BMOp = sup
z∈Cn

MOp
r (f)(z) <∞

for some r > 0. The space of functions of vanishing mean oscillation VMOp is a
subspace of all f in BMOp for which

lim
z→∞MOp

r (f)(z) = 0

for some r > 0.

To describe the structure of both BMO and VMO, we define the following
related function spaces.
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Definition 2.3. The space BO of functions of bounded oscillation consists of all
continuous functions f on Cn for which

ωr(f)(·) = sup
w∈B(·,r)

|f(w) − f(·)| ∈ L∞

for some r > 0. Set ‖f‖BO = supz∈Cn ωr(f)(z). The space V O of functions of
vanishing oscillation consists of those f ∈ BO for which

lim
z→∞ωr(f)(z) = 0

for some r > 0.

Definition 2.4. Let 1 � p <∞. The space of functions of bounded average
BAp consists of f ∈ L1

loc for which ‖f‖BAp = supz∈Cn |̂f |pr(z) <∞. The space
V Ap of functions of vanishing average consists of those f ∈ BAp satisfying
limz→∞ |̂f |pr(z) = 0.

For 1 � p <∞, the spaces BMOp, VMOp, BO, V O, BAp and V Ap are all
independent of r, and different values of r correspond to equivalent semi-norms on
BMOp, BO and BAp. For this reason, we write ω(·) for ω1(·). We also note that
BMOp, VMOp, BAp and V Ap are properly contained in BMOq, VMOq, BAq

and V Aq, respectively, if q < p.
Other useful and well-known properties of these spaces are seen in the following

two canonical decompositions

BMOp = BO +BAp (2.3)

and

VMOp = V A+ V Ap (2.4)

which hold for 1 � p <∞ and are obtained by writing

f = f̂r + (f − f̂r) or f = f̃ + (f − f̃).

Let K(·, ·) be the reproducing kernel (also known as the Bergman kernel) of F 2
ϕ.

The orthogonal projection P of L2
ϕ onto F 2

ϕ can be represented as the integral
operator

Pf(z) =
∫

Cn

f(w)K(z, w) e−2ϕ(w) dv(w)

for z ∈ Cn. Using this expression, P can be extended to a bounded linear operator
from Lp

ϕ to F p
ϕ for 1 � p <∞, and in particular, we have

Pf = f (2.5)

for all f ∈ F p
ϕ, which was verified for 1 � p � ∞ in [15], and the other case 0 < p < 1

follows from the fact that F p
ϕ ⊂ F 1

ϕ. The normalized reproducing kernel of F 2
ϕ is
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denoted by kz, that is,

kz(·) =
K(·, z)√
K(z, z)

.

We set

span {kz : z ∈ Cn} =

⎧⎨⎩
m∑

j=1

ajkzj
: aj ∈ C, zj ∈ Cn,m ∈ N

⎫⎬⎭ .

As we have not found the following density result in the literature in the case
0 < p < 1, we include its proof for completeness. Recall first that a sequence (zk)
in Cn is an r-lattice with r > 0 if the balls B(zk, r) cover Cn and B(zk, r/2) are
pairwise disjoint. It is not difficult to see that for any r > 0, an r-lattice exists in
Cn and there is an N ∈ N such that each z ∈ Cn can belong to at most N balls in
{B(zk, 2r)}; that is,

1 �
∞∑

k=1

χB(zk,2r)(z) � N.

Proposition 2.5. For 0 < p <∞, span{kz : z ∈ Cn} is dense in F p
ϕ.

Proof. Write Kz(w) for K(w, z) and let S = {Kz : z ∈ Cn}. Suppose that 1 � p <
∞. If S is not dense in F p

ϕ, then, using the duality (F p
ϕ)∗ = F q

ϕ, we have a nonzero
function g ∈ F q

ϕ, where 1/p+ q/q = 1, such that

〈Kz, g〉 =
∫

Cn

K(ξ, z)g(ξ) e−2ϕ(ξ) dv(ξ) = 0.

which is a contradiction.
Suppose next that 0 < p < 1 and let f ∈ F p

ϕ. By (2.5) and lemma 2.4 of [9], there
exists a constant C > 0 such that

‖f − P (fχB(0,R))‖p
p,ϕ

=

∥∥∥∥∥
∫

Cn\B(0,R)

f(ξ)K(z, ξ) e−2ϕ(ξ) dv(ξ)

∥∥∥∥∥
p

p,ϕ

� C

∫
Cn

e−pϕ(z) dv(z)
∫

Cn\B(0,R−1)

|f(ξ)K(ξ, z)|p e−2pϕ(ξ) dv(ξ)

= C

∫
Cn\B(0,R−1)

|f(ξ)|p e−pϕ(ξ) dv(ξ)
∫

Cn

|K(ξ, z)|p e−pϕ(z) e−pϕ(ξ) dv(ξ)

� C

∫
Cn\B(0,R−1)

|f(ξ)|p e−pϕ(ξ) dv(ξ) −→ 0

as R→ ∞. This means

lim
R→∞

‖f − P (fχB(0,R))‖p
p,ϕ = 0. (2.6)
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Now for an r-lattice {z(r)
j } of Cn, set

Bj,r = B(z(r)
j , r)

∖
j−1⋃
k=1

B(z(r)
k , r)

and define

Sr,Rf(w) =
∑

j

K(w, z(r)
j )
∫

Bj,r∩B(0,R)

f(ξ) e−2ϕ(ξ) dv(ξ) (2.7)

for w ∈ Cn. Then, as in the proof of theorem 4.4 of [7], it follows that Sr,Rf ∈ S
and

‖Sr,Rf − P (fχB(0,R)‖p,ϕ −→ 0 (2.8)

as r → 0. Thus, S is dense in F p
ϕ. �

Definition 2.6. Let Γ be the family of all measurable functions f on Cn satisfying
fkz ∈ ∪p�1L

p
ϕ for each z ∈ Cn. Given some f ∈ Γ, we define the Toeplitz operator

Tf and Hankel operator Hf on F p
ϕ as

Tf (g) = P (fg)

and

Hgf = (I − P )(gf)

respectively, where I is the identity operator on Lp
ϕ.

Observe that, since BMO1 is contained in Γ, it follows from proposition 2.5 that
both Tf and Hf are well-defined on F p

ϕ for 0 < p <∞ when f ∈ BMO1.
We finish the section with the definition of the Berezin transform, which is another

useful tool for studying the properties of Toeplitz and Hankel operators, and indeed,
we will use it heavily in our present work. For a function f in Γ, the Berezin
transform f̃ of f is defined by

f̃(z) = 〈fkz, kz〉 =
∫

Cn

|kz(w)|2f(w) dv(w)

for z ∈ Cn.

3. Preliminaries

Because the Bergman kernel of the generalized Fock space F p
ϕ has no explicit expres-

sion, we need to rely on the following estimates instead. The first inequality is due
to Christ in the case n = 1 and to Delin when n � 2; for further details, references
and an alternate proof, see [15].

Lemma 3.1. The Bergman kernel K(·, ·) for F 2
ϕ satisfies the following properties.
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(i) There exist positive numbers C and θ such that

|K(z, w)| e−ϕ(z) e−ϕ(w) � C e−θ|z−w| for z, w ∈ Cn. (3.1)

(ii) There exists some r > 0 such that

|K(z, w)| e−ϕ(z) e−ϕ(w) � 1 whenever w ∈ B (z, r) and z ∈ Cn. (3.2)

(iii) For 0 < p � ∞,

‖K(·, z)‖p,ϕ � eϕ(z) �
√
K(z, z) for z ∈ Cn. (3.3)

The meaning of the notation � above is explained in (2.2).

We can use the preceding lemma to obtain the following connection between
functions of vanishing oscillation and their Berezin transform.

Lemma 3.2. Let f ∈ V O. Then

lim
z→∞

(
f − f̃

)
(z) = 0. (3.4)

Furthermore, we have f − f̃ ∈ L∞ ∩ V O and

lim
z→∞

˜(
f − f̃

)
(z) = 0. (3.5)

Proof. Given ε > 0, by lemma 3.1, we have some R > 0 such that, for all z ∈ Cn,∫
Cn\B(z,R)

|ξ − z||kz(ξ)|2 e−2ϕ(ξ) dv(ξ) < ε. (3.6)

Since f ∈ V O, there is some ρ > 0 such that

sup
ξ∈B(z,R)

|f(ξ) − f(z)| < ε.

whenever |z| > ρ. Notice that
∫

Cn |kz(ξ)|2 e−2ϕ(ξ) dv(ξ) = 1. Thus, for |z| > ρ,∣∣∣f − f̃
∣∣∣ (z) �

∫
Cn

|f(z) − f(ξ)| |kz(ξ)|2 e−2ϕ(ξ) dv(ξ)

�
{∫

BR(z)

+
∫

Cn\BR(z)

}
|f(z) − f(ξ)| |kz(ξ)|2 e−2ϕ(ξ) dv(ξ)

� ε+ ‖f‖BO

∫
Cn\BR(z)

|z − ξ| |kz(ξ)|2 e−2ϕ(ξ) dv(ξ)

� (1 + ‖f‖BO) ε,

which gives (3.4).
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Next we show that f̃ is continuous on Cn. Indeed, for ε > 0, we can choose R as
in (3.6), and then by lemma 3.1 and Lebesgue’s dominated theorem, it follows that

lim
w→z

∫
BR(w)

|kw(ξ)|2 e−2ϕ(ξ) dv(ξ) =
∫

BR(z)

|kz(ξ)|2 e−2ϕ(ξ) dv(ξ).

Therefore,

|f̃(w) − f̃(z)| �
∣∣∣∣∣
∫

BR(w)

|kw(ξ)|2 e−2ϕ(ξ) dv(ξ) −
∫

BR(z)

|kz(ξ)|2 e−2ϕ(ξ) dv(ξ)

∣∣∣∣∣
+ 2ε < 3ε

provided that |z − w| is sufficiently small. Thus, f − f̃ is bounded on any compact
subset of Cn. This and (3.4) imply that f − f̃ ∈ L∞ ∩ V O. Using f − f̃ ∈ L∞ and
(3.4), we have (3.5). The proof is now completed. �

Recall that an operator T : X → Y between two normed spaces is said to be
compact if for every bounded sequence (fn) in X, the sequence (Tfn) contains a
convergent subsequence. When studying Toeplitz and Hankel operators, the equiv-
alent formulation of compactness as the property that the image of the unit ball of
X under T is relatively compact in Y is useful. Another useful simple observation
is that Tf and Hf are compact if f has compact support.

As a consequence of the previous lemma and a general description of compact
Toeplitz operators in [9], we obtain the following characterization for symbols of
vanishing oscillation.

Theorem 3.3. Let 0 < p <∞ and f ∈ V O. Then

(i) The Toeplitz operator Tf is compact on F p
ϕ if and only if limz→∞ f̃(z) = 0.

(ii) Tf−f̃ is compact on F p
ϕ.

Proof. We deduce the two assertions from theorem 3.2 of [9], which states that the
Toeplitz operator Tf with f ∈ BMO is compact on F p

ϕ if and only if

lim
z→∞ sup

w∈B(z,r)

|〈Tfkw, kz〉F 2
ϕ
| = 0 (3.7)

for all r > 0.
Suppose that f ∈ V O. To prove the first assertion, we only need to verify

(3.7) under the assumption that limz→∞ f̃(z) = 0. To see this, let ε > 0 and use
lemma 3.2 to obtain an R > 0 such that

|(f − f̃)(ξ)| < ε and |f̃(ξ)| < ε
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for |ξ| > R. It follows that |f(ξ)| < 2ε whenever |ξ| > R, and therefore, for w ∈
B(z, r), by lemma 3.1, we get

||〈Tfkw, kz〉F 2
ϕ
|

=
∣∣∣∣∫

Cn

f(ξ)kw(ξ)kz(ξ) e−2ϕ(ξ) dv(ξ)
∣∣∣∣

�
{∫

Cn\B(0,R)

+
∫

B(0,R)

}
|f(ξ)||kw(ξ)||kz(ξ)| e−2ϕ(ξ) dv(ξ)

� 2ε+ sup
|ξ|�R

|f(ξ)| e−2θ(|z|−R−r)

� 3ε

when |z| is sufficiently large. From this the estimate (3.7) follows.
To prove the second assertion, we set g = f − f̃ . Then, by lemma 3.2, we have g ∈

L∞ and limz→∞ g̃(z) = 0. Thus, the condition in (3.7) implies that Tg is compact
on F p

ϕ for all 0 < p <∞, which completes the proof. �

We need one more preliminary result on Toeplitz operators.

Lemma 3.4. Let 0 < p <∞ and let f ∈ V O. If zj ∈ Cn,

lim
j→∞

zj = ∞, lim
j→∞

f(zj) = 0,

then

lim
k→∞

‖Tf (kzj
)‖p,ϕ = 0. (3.8)

Proof. For 0 < p < s <∞, there is a constant C such that ‖f‖s,ϕ � ‖f‖p,ϕ for all
f ∈ H(Cn); see [15]. We may therefore assume that 0 < p � 1.

Let ε > 0. Since f ∈ V O, lemma 3.1 implies that there is an R > 1 such that∫
Cn\B(z,R)

|ξ − z|p|kz(ξ)|p e−pϕ(ξ) dv(ξ) �
(

ε

2‖f‖BO + 1

)p

for all z ∈ Cn. Furthermore, for the fixed ε and R, we have some ρ > 0 so that

sup
ξ∈B(z,R)

|f(ξ) − f(z)| < ε

whenever |z| > ρ. Then for |zj | > ρ, by lemma 2.4 of [9], we get∫
Cn

{∫
Cn

|f(ξ) − f(zj)| |kzj
(ξ)||K(ξ, z)| e−2ϕ(ξ) dv(ξ)

}p

e−pϕ(z) dv(z)

� C

∫
Cn

e−pϕ(z) dv(z)
∫

Cn

|f(ξ) − f(zj)|p |kzj
(ξ)|p|K(ξ, z)|p e−2pϕ(ξ) dv(ξ)
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= C

∫
Cn

|f(ξ) − f(zj)|p |kzj
(ξ)|p e−2pϕ(ξ) dv(ξ)

∫
Cn

|K(ξ, z)|p e−pϕ(z) dv(z)

= C

∫
Cn

|f(ξ) − f(zj)|p |kzj
(ξ)|p e−pϕ(ξ) dv(ξ)

� C

(
εp
∥∥kzj

∥∥p

p,ϕ
+ 2‖f‖p

BO

∫
Cn\B(zj ,R)

|ξ − zj |p |kzj
(ξ)|p e−pϕ(ξ) dv(ξ)

)
� Cεp.

The constants C above are independent of ε. This, together with lemma 3.5 and
the obvious inequality

∣∣Tf (kzj
)(z)
∣∣ � ∫

Cn

(|f(ξ) − f(zj)| + |f(zj)|) |kzj
(ξ)|K(ξ, z)| e−2ϕ(ξ) dv(ξ),

gives

lim sup
j→∞

∥∥Tf (kzj
)
∥∥p

p,ϕ
� Cεp + lim sup

j→∞
|f(zj)|p

∥∥P+(|kzj
|∥∥p

p,ϕ
= Cεp,

which gives the limit in (3.8). �

Relative to the Bergman projection, we define an integral operator P+ by setting

P+f(z) =
∫

Cn

f(ξ)|K(z, ξ)| e−2ϕ(ξ) dv(ξ)

for z ∈ Cn.

Lemma 3.5. The operator P+ defined above has the following properties.

(i) For 1 � p � ∞, P+ is bounded on Lp
ϕ.

(ii) For 0 < p < 1, P+ is bounded from F p
ϕ to Lp

ϕ.

Proof. We start with the first assertion. For f ∈ L1
ϕ, by lemma 3.1, we have

‖P+(f)‖1,ϕ =
∫

Cn

∣∣∣∣∫
Cn

f(ξ)|K(z, ξ)| e−2ϕ(ξ) dv(ξ)
∣∣∣∣ e−ϕ(z) dv(z)

�
∫

Cn

|f(ξ)| e−2ϕ(ξ) dv(ξ)
∫

Cn

|K(z, ξ)| e−ϕ(z) dv(z)

�
∫

Cn

|f(ξ)| e−ϕ(ξ) dv(ξ)
∫

Cn

e−θ|ξ−z| dv(z)

� C‖f‖1,ϕ
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and further

‖P+(f)‖∞,ϕ = sup
z∈Cn

∣∣∣∣∫
Cn

f(ξ)|K(z, ξ)| e−2ϕ(ξ) dv(ξ)
∣∣∣∣ e−ϕ(z)

� ‖f‖∞,ϕ sup
z∈Cn

∫
Cn

|K(z, ξ)| e−ϕ(ξ) e−ϕ(z) dv(ξ)

� C‖f‖∞,ϕ.

By interpolation, we obtain the desired conclusion.
For the second assertion, let f ∈ H(Cn). Applying lemma 2.4 of [9] with Ω = Cn

and h = fK(·, z), we have

|P+(f)(z)|p �
(∫

Cn

|f(ξ)K(ξ, z)| e−2ϕ(ξ) dv(ξ)
)p

�
∫

Cn

|f(ξ)K(ξ, z)|p e−2pϕ(ξ) dv(ξ).

Therefore,

‖P+(f)‖p
p,ϕ �

∫
Cn

(∫
Cn

|f(ξ)K(ξ, z)|p e−2pϕ(ξ) dv(ξ)
)

e−pϕ(z) dv(z)

�
∫

Cn

|f(ξ)|p e−2pϕ(ξ) dv(ξ)
∫

Cn

|K(ξ, z)|p e−pϕ(z) dv(z)

�
∫

Cn

|f(ξ)|p e−pϕ(ξ) dv(ξ),

which completes the proof. �

As is well known, Hankel operators play an important role in the study Toeplitz
operators and their spectral properties, and in particular we make use of compact
Hankel operators to prove our main result on Fredholmness of Toeplitz operators.
To show that Hankel operators with symbols of vanishing oscillation are compact
(see theorem 3.8 below, which is also of independent interest), we need the following
auxiliary result.

Lemma 3.6. Let 0 < p <∞. If f is continuous on Cn with compact support, then
Hf is compact from F p

ϕ to Lp
ϕ.

Proof. Write B(F p
ϕ) for the unit ball of F p

ϕ. Observe that B(F p
ϕ) is a normal family.

Therefore, to show that Hf (B(F p
ϕ)) is relatively compact in Lp

ϕ, it suffices to prove
that

lim
j→∞

‖Hf (gj)‖p,ϕ = 0 (3.9)

for any bounded sequence {gj}∞j=1 in F p
ϕ converging to 0 uniformly on any compact

subset of Cn. Also, without loss of generality, we may assume that the support of
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f is contained in B(0, σ). For such f , we have

|Hf (g)(z)| �
∫

B(0,σ)

|f(ξ) − f(z)||g(ξ)||K(z, ξ)| e−2ϕ(ξ) dv(ξ)

� 2‖f‖∞
∫

B(0,σ)

|g(ξ)||K(z, ξ)| e−2ϕ(ξ) dv(ξ).

Hence, for 1 � p <∞,

|Hf (gj)(z)| � 2‖f‖∞P+(χB(0,σ)|gj |),

and so, by lemma 3.5, we have

‖Hf (gj)‖p,ϕ � C‖f‖∞‖χB(0,σ)gj‖p,ϕ. (3.10)

For 0 < p � 1, using lemma 2.4 of [9] with Ω = B(0, σ) and h(ξ) = g(ξ)K(ξ, z), we
get

|Hf (g)(z)|p � C‖f‖p
∞

∫
B(0,σ+1)

|g(ξ)|p|K(z, ξ)|p e−2pϕ(ξ) dv(ξ).

According to lemma 3.1,

‖Hf (gj)‖p,ϕ � C‖f‖∞‖χB(0,σ+1)gj‖p,ϕ. (3.11)

Since the constants C above in (3.10) and (3.11) are independent of {gj}, the limit
in (3.9) follows for those {gj} which converge to 0 uniformly on any compact subset
of Cn. The proof is complete. �

The simultaneous compactness of the Hankel operators Hf and Hf̄ from the
setting of the standard weighted Fock spaces F p

α was recently described in [12] as
follows.

Theorem 3.7. Let 1 � p <∞ and f ∈ Γ.

(i) The Hankel operators Hf and Hf̄ are both bounded from F p
ϕ to Lp

ϕ if and only
if f ∈ BMOp with

‖Hf‖ + ‖Hf̄‖ � ‖f‖BMOp .

(ii) The Hankel operators Hf and Hf̄ are both compact from F p
ϕ to Lp

ϕ if and only
if f ∈ VMOp.

Proof. See theorem 1.2 of [12]. �

We can now give sufficient conditions for boundedness and compactness of Hankel
operators, which are needed for the study of the Fredholm properties of Toeplitz
operators.

Theorem 3.8. Let 0 < p <∞.

https://doi.org/10.1017/prm.2019.65 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.65


3176 Z. Hu and J. A. Virtanen

(i) If f ∈ BO, then Hf is bounded from F p
ϕ to Lp

ϕ and the following norm estimate
holds:

‖Hf‖F p
ϕ→Lp

ϕ
� C‖f‖BO.

(ii) If f ∈ V O, then Hf is compact from F p
ϕ to Lp

ϕ.

Proof. When 1 � p <∞, the two assertions follow from the previous theorem using
the decompositions in (2.3) and (2.4).

Suppose next that 0 < p < 1 and f ∈ BO. Write ξ = (ξ1, ξ2, . . . , ξn) and z =
(z1, z2, . . . , zn). Then |ξ − z| �∑n

j=1 |ξj − zj |, and for g ∈ F p
ϕ and z ∈ Cn, we have

|Hf (g)(z)| �
∫

Cn

|f(ξ) − f(z)||g(ξ)||K(z, ξ)| e−2ϕ(ξ) dv(ξ)

� C‖f‖BO

∫
Cn

(|ξ − z| + 1) |g(ξ)||K(z, ξ)| e−ϕ(ξ) dv(ξ)

� C‖f‖BO

∫
Cn

⎛⎝ n∑
j=1

|ξj − zj | + 1

⎞⎠ |g(ξ)||K(z, ξ)| e−2ϕ(ξ) dv(ξ).

Applying lemma 2.4 of [9] to the holomorphic functions ψj(ξ) = (ξj −
zj)g(ξ)K(ξ, z), it follows that∣∣∣∣∫

Cn

|(ξj − zj)g(ξ)K(ξ, z)| e−2ϕ(ξ) dv(ξ)
∣∣∣∣p

� C

∫
Cn

|(ξj − zj)g(ξ)K(ξ, z)|p e−2pϕ(ξ) dv(ξ)

for z ∈ Cn. Similarly,∣∣∣∣∫
Cn

|g(ξ)K(ξ, z)| e−2ϕ(ξ) dv(ξ)
∣∣∣∣p � C

∫
Cn

|g(ξ)K(ξ, z)|p e−2pϕ(ξ) dv(ξ)

for z ∈ Cn. Therefore,∫
Cn

|Hf (g)(z)|p e−pϕ(z) dv(z)

� C‖f‖BO

∫
Cn

e−pϕ(z) dv(z)
∫

Cn

(|ξ − z|p + 1) |g(ξ)|p|K(z, ξ)|p e−2pϕ(ξ) dv(ξ)

= C‖f‖BO

∫
Cn

|g(ξ)|p e−2pϕ(ξ) dv(ξ)
∫

Cn

(|ξ − z|p + 1) |K(z, ξ)|p e−pϕ(z) dv(z)

� C‖f‖BO‖g‖p
p,ϕ,

which gives the first assertion for 0 < p < 1.
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For the second assertion, suppose that f ∈ V O. For any ε > 0, we claim that
there exists some h ∈ C(Cn) with compact support such that

‖f − h‖BO < ε. (3.12)

Since f ∈ V O, there is an r > 0 such that ω(f)(z) < ε whenever |z| � r. For such
z, we have ∣∣∣∣f(z) − f

(
r

|z|z
)∣∣∣∣ < ε (1 + (|z| − r))

and so

|f(z)| < sup
|ξ|=r

|f(ξ)| + ε(|z| + 1).

Dividing the both sides above by |z|, we obtain an R > r + 2 such that

|f(z)|
|z| < 2ε (3.13)

whenever |z| � R− 2. Set

s(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 0 � |z| < R;
1
R

(2R− |z|) R � t < 2R;

0, |z| � 2R.

Then ω(s) � 1/R. Define h(z) = f(z)s(z). For |z| � R− 1, ω(f − h)(z) = 0.
For |z| � 2R+ 1, ω(f − h)(z) = ω(f)(z) < ε. For R− 1 < |z| < 2R+ 1 and w ∈
B(z, 1), using (3.13), we get

|(f(z) − h(z)) − (f(w) − h(w))|
� |f(w)| |s(|w|) − s(|z|)| + (1 − s(|z|)) |f(w) − f(z)|

� |f(w)|ω(s)(|z|) + ω(f)(z) � |f(w)| 1
R

+ ω(f)(z)

=
|f(w)|
|w|

|w|
R

+ ω(f)(z) � 2ε
2R+ 2
R

+ ε < 7ε.

This completes the proof of the inequality in (3.12). Therefore, by the first assertion,

‖Hf −Hh‖F p
α→Lq

α
� C‖f − h‖BO < Cε.

Since h has compact support, Hh is compact from F p
ϕ to Lp

ϕ, and hence Hf is also
compact from F p

ϕ to Lp
ϕ. The proof is completed. �
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4. Fredholm theory

In this section, we prove that (1.1) is a necessary and sufficient condition for Toeplitz
operators with symbols in VMO to be Fredholm and discuss some of the conse-
quences of this result. We also show that the dual of F p

ϕ can be identified with F∞
ϕ

when 1 < p < 1, which allows us to deal with Fredholmness of Toeplitz operators
on Fock spaces with small exponents.

We start by recalling some of the basic theory of Fredholm operators that are
needed in our proof. For operators on Banach spaces, all is well known and can
be easily found in the literature, while for operators acting on more general vector
spaces, the theory is significantly less developed. Indeed, in the context of Toeplitz
operators on Hardy, Bergman or Fock spaces, to our knowledge, their Fredholm
theory has been previously studied only in the setting of Banach spaces.

A linear mapping T on a topological vector space X is said to be Fredholm if

dim kerT <∞ and dimX/T (X) <∞.

When X is a Banach space, it is well known that T is Fredholm if and only if
T +K(X) is invertible in the Calkin algebra B(X)/K(X), where B(X) and K(X)
stand for the spaces of bounded and compact operators, respectively. From this,
it follows that an operator on a Banach space is Fredholm if and only if there are
bounded operators A and B on X such that

AT = I +K1 and TB = I +K2

for some compact operatorsK1 andK2 acting onX. Because two Toeplitz operators
often commute modulo compact operators, the previous characterization for their
Fredholmness is almost tailor-made for large classes of symbols.

These characterizations of Fredholm operators are not true in general if X is
not a Banach space. However, an adequate theory can still be developed for quasi-
Banach spaces under some additional conditions, which is important in certain PDE
problems; see, e.g. [11]. A pair (X, ‖ · ‖) is said to be a quasi-Banach space if ‖ · ‖
satisfies all the properties of a norm except for the triangle inequality and if there
is a constant C > 0 such that

‖x+ y‖ � C(‖x‖ + ‖y‖)

for all x, y ∈ X. Observe that all generalized Fock spaces F p
ϕ are quasi-Banach

spaces. We now define an additional property for quasi-Banach spaces as in [13].

Definition 4.1. A quasi-Banach space X is said to be dual rich if for all nonzero
vectors x ∈ X, there is a continuous linear functional x∗ such that x∗(x) = 1.

As an example, we mention that every Banach space is dual rich, and so are 
p

with 0 < p < 1, while none of the Lp(Cn, dv) spaces with 0 < p < 1 is dual rich;
see [13].
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In order to see that generalized Fock spaces are all dual rich, we describe the
dual of F p

ϕ when 0 < p < 1. For this reason, define

F∞
ϕ = L∞

ϕ ∩H(Cn),

where L∞
ϕ consists of all Lebesgue measurable functions f on Cn for which

‖f‖∞,ϕ = ess sup{|f(z)| e−ϕ(z) : z ∈ Cn} <∞.

For g ∈ F∞
ϕ , we define a linean functional Fg : F p

ϕ → C by

Fgf =
∫

Cn

fḡ e−2ϕ dv.

If f ∈ F p
ϕ, then there is a constant C > 0 such that

|Fgf | =
∣∣∣∣∫

Cn

(
f e−ϕ

)(
g e−ϕ

)
dv
∣∣∣∣ � C‖f‖∞,ϕ‖f‖1,ϕ � C‖f‖∞,ϕ‖f‖p,ϕ,

where the last inequality follows from the inclusion F p
ϕ ⊂ F 1

ϕ. Thus, Fg is bounded.
Define 
 : F∞

ϕ → (F p
ϕ)∗ by 
(g) = Fg.

Proposition 4.2. Let 0 < p < 1. Then (F p
ϕ)∗ = F∞

ϕ under the pairing

〈f, g〉 =
∫

Cn

f(w)g(w) e−2ϕ(w) dv(w),

that is, the mapping 
 is bijective.

Proof. We already verified that 
(g) ∈ (F p
ϕ)∗ and ‖
(g)‖ � C‖g‖∞,ϕ for all g ∈ F∞

ϕ .
Suppose next that F is a bounded linear functional on F p

ϕ. Define a function g on
Cn by g(w) = F (Kw). We claim that

g ∈ F∞
ϕ with ‖g‖∞,ϕ � C‖F‖ (4.1)

and

F (f) =
∫

Cn

f(w)g(w) e−2ϕ(w) dA(w) (4.2)

for all f ∈ F p
ϕ.

By lemma 3.1,

|g(w)| � ‖F‖‖Kw‖p,ϕ � ‖F‖ eϕ(w)

and so g ∈ L∞
ϕ . Next we show that g is holomorphic. For z, w ∈ Cn, write w =

(w1, w
′), where w′ ∈ Cn−1 and Δw1 ∈ C with |Δw1| < 1

2 . Then, by Cauchy’s
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estimate (see theorem I.1.6 of [14]), we get∣∣∣∣K ((w1 + Δw1, w
′), z) −K((w1, w

′), z)
Δw1

∣∣∣∣p
� sup

0�t�1

∣∣∣∣ ∂K∂w1
((w1 + tΔw1, w

′), z)
∣∣∣∣p

� C

∫
B(w,1)

|K(ξ, z)|p dv(ξ),

where the constant C is independent of w and z. Furthermore, the estimate for the
Bergman kernel in (3.1) tells us that∫

Cn

{∫
B(w,1)

|K(ξ, z)|p dv(ξ)

}
e−pϕ(z) dv(z) � C sup

ξ∈B(w,1)

epϕ(ξ) <∞.

Because of this and

lim
Δw1→0

K ((w1 + Δw1, w
′), z) −K((w1, w

′), z)
Δw1

=
∂K

∂w1
(w, z),

we can apply the Lebesgue Dominated Theorem to get

lim
Δw1→0

∥∥∥∥K ((w1 + Δw1, w
′), ·) −K((w1, w

′), ·)
Δw1

− ∂K

∂w1
(w, ·)

∥∥∥∥
p,ϕ

= 0.

This implies, for F ∈ (F p
ϕ)∗,

∂g

∂w1
(w) = lim

Δw1→0

F (K(·, (w1 + Δw1, w′)) − F (K(·, w))
Δw1

= F

(
∂K

∂w1
(w, ·)

)
.

Similarly, ∂g/∂wj(w) exists for 2 � j � n. Therefore, g ∈ H(Cn) and (4.1) is
proved.

It remains to prove (4.2). Let f ∈ F p
ϕ. As in (2.7), for an r-lattice {w(r)

n } with
r > 0, we define for z ∈ Cn

Sr,R(f)(z) =
∑

j

K
(
z, w

(r)
j

)∫
Bj,r∩B(0,R)

f(w) e−2ϕ(w) dv(w), (4.3)

where R > 0 is sufficiently large. The right-hand side of (4.3) is only a finite sum
of holomorphic functions, so Sr,R(f) ∈ H(Cn). We claim that

lim
r→0

F (Sr,R(f)) =
∫
|w|�R

f(w)F (K(·, w)) e−2ϕ(w) dv(w). (4.4)

To see this, write ∇wK(w, z) = (∂K/∂w1, ∂K/∂w2, . . . , ∂K/∂wn). Applying
Cauchy’s estimates again, we obtain the inequality

sup
w∈B(0,R)

|∇wK(w, z)|p � C

∫
B(0,R+1)

|K(z, w)|p dv(w).
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Then, for w ∈ B(w(r)
j , r) with B(w(r)

j , r) ∩B(0, R) 
= ∅, we have∥∥∥K (·, w(r)
j

)
−K(·, w)

∥∥∥p

p,ϕ

� Crp

∫
Cn

sup
w∈B

(
w

(r)
j ,r

) |∇wK(w, z)|p e−pϕ(z) dv(z)

� Crp

∫
B(0,R+2)

‖K(·, w)‖p
p,ϕ dv(w)

= Crp.

This implies, when r → 0,∣∣∣∣∣F (Sr,R(f)) −
∫
|w|�R

f(w)F (K(·, w)) e−2ϕ(w) dv(w)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j

∫
Bj,r∩B(0,R)

[
F
(
K(·, w(r)

j ) −K(·, w)
)]
f(w) e−2ϕ(w) dv(w)

∣∣∣∣∣∣
� C‖F‖

∑
j

∥∥∥K (·, w(r)
j

)
−K(·, w)

∥∥∥
p,ϕ

∫
Bj,r∩B(0,R)

|f(w)| e−2ϕ(w) dv(w)

� Cr‖F‖ sup
w∈B(0,R)

|f(w)| → 0,

and hence (4.4) follows. Furthermore, by (4.1),∫
Cn

|f(z)g(z)| e−2ϕ(z) dv(z) � ‖g‖∞,ϕ

∫
Cn

∣∣∣f(z) e−ϕ(z)
∣∣∣dv(z) � C‖F‖‖f‖p,ϕ <∞.

Notice that g(·) = F (K(·, w)), applying the Lebesgue Dominated Theorem again
to get

lim
R→∞

∫
|w|�R

f(w)F (K(·, w)) e−2ϕ(w) dv(w) =
∫

Cn

f(w)F (K(·, w)) e−2ϕ(w) dv(w).

(4.5)
Therefore, by (2.6), (2.8), (4.4) and (4.5), we have

F (f) = lim
R→∞

F (P (fχB(0,R)))

= lim
R→∞

lim
r→0

F (Sr,R(f))

= lim
R→∞

∫
|w|�R

f(w)F (K(·, w)) e−2ϕ(w) dv(w)

=
∫

Cn

f(w)F (K(·, w)) e−2ϕ(w) dA(w),

which is (4.2), and the theorem is proved. �
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Corollary 4.3. If 0 < p < 1, then the generalized Fock space F p
ϕ is a dual rich

quasi-Banach space.

The following result is needed in the next section when we characterize Fredholm
operators on F p

ϕ for 0 < p < 1.

Theorem 4.4. A bounded linear operator on a dual rich quasi-Banach space X is
Fredholm if and only if it has a regularizer; that is, there exists a bounded linear
operator S on X such that ST − I and TS − I are both compact on X.

Proof. See § 3.5.1 of [13]. �

We are now ready to prove our main result.

Theorem 4.5. Let f ∈ VMO1 and 0 < p <∞. Then the Toeplitz operator Tf is
Fredholm on F p

ϕ if and only if

0 < lim inf
|z|→∞

|f̃(z)| � lim sup
|z|→∞

|f̃(z)| <∞. (4.6)

Proof. According to the decomposition VMO1 = V O + V A1, there are functions
f1 ∈ V O and f2 ∈ V A1 such that

f = f1 + f2. (4.7)

For f2 ∈ V A1 and R > 0 fixed, we have

lim
z→∞

1
|B(z,R)|

∫
B(z,R)

|f2|dv = 0,

which means that |f2|dv is vanishing (p, p)-Fock Carleson measure. Thus, by
theorem 2.7 of [6], we have

lim
z→∞ |̃f2|(z) = 0, (4.8)

and hence

lim inf
|z|→∞

|f̃(z)| = lim inf
|z|→∞

|f̃1(z)|, lim sup
|z|→∞

|f̃(z)| = lim sup
|z|→∞

|f̃1(z)|. (4.9)

And also, (4.8) and Fubini’s theorem imply

sup
w∈B(z,r)

|〈Tf2kz, kw〉| � sup
w∈B(z,r)

|̃f2|(z)|̃f2|(w) → 0

as z → ∞. Thus, by theorem 3.2 of [9], the Toeplitz operator Tf2 is compact on
F p

ϕ for 0 < p <∞. So, Tf is Fredholm if and only if Tf1 is Fredholm. Therefore, we
need to prove the statement only for symbols in V O.
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Now suppose that Tf1 is Fredholm on F p
ϕ for some 0 < p <∞. It is trivial that

f̃1(z) = 〈Tf1kz, kz〉 ∈ L∞(Cn), equivalently

lim sup
z→∞

|f̃1(z)| <∞. (4.10)

If lim infz→∞ |f̃1(z)| > 0 were not true, we would have some sequence {zk}
in Cn such that limk→∞ zk = ∞ and limk→∞ f̃1(zk) = 0. By lemma 3.4,
limj→∞ ‖Tf̃1

(kzj
)‖p,ϕ = 0, and hence, for any bounded operator G on F p

ϕ, we have

lim
j→∞

‖GTf̃1
(kzj

)‖p,ϕ = 0. (4.11)

On the other hand, by theorem 3.3, we know that Tf̃1
is also Fredholm on F p

ϕ, and
so we can apply corollary 4.3 and theorem 4.4 to conclude that there is a bounded
linear operator G on F p

ϕ such that

GTf̃1
= I +K,

where I is the identity operator and K is some compact operator on F p
ϕ. Therefore,

lim
j→∞

‖GTf̃1
(kzj

)‖p,ϕ � lim inf
j→∞

‖kzj
‖p,ϕ − lim

j→∞
‖K(kzj

)‖p,ϕ = lim inf
j→∞

‖kzj
‖p,ϕ > 0,

which contradicts (4.11). This completes the proof of the necessity condition.
Conversely, suppose that f = f1 + f2 ∈ V O + V A1 and that f̃1 satisfies (4.6).

Lemma 3.2 and (4.9) tell us that f̃1 ∈ V O ∩ L∞. Proposition 9 of [2] implies that
there is some g ∈ V O ∩ L∞ such that

lim
z→∞ f̃1(z)g(z) = 1.

Therefore, f̃1(z)g(z) − 1 ∈ V O ∩ L∞ and (f̃1(z)g)̃(z) − 1 → 0 as z → ∞, and so, by
theorem 3.3, the Toeplitz operator Tf̃1g−1 is compact on F p

ϕ. Also, by theorem 3.8,
the Hankel operator Hg is compact from F p

ϕ to Lp
ϕ. Thus,

Tf̃1
Tg = PMf̃1

PMg = PMf̃1
[I − (I − P )]Mg = Tf̃1g − PMf1Hg

= I + Tf̃1g−1 − PMf̃1
Hg = I +K1,

where K1 = Tf̃1g−1 − PMf1Hg is compact on F p
ϕ. Similarly, TgTf̃1

= I +K2 for
some compact operator K2 acting on F p

ϕ. We conclude that Tf̃1
is Fredholm, and

by what was said above, this means that Tf is Fredholm. The proof is complete. �

Corollary 4.6. Let 0 < p <∞ and f ∈ VMO1. If (4.6) holds, then

σess(Tf ) =
⋂

R>0

f̃(Cn \B(0, R)) (4.12)

and the essential spectrum σess(Tf ) is connected.

Proof. The previous theorem gives the description in (4.12) and the connectedness
follows from this because f̃ is continuous. �
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Remark 4.7. We give an example that shows that (4.12) fails if f̃ is replaced by f
in it. Define f : C → C by

f(z) =

⎧⎨⎩
1√

1 − (|z| − 2m)
· z

m|z| −
1
m

if 2m � |z| < 2m+ 1

0 otherwise.

Then for |z| > 2, we have∫
B(z,1)

|f |dA �
∫ |z|+1

|z|−1

rf(r) dr
∫ arcsin 1

|z|

− arcsin 1
|z|

dθ �
∫ |z|+1

|z|−1

|f(r)|dr

�
∫ 2[m/2]+1

2[m/2]

f(r) dr → 0

as |z| → ∞. Therefore, T|f | is compact and so is Tf . Thus, σess(Tf ) = {0}. On the
other hand, f(C \B(0, R)) = C for all R > 0, and hence σess(Tf ) cannot coincide
with the right side of (4.12) if f̃ is replaced by f in it.

In order to state one more consequence of our main result, we recall the
definition of block Toeplitz operators. Let N ∈ N and 0 < p <∞. Suppose that
a = (ajk)1�j,k�N with each ajk ∈ BMO1. The block Toeplitz operator Ta is defined
on F p

ϕ,N by

Taf =

(
N∑

k=1

Tajk
fk

)T

1�j�N

=

⎛⎜⎝Ta11 Ta12 · · · Ta1N

...
...

...
TaN1 TaN2 · · · TaNN

⎞⎟⎠
⎛⎜⎝ f1...
fN

⎞⎟⎠ ,

where

f ∈ F p
ϕ,N = {(f1, . . . , fN )T : fk ∈ F p

ϕ}
and F p

ϕ,N is the closed subspace of Lp
ϕ,N = {(f1, . . . , fN )T : fk ∈ Lp

ϕ} equipped with
the norm

‖f‖p,ϕ,N =
N∑

k=1

‖fk‖p,ϕ.

As in [2], we can use the standard Banach algebra techniques to obtain the
following characterization for Fredholmness of block Toeplitz operators. Compared
with theorem 22 of [2], we observe that in addition to more general weights, we can
also deal with more general symbols in the following theorem.

Theorem 4.8. Let 1 < p <∞ and a ∈ VMO1
N×N with ãjk ∈ L∞ for 1 � j, k � N .

Then the block Toeplitz operator Ta is Fredholm on F p
α,N if and only if

0 < lim inf
|z|→∞

|d̃et a(z)| and lim sup
|z|→∞

|d̃et a(z)| <∞. (4.13)
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Proof. If f, g are in VMO1 with f̃ , g̃ ∈ L∞, then, Tf and Tg are both bounded and

TfTg = Tfg − PMfHg = Tfg +K

for some compact operator K by theorem 3.7. Therefore, as in lemma 21 of [2],
it follows that detTa − Tdet a is compact, and hence Ta is Fredholm if and only if
detTa is Fredholm, which is equivalent to Tã being Fredholm by what we already
proved. Thus, (4.13) is both necessary and sufficient for Ta to be Fredholm by
theorem 4.5. �

5. Open problems

An immediate question related to our main result is what can be said about the
Fredholm properties of Toeplitz operators on (more general) doubling Fock spaces
F p

φ . The Hilbert space case F p
φ (C) was recently studied in [1]. The general case 0 <

p <∞ and n ∈ N is much more difficult because the techniques of the present paper
are no longer sufficient; however, there are a number of methods and inequalities for
doubling Fock spaces that may prove fruitful and we hope to deal with the general
case in a future publication.

It is also worth noting that here we have described Fredholmness of Toeplitz
operators but are currently unable to say anything about their Fredholm index.
In fact, to our knowledge, the index formula is only known for Toeplitz operators
on Fock spaces with standard weights α > 0 and with weights of the form |z|β
where β > 0 (see [1]). In both of these cases, the space has a nice basis and an
explicit formula for the reproducing kernel, which allows for a reduction to an
index computation of a simpler operator. New ideas are required to deal with Fock
spaces that lack these nice properties.

Another major challenge is the case of matrix-valued symbols. In theorem 4.8,
we have merely reduced the study to the scalar-valued case; more general cases,
where one needs to deal with block Toeplitz operators directly, are considerably
more difficult, but the results known for Hardy and Bergman spaces may offer
some clues as to what could be expected.

Finally, in our present paper, we have used and further developed the theory of
Hankel operators. Their theory is also important in its own right and there are
natural further questions about their compactness, for example, which arise from
our work. Another aspect of Hankel operators, which is completely different, and
perhaps surprising, from many other function spaces, such as Hardy and Bergman
spaces, is the property that if Hf is compact, then Hf̄ is also compact. This was
recently proved for standard weighted Fock spaces F p

α in [5] and it would be inter-
esting to know whether this property remains true for Hankel operators acting on
other weighted Fock spaces.
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