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NOTE ON A THEOREM OF GROMOLL-GROVE

GRANT CAIRNS AND RICHARD H. ESCOBALES, JR.

D. Gromoll and K. Grove showed that metric flows on constant curvature spaces
are either flat or locally spanned by Killing vector fields. We generalise this result
to certain flows on manifolds of variable curvature.

Gromoll and Grove's 1985 theorem [5] asserts that on manifolds of constant cur-
vature, a metric flow is either flat or locally homogeneous. Recently this was used as
the key ingredient in the classification of metric flows on spaces of constant nonpos-
itive curvature [1]. Basmajian and Walschap's paper concludes with the remark: "it
is interesting to note that many of the above arguments carry over to manifolds with
curvature bounded above by a negative constant... The proof of the Gromoll-Grove the-
orem, however, makes extensive use of constant curvature". In this note we generalise
the Gromoll-Grove theorem to spaces of variable curvature.

Let (M,g) be a complete, connected C°° Riemannian manifold with metric flow
T generated by a unit vector field V, which spans the vertical distribution V. The
"metric" hypothesis means that the flow lines are locally equi-distant [10]. The flow is
flat if the horizontal distribution "H = V1- is integrable. The flow is locally homogeneous
if it is locally spanned by Killing vector fields. Notice that the two conditions are of
quite different natures: flatness only depends on the decomposition TM = 7i © V of
the tangent bundle and it is a strong constraint on the topology of M, whereas local
homogeneity depends on the parametrisation of T and on compact manifolds every
metric flow is locally homogeneous for some choice of metric [3]. The two conditions
nevertheless have one point in common: it is possible to express them as invariance
conditions "along the flow lines" of T. So the obvious task is to replace the global
constant curvature hypothesis by an invariance condition, along the flow lines. Recall
(see [7]) that a differential form a on M is basic if it is locally projectable along the
flow lines (this means that 0 = a(V) = da(V,.)). A vector field X is foliate if it is
locally projectable along the flow lines (this means that [V, X] is vertical). We say that
X is basic if it is foliate and horizontal [4].
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THEOREM. Suppose that the curvature tensor R satisfies t i e following condition:

(*) RXYZ is basic, for all basic local vector Reids X,Y,Z.

Then F is either locally homogeneous or Sat.

PROOF: The Gromoll-Grove proof in [5] can be broken down into 3 parts:

LEMMA 1. If "H is integrable at one point, then it is integrable everywhere.

LEMMA 2 . If H is not integrable, then T is tense (that is, the mean curvature

one-form n is basic).

LEMMA 3 . If T is tense, then K is closed.

For any vector field E, K(E) = g(E,TvV), where T is the second fundamental

form tensor, as in [9] or [4]. Equivalently n can be defined by the equations K(V) = 0

and K{X) = g{[X, V],V) when X is horizontal.

We shall show that the above lemmas follow from (*). The theorem now follows,

since by following [5] it is easy to see that for arbitrary metric flows, K closed is

equivalent to T locally homogeneous. First notice that (*) can be written as two

conditions:

(1) g(RxrZ, W) is basic, for all basic local vector fields X, Y, Z, W.

(2) g(RxvZ, V) = 0, for all basic local vector fields X, Y, Z.

For convenience, we introduce the 2-form 0 which is zero on V and for which fi(X, Y) —

g([X,Y),V), for all horizontal X and Y. (Notice that Q{X,Y).V = AxY/2, where A

is the integrability tensor. See [9] or [8].) Our proof uses the work of O'Neill [9]. From

[9, Theorem 2, Equation {4}] and [9, Corollary 1, Equation 3], it follows that (1) is

equivalent to the following condition:

(3) ft is basic; that is VCl(X,Y) = 0, for all basic local vector fields X,Y.

Qp. the other hand, rewriting [9, Equation {3}], (2) is equivalent to:

(4) O

, Y)K{Z) + n(Y, Z)K

To prove Lemma 1, notice that if 0, vanishes at some point q, then by (3), f2

vanishes on the flow line of T through q. Transverse to T, equation (4) establishes a

system of linear equations for fi having zero initial condition at each point of the flow

line. A connectedness argument concludes the proof.

We now prove Lemma 2. Assume that 7i is not integrable. By Lemma 1, fi

is nowhere zero. Let q G M and choose basic local vector fields Y and Z so that
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fi(Y, Z) 7̂  0 at q. Now let X be another basic local vector field on some neighbourhood

of q. By (3), all but the last three terms of (4) are constant on the plaques of T• So

applying V to (4) gives

(5) 0 = -fl{X, Y )VK(Z) + fi(Y, Z)VK(X) + $1{Z, X)VK(Y).

Similarly, by cyclically permuting X, Y, Z one gets

(6) o = -n(z , x)vK{Y) + n{x, Y)VK(Z) + n{Y, Z)VK(X).

Adding (5) and (6) gives Sl{Y,Z)Vn{X) = 0. So, as £1{Y,Z) ^ 0, one has VK(X) = 0 ;

that is, K(X) is basic. Since X was arbitrary, we conclude that K is basic.

Finally, we prove Lemma 3. This result is true on compact manifolds, by a result

of Kamber and Tondeur (see [11]). More generally, the result follows easily from (* ), as

we now show. Suppose that n is basic and let X, Y be local basic vector fields. Clearly

d,K.(X, V) = 0. To show that K is closed, we need to establish that dn(X, Y) = 0. Now

from [4] (a shorter proof is given in [2]), dK(X,Y) = -divrV[X,Y], where V[X,Y]

is the vertical component of [X, Y] and div? is the divergence in the flow lines of T.

Writing V[X,Y] = n{X,Y).V gives

dn(X,Y) = -divrV[X,Y] = -g([V[X,Y],V],V) = VQ(X,Y).

Hence the required result follows immediately from (3). This completes the proof of

the theorem. U

REMARK. Conversely, if T is a flat metric flow, then 0 = 0 and so by (3) and (4),

condition (*) is satisfied. On the other hand, if T is locally homogeneous, then it

doesn't necessarily follow that (*) holds, as we see in Example 3 below.

EXAMPLES

The following examples are "algebraic". Let Q be a simply connected Lie group

with Lie algebra g of left invariant vector fields, and suppose that Q possesses a discrete

subgroup F, with quotient M — T\G. Then g induces a Lie algebra of nonsingular

vector fields on M. The flows defined by these vector fields are said to be algebraic.

Now choose a scalar product on g and equip M with the induced Riemannian metric g.

Very few of the resulting manifolds have constant curvature (see [6]). In the following

examples, we use the same symbols to denote the elements of g and the corresponding

vector fields on M.
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EXAMPLE 1. Let g be the Heisenberg Lie algebra with orthonormal basis X, Y, V and
relation [X, Y] = V. It is easy to see that V defines a metric flow and X and Y
are basic vector fields. Using the Levi-Civita formula for the covariant derivative of
left-invariant vector fields,

(7) 2g(VEF,G) = g{[E,F),G) - g(F, [E,G]) - g(E, [F,G}),

one sees that

VXX = VyF = VVV = 0, VXY = -VYX = ̂ V,

X

Then RXYX = -(3/4)Y, RX,YY = (3/4)X, so (*) holds. This example is clearly not
flat, but it is homogeneous (K = 0). (Here we are using the curvature convention of [9],
RXY = V[X,Y] — [Vx, Vy], which is the opposite of that of [5].)

EXAMPLE 2. Let g be the algebra al(2, R) with orthonormal basis X, Y, V and relations
[V,X] = V + Y, [V,Y] = V-X and [X,Y] = -X + Y. Again V defines a metric flow
and X and Y are basic vector fields. Using (7) one has

S/XV = Vy V = 0, VXX = -VYX = Y, WYY = -VXY = X,

VVX = V -V Y, VVY = V - X, VVV = -X - Y.

Then RXYX = -2Y, RX<YY = 2X, so (*) holds. This example is flat but not locally
homogeneous (for example dn{X, V) =£ 0).

EXAMPLE 3. Let g be the 4-dimensional nilpotent Lie algebra with orthonormal basis
X, Y, Z, V and relations [X, Y] = Z and [X, Z] = V. Again V is a metric flow and
X, Y, Z are basic vector fields. One has

±Y,

This example is homogeneous, but RXyX = —V/4 — (3/4)Y, so (*) fails to hold.
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