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ABSOLUTE C-EMBEDDING OF SPACES WITH 
COUNTABLE CHARACTER AND 

PSEUDOCHARACTER CONDITIONS 
ALAN DOW 

1. Introduction. Absolute C-embeddings have been studied exten­
sively by C. E. Aull. We will use his notation P = C[Q] to mean that a 
space satisfying property Q is C-embedded in every space having prop­
erty Q that it is embedded in if (and only if) it has property P. The first 
result of this type is due to Hewitt [5] where he proves that if Q is 
"Tychonoff" then P is almost compactness. Aull [2] proves that if Q is 
i{TA and countable pseudocharacter" or UJ\ and first countable" then P 
is "countably compact". In this paper we show that P is almost com­
pactness if Q is "Tychonoff" and any of countable pseudocharacter, per­
fect, or first countability. Unfortunately for the last case we require the 
assumption that 2So = Xi. Finally we show that P is countable com­
pactness if Q is Tychonoff and ''closed sets have a countable neighbor­
hood base". In each of the above results C-embedding may be replaced by 
C*-embeddings and the results hold if restricted to closed embeddings. 

We assume that all hypothesized topological spaces are Tychonoff. A 
space X is almost compact if given disjoint zero sets at least one is com­
pact. This is equivalent to \f$X\X\ S 1 where f$X is the Stone-Cech 
compactification of X [4, 6/] . The pseudocharacter of x £ X, denoted 
\j/{x, X), is the minimum cardinality K such that {x} is a GK set in X. X is 
perfect if every closed subset of X is a Gs. We shall use the notation and 
terminology of [4]. 

2. Absolute C-embedding of spaces with countable pseudo-
character. We show^ that P = almost compact when Q is countable 
pseudocharacter. Hewitt's result shows that an almost compact space is 
C-embedded in any Tychonoff space in which it is embedded. Hence we 
only have to show the converse. First we list some lemmas that we will 
need. 

LEMMA 2.1. A space X is compact if, and only if, every infinite subset of 
X has a complete accumulation point. That is, for every subset D of X there 
is a point x £ D such that every neighbourhood of x meets D in a set of the 
same cardinality as D. 
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946 ALAN DOW 

LEMMA 2.2. If X is not compact and K is the minimum cardinality of a 

subset of X with no complete accumulation point then K is regular. 

Proof. Suppose tha t (xa)a<K ^ X has no complete accumulat ion point 
in X and 

£ ( a ; : j < X) = K 

where each ctj < K. By the minimali ty of K the sets (x a ) a < a ; for each 
j < X all have complete accumulat ion points yjm Similarly the set (yj)j<\ 
has a complete accumulation point if X < K. Bu t if x is such a point then 
x is a complete accumulation of the set (xa)a < K . Therefore X = K and K is 
regular. 

T H E O R E M 2.3. Let X be a space which is not almost compact. Then X can 
be embedded in a space Y such that: (1) X is not C*-embedded in F , (2) 
for x e X, ^ (x , X) = \l,(x, F) and (3) for y Ç Y\X, t(y, F) = co. 

Proof. Since X is not almost compact we can choose disjoint non-
compact zero sets Z\ and Z2 . W e will embed X into a space F so t ha t Z\ 
and Z 2 are not completely separated. By Lemmas 2.1 and 2.2 we can 
choose regular cardinals K\ and K2 and sets 

(Xa)a<Ki Q Zi (y^0<K, Q Z2 

such tha t neither set has a complete accumulation point in X. Next we 
choose ^ C ww such t h a t / , g G %̂  implies {w: / (w) = g(w)} is finite, and 
maximal with respect to this proper ty . We note tha t cé has the following 
property: (*) if h Ç co" then there is a n / Ç ^ such t ha t {n: / (w) > fe(w)) 
is infinité. This follows easily from the maximali ty of ^ . Our space Y 
consists of 

X U (*i X co) U (K2 X CO) U r<f. 

KI X w and K2 X co are open and discrete. For x t X , x has a neighbour­
hood U ÇZ X which meets | x a : a < KI} in a set of cardinali ty less than KX 

and meets {y$: 0 < K2} in a set of cardinali ty less than K2. Define a neigh­
bourhood of x in F to be 

U U [ U {{a} X [»„, co) :wa Ç co, xa G U\] 

W [ U {{£| X [w^co):»^ Ç co,^ G C/|]. 

In other words {xa | W {a} X co is the one point compactification of 
[a] X co and similarly for y$. Finally we describe neighbourhoods of the 
elements of *$. For each / £ ^ we will define / I ' . K I —> co and / 2 : K 2 —> co 
and neighbourhoods o f / will be subsets of the graph o f / i and / 2 . Fi rs t 
assume KI and K2 are uncountable , and let { Un\n^ be a shrinking family of 
subsets of KI such tha t \Un\Un+\\ = KI for each n and f \ Un = 0. 
Similarly let { Vn}new be subsets of K2 with the analogous properties. If 
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KI or K2 is co then let Un or Vn be {n> n + 1, n + 2, . . . ,(. Now we define 
/ i . If KI = co t h e n / i = / ; otherwise l e t / ( a ) = /(w) if a G Un\Un+i and 
similarly define/2(/3) = f(m) if /3 G F m \ F m + i . A neighbourhood base for 
/ i s 

{ Wa.l3,n,k'' OL < Ki, (3 < K2, fl < CO, k < Co} 

where 

W«./u.* = {/} U [ ( £ / n n [ a , M ) ) X coH graph of M 

U [ (7* H [0, *2)) X co n graph of f2] 

(i.e., tails of the graphs o f / i intersected with [7n, together with tails of 
the graph of f2 intersected with F*). The neighbourhoods of / G ^ are 
clopen, for if g G ^ and g 3^ / then {n: g(n) = f(n)\ is finite. So if N is 
such tha t n > N implies g(n) ^ f(n) then 

f ^ X c o H graph of/i} C\ { UN X co Pi graph of gi} = 0; 

for if a G î/;v then a G Uk\Uk+i for & ^ TV and 

/ ! (« ) = / ( fe ) ^ ( i ) = g (a ) ; 

bu t for 

(a, J) € { Kv X co H graph of/i} C\ { UN X co C\ graph of gi) 

we must have 

/ i ( « ) = J = g i ( « ) . 

Similarly 

{ F * X co C\ graph of f2) H { 1 ^ X co H graph of g2] = 0. 

I t is easily checked tha t no other elements of Y are in the closure. We 
now check tha t Y has the desired properties. 

Claim 1. Z\ and Z2 are not completely separated in Y. 

Proof. Let A and Z? be closed neighbourhoods of Z\ and Z2 respectively. 
We will show tha t A C\ B C\ <g ^ 0. 

Since 4̂ is a neighbourhood of (xa) '-a < KI, for each a < KI, there is 
an integer &i(a) such tha t 

{a} X [Ai(a) ,«) Ç A 

Let ^4n = At" ([0, n]) . The ^4„'s are increasing subsets of K\ and 

\J \An\n < co} = KI. 

Case 1. KI = co. This means hi G cow so there exists / G *$ such tha t 
{n: / (w) > hi(n)\ is infinite. This means every neighbourhood of/ meets 
A because a neighbourhood o f / contains, for some m G co, {(&,/i(&)): 
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k ^ m). Now choose n^m such t h a t / ( f t ) > h\{n), which we can do 
since {n: f(n) > h\(n)} is infinite. This means tha t (ft,/(ft)) £ KI X co is 
in 4̂ because 

{ft} X (Ai(w), co) C 4 . 

Thus f (z A since .4 is closed. Note t ha t any / G ^ such that 
\n:f(n) > ^i(n)} is infinite is in A. 

Case 2. *i > co. Note tha t KI is regular by Lemma 2.2. Recall t ha t 

An = ht ( [0 ,»] ) . 

For each ft choose fe(ft) (E co such tha t 

\un\un+i n y4Mn)| = KI. 

Now choose / 6 ^ such t ha t 

| { » : / ( « ) > A(«)}| = co. 

An arbi t rary neighbourhood o f / c o n t a i n s a set of the form 

(Um H [Ô, KI)) X co n graph of / i . 

Let w > w b e such t h a t / ( f t ) > h(n) and choose 

« e [Ô,K0 n (7n\c/n+in^Mn). 

Since a > 5 and a Ç C/w 3 Un\Un+i we have tha t ( a , / i ( a ) ) is in the 
above neighbourhood of / and since a Ç ^4M«)> &i(a) ^ /&(w). Also 
M*0 <f(n) a n d / ( n ) = / i ( a ) because a G Un\Un+i. Therefore ( « , / i ( a ) ) 
is in 4̂ because 

{a} X [Ai(a),co) Ç 4 

and we conclude t h a t / £ ^4. Again we note tha t a n y / Ç ^ such tha t 

\{n: f{n) > fe(ft)} | = co 

is in A. 
Now we consider B. For each 0 < K2 we choose gi(/3) d co such that 

{£} X [gi(/3),co) C B. We let 

S„ = gi"([0,ft]) . 

If K2 = co then let g = gi. Otherwise for each ft choose g(n) so tha t 

| F n \ F w + i n ^^(w.)| = ^2. 

Now wre can show tha t if / t C such tha t |{ft:/(ft) > g(n)\\ = co then 
f £ B. T o complete the proof t ha t Zi and Z 2 are not completely separated 
we observe tha t there exists / G ^ such tha t 

\[n:f(n) > h(n) + g(n)}\ = co. 

H e n c e / (E A H 73. 
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Claim 2. F is completely regular. I t suffices to show complete regu­
larity for points of X since all points of Y\X are either isolated or have a 
base of clopen neighbourhoods which miss X. Let x £ X and (without 
loss of generality) not in the closure of (yp)p<K . Since (xa)a<K has no com­
plete accumulation point, we can choose a cozero set neighbourhood 
W of x which misses {y&)p<K2 and 

\wr\ (xa)a<Kl\ < Kl. 

Let 7 < KI be such tha t if a > y then xa (? W. Let h (E C*(X) such tha t 
h(x) = 1 and h(X\W) = 0. Define h' G C*(Y) by 

h'(f) = O f o r / G ^ a n d 

A'((/3,w)) = 0 fo r /3 6 K2 and 

h'((a,n)) = h(xa) f o r a £ KJ. 

I t is easy to check tha t h! is continuous. Conditions 2 and 3 of the 
theorem are immediate by the construction. 

COROLLARY 2.4. C[countable pseudocharacter] = almost compact. 

3. Perfect spaces . The purpose of this section is to show tha t if X is a 
perfect space then the space Y constructed in 2.3 is also perfect. So let X 
be perfect and Y be as in Theorem 2.3. Let F be a closed subset of F. We 
must show tha t F is a G?> set in Y. Let 

F1 = FHX, F2 = FHtf, and F* = F\(J*T U ^f ). 

Since X is perfect, let F1 = f i » ^ 0rc> where 0n is open in X . Let 

0 / = 0„ U U {{aj X [», w): xa G 0, and a < KI] W 

U {{£} X [ » , c o ) : ^ G 0 „ a n d £ < K2} . 

Define Ww to be 

^2 U [(£/n X w) H U {graph o f / n / G F2}] 

U [(F„ X co) O U {graph of / 2 : / G F2}]. 

1F„ is open and contains F2. Now we let 

Mn = (V U Wn U F8 . 

Then Mn is open and f \ < w Mw = F which shows t ha t Y is perfect. For 
if y £ F \ F then if 3/ £ X there is an n such tha t y g 0n hence y $ M„. If 
3/ G F \ X then either y £ ^ , in which case 3/ g M"n for any n, or (without 
loss of generality) y = (a, m) for some a; < KI, m £ co. In this case, let w be 
such tha t n > m and a $ £/n. Therefore 3; (? 0 / since to 0n we added 
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{a} X [n, co) and m < n. Also y (? Wn since 

wn r\ K! x co c un x co. 
And y Q Fz hence 3/ g Mw. W e have proved 

T H E O R E M 3.1 C[perfect] = almost compact. 

4. First countable spaces. 

Definition 4 .1. X is (K, X)-compact if every subset yl of cardinali ty K 
has a X-accumulation point x (i.e., for any neighbourhood U of x, | £/ P\ 
-41 ^ X). X is /{-bounded if every subset of cardinal i ty K has compact 
closure. 

LEMMA 4.2. [CH] If X is a first countable, countably compact, (Xi, Xi)-
compact space then X is Hi-bounded. 

Proof. Suppose not. Let D C_ X such tha t \D\ = Xi and D is not com­
pact. Since we are assuming [CH] and tha t X is first countable, 

\D\ = \D°\ = X L 

Hence if D is not compact there is a subset 5 of cardinal i ty less than or 
equal to Xi with no complete accumulation point. This contradicts the 
assumptions tha t X is countably compact and (Xi, Xi)-compact . Hence 
X is Xi-bounded. 

LEMMA 4.3. [CH]. If X is first countable and Hi-bounded then X is 
compact and has cardinality Xi. 

Proof. Suppose \X\ > Xi. Let D C X such tha t \D\ = X2. D is first 
countable and has cardinali ty X2 = c+ and is therefore not compact 
[1]. Hence without loss of generality we can assume tha t D has no 
complete accumulat ion point. Therefore every point of D has a neigh­
bourhood wrhich meets D in a set of cardinal i ty less than or equal to Xi. 
Hence, by Lemma 4.2, D is locally compact . Inductively construct com­
pact sets Ca for a < wi, such tha t 

(i) Ca C into Ca+i 
(ii) Jxa+i 6 Ca+1\Ca and 

(Hi) \Ca\ S Ki. 

Choosex 0 £ 5 and let Co = {x0}.Leta G coi, and suppose we have defined 
Cy for 7 < a so tha t (i)-(i i i) are satisfied. Since 

I Cb U Cy ! g Xl 

we can choose 

xa 6 5 \ c b U C7. 
7<« 
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\xa} U c\D Uy<a Cy is compact because X is Xi-bounded. Cover it with 
compact neighbourhoods of cardinality less than or equal to Xi and choose 
a finite subcover. Let Ca+\ be the union of these finitely many compact 
sets. Since \D\ = X2 the induction can continue for a < coi. Since each 
Ca is closed and D is first countable, U«<a>i Ca is closed in D hence compact 
because X is Xi-bounded. T h e open cover 

{int Ca: a < coi} 

has a finite subcover, hence 

U Ca = Cy for some 7 < wi, 
«<wi 

but of course xy+i $ C\. Hence \X\ ^ Xi and since X is Xi-compact, X is 
compact . 

The following corollary will be used repeatedly. 

COROLLARY 4.4 [CH]. / / X is first countable non-compact then X 
contains either a countable closed discrete set or a set of cardinality Xi with 
no complete accumulation point. 

T H E O R E M 4.5 [CH]. C[first countable] = almost compact. 

Proof. Let X be a first countable space tha t is not almost compact. 
First we show tha t X contains either 

(i) two completely separated countable closed discrete sets or 
(ii) two completely separated sets of cardinality Xi with no complete 

accumulation points. 
Suppose tha t case (i) does not hold, i.e., there are no two completely 

separated discrete sets. Since X is not almost compact let Z\ and Z 2 be 
disjoint non-compact zero sets of X. Since case (i) does not hold, we can 
assume Zx is countably compact. By Corollary 4.4 Zx contains a set H of 
cardinali ty Xi with no complete accumulation point. We now show tha t 
Z 2 also contains a set K with \K\ = Xi and having no complete accumula­
tion point. We are done if Z 2 is countably compact so let TV be a countable 
closed discrete subset of Z2 . If Z 2 is not locally compact then there is 
point x G Z 2 and a non-compact closed neighbourhood U of x such tha t 
U C\ N is finite. U must be countably compact since U and N\U are 
completely separated but case (i) does not hold. Therefore by Corollary 
4.5 U contains the required set K. Now suppose Z 2 is locally compact. 
This means each point has a neighbourhood of cardinality less than or 
equal to Xi. If |Z2 | ^ X2, we inductively choose open sets Ca: a < wi of 
cardinality Xi and points xa Ç Ca such tha t 

U Cy C Ca and xa G Ca\ U Cy. 
7<a 7<a 

This induction can be carried out because |Z2 | > Xi and | U7<« Cy\ ^ Xi 
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and Z2 is locally compact. By the countable tightness of X and the fact 
that Ca C Ca+i we see that U (Ca: a < coi) is closed in Z2. The set 
{xa: a < coi} has no complete accumulation point in Z2 for if x 6 U C« 
then x G C« for some a < coi which meets only countably many x7's. 

Now we assume that |Z2| ^ Xi. If |cl^x Z2 \Z2 | > 1 then we could find 
disjoint Z3, Z4 6 Z(X) both contained in Z2 which were not compact. 
Of these two non-compact zero sets at least one is countably compact 
because case (i) does not hold and this zero set contains the necessary 
set K. Therefore the remaining possibility is 

|cl/3xZ2\Z2| = 1. 

In this case, let 

Z2 = \xa: a < coi}. 

Let, for each a < wi, Wa be a non-compact zero set of X contained in Z> 
such that 

xa $ Wa and Wa^ D Wy. 

Clearly P u o i Wa = 0. Suppose there is an a < coi such that 
nT<« Wy = 0. Let 

{£( = cWZ2\Z2. 

Since nT<« W? = 0 and £ t c\pxWy for each 7, there exists a n / G C*(X) 
such that 

/3f(p) = O a n d Z ( / ) H Z2 = 0. 

We can choose yn Ç Z2 such that 

l/(y»+i)l < il/(y»)l-
Therefore {;yw: n c co} is C*-embedded in f3X but 

Xi = |cWZ2| ^ |cW{yM: w Ç w ) | = 2 c , 

a contradiction. Hence, for each a < coi, P\7 < a I^7 ^ 0. Inductively 
choose, for a < coi, £a < wi such that 

n w* \ n w* * 0. 
Also choose 

The set {ya: a < coi} does not have a complete accumulation point since 
each xa has X\Wa as a neighbourhood which contains only countably 
many ya's. We have finished showing that either case (i) or case (ii) 
holds. 

https://doi.org/10.4153/CJM-1980-072-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-072-3


ABSOLUTE C-EMBEDDING 953 

If case (i) holds then the construction in Section 2 provides a first 
countable space in which X is embedded bu t not C*-embedded. Now 
suppose case (ii) holds. Let H and K be completely separated closed 
subsets of X of cardinali ty Xi which have no complete accumulation 
points. Let {Xa: a < coi} be an indexing of the limit ordinals less than 
coi. Also let 

H = \hxa+2n- & < wi and 1 ^ n < co} and 

K = {ha+2n+i- OL < «i and « G co}. 

Since H and iC are locally countable we can assume they are indexed 
such tha t there are clopen subsets of H, { Ua: a < coij and clopen subsets 
of K, { Va: a < coi} such tha t 

[hfi: Xa < P < K+i} C UanHQ {hp: 0 < \a+i\ 

and 

{k0: K < j8 < Xa+1} Ç F a H K Ç {fy: 0 < Xa+1}. 

We will topologize Y = co X coi U X so tha t F is first countable, i f is 
not completely separated from K in F and X is a topological subspace 
of F. 

w X wi will be an open subset of F and is given the product topology. 
For each a < wi we will define a clopen subset Ca of co X coi such tha t 

(i) C« C w X X«+i. 
(ii) /3 < a — > ] w < w such tha t Q Pi [w, co) X X^+i = Ca P\ [w, co) X 

X/3+1-

(iii) 7 < Xa+i and y not a limit ordinal —> 3 ^ < w such tha t 

[n,œ) X {7} Ç Ca. 

Let Co = Uw<w [n, co) X {w}. Let a < coi and suppose for 0 < a we 
have defined Q satisfying (i)-( i i i) . 

If a = & + I then let C« = Cp U Uo<«<. I>, w) X {X« + w}. Other­
wise let \an: n < co} be an increasing sequence of ordinals converging to 
a. We let 

Ca = Uw<« 1>, W) X (X«„_i + 1, X«n+l) C\ Can ^ 

Uo<n<« LW, «) X {Xa + WJ. 

(i) and (iii) obviously hold. Suppose at-i < (3 ^ a{. By induction there 
is an m < co such tha t 

Cp C\ [m, co) X X^+i = Cai C\ [m, co) X A/j+i-

There is also a p < co such tha t 

Ca, O [p, co) X Xaj+i = Cp C\ [p, co) X Xai+i f o r i < i. 
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Therefore if n = max {p, m} i) we observe tha t 

Op H [n, w) X X^+i = Ca r\ [n, œ) X X/3+i. 

Hence (ii) holds. To see tha t Ca is clopen, note t ha t for any 0 rg a + t 
and any n (E w, 

(w, X^) $ C«. 

We can now continue to describe the topology of Y. X\(H U K) is 
open in Y and retains its topology. Let us define for U C X , 

tf = {7 < «i : A7 Ç c7}. 

Let hy £ H and 7 < Xa + 1. Let { Un: n £ w} be a neighbourhood base 
for A7 in X such tha t Un C\ H Ç [/a and is clopen in 77. A neighbourhood 
base for fe7 in Y is 

{£7 n U ( C O |w,a>) X £/„): w < co}. 

Similarly define neighbourhoods for points in K. Condit ion (ii) in the 
definition of the Ca 's implies tha t the above sets are in fact clopen subsets 
of F. 

Y is obviously first countable and completely regular. We will now 
show tha t H and K cannot be separated by disjoint closed neighbour­
hoods. Indeed, let U and V be neighbourhoods of H and K respectively. 
For each hy Ç H there is an ny < co such t ha t 

[ny,œ) X {7} Q U 

and similarly for each kp £ K there is an m$ < co such tha t 

[m**,) X {£} C F. 

Hence we can choose n < 00 such t ha t for uncountably many hy € H, 

[n,œ) X {7} Q U 

and for uncountably many kp £ i£, 

[», «) X {0} Ç F. 

It is then easy to check t ha t there is a Xa such t ha t (n, X«) G £7 P\ F . 
This completes the proof because X is not C*-embedded in Y since / / 

and i£ are completely separated in X. 

5. Closed se t s have c o u n t a b l e n e i g h b o u r h o o d bases . Let F be a 
Tychonoff space in which every closed subset has a countable neighbour­
hood base. 

LEMMA 5.1. The set of non-isolated points of Y is countably compact. 
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Proof. Suppose D is a countable closed discrete subset of the non­
isolated points of F. Let D — [dn\ n £ co} and choose disjoint open sets 
{ Vn: n 6 co} such that for each n, dn £ Fw. Suppose that {Un: n £ w} is 
a neighbourhood base for D. Choose xn £ Vn\{dn] (~\ Un. Since, for each 
n G oo, Vn P\ {xt: i G w) = {xn} we see that 

{xf. i G co} H D = 0. 

Therefore J\r\{x*: i £ co} is a neighbourhood of D but it does not contain 
any Un. This contradicts the fact that D has a countable neighbourhood 
base. 

Lemma 5.1 and the following lemma have been proven by C. E. Aull 
[3]. 

LEMMA 5.2. Y is normal. 

Proof. Let H and K be disjoint closed subsets of Y. Let 

Hi = H P\ isolated points of F and 

Ki = K C\ isolated points of Y. 

H\Hi is a closed subset of F so let { Un: n Ç co} be a shrinking neighbour­
hood base for H\H\. Suppose that 

y g (H Ûn)\(H\H1) 

and let {W :̂ w £ co} be a neighbourhood base at ;y. Choose 

y„6 W ^ n Un\(H\Hi). 

yn can be chosen so that it is not in H\H\ because H\H\ is closed and 
y i H\H\. \y\ \J \yn: n £ co} is closed and is disjoint from H\Hi, but 
Y\{yn- n G wî does not contain any Un. 

This contradiction means that C\n^ Ûn = H\Hi. Since K\Ki is dis­
joint from H\Hi we see that 

K\Ki is countably compact by Lemma 5.1 so there is an w Ç co such that 

un r\ K\K! = 0. 
Therefore Hi W Ûn\Ki is a closed neighbourhood of H which does not 
intersect K. Hence F is normal. 

THEOREM 5.3. C[closed sets have countable neighbourhood bases] = 
countably compact. 

Proof. First let X be a space in which closed sets have countable neigh­
bourhood bases and X is countably compact. Let X be embedded in F, 
where closed subsets of F have countable neighbourhood bases; then F 
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is normal by Lemma 5.2. X is closed in Y since X is countably compact 
and Y is first countable. Hence X is C*-embedded [4, 3D]. 

Conversely, suppose X is not countably compact. Let D be a closed 
countable discrete subset of X. By Lemma 5.1 we can choose D to consist 
of isolated points. Therefore D is clopen in X. We can construct a space 
Y = X \J [SP\ where neighbourhoods of SP are {0°\ union cofinite 
subsets of D. It is easily seen that X is not C*-embedded in Y and that 
closed subsets of Y have countable neighbourhood bases. 

Remark. Countably compact spaces which have the property that 
closed sets have countable neighbourhood bases are also normal. W. Weiss 
[7] has shown that every countably compact perfectly normal space is 
compact if we assume Martin's Axiom plus the negation of the continuum 
hypothesis and thus is consistent with the usual axioms of set theory. 
On the other hand, Ostaszewski [6] constructs space 0, which is perfectly 
normal, countably compact and not compact. The construction of 6 also 
requires special set theoretic assumptions. It is easily shown that the 
product of 6 with the one-point compactihcation of the integers is a 
countably compact space which has the property that closed sets have 
countable neighbourhood bases and this space has infinite growth in its 
Stone-Cech compactification. 
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