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Abstract

Let G be a finite group. We prove that if the set of p-regular conjugacy class sizes of G has exactly
two elements, then G has Abelian p-complement or G = P Q × A, with P ∈ Sylp(G), Q ∈ Sylq (G) and
A Abelian.
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1. Introduction

Itô proved in [5] that if G is a finite group such that all its noncentral conjugacy classes
have equal size, then G = Q × A, where Q is a Sylow q-subgroup of G, for some
prime q , and A lies in Z(G). In [1], Beltrán and Felipe proved a generalization of this
result for p-regular conjugacy class sizes and some prime p, with the assumption that
the group G is p-solvable. In the present paper, we improve this result by showing
that the p-solvability condition is not necessary.

THEOREM A. Let G be a finite group. If the set of p-regular conjugacy class sizes
of G has exactly two elements, for some prime p, then G has Abelian p-complement
or G = P Q × A, with P ∈ Sylp(G), Q ∈ Sylq(G) and A ⊆ Z(G), with q a prime
distinct from p. As a consequence, if {1, m} are the p-regular conjugacy class sizes of
G, then m = paqb. In particular, if b = 0 then G has Abelian p-complements and if
a = 0 then G = P × Q × A with A ⊆ Z(G).

The proof given in [1] for p-solvable groups is divided into two cases, when the
centralizers of noncentral p-regular elements are all G-conjugated and when they are
not. In the second case, it is easy to check that the hypothesis of p-solvability is not
needed, so our study reduces then to the case in which all the centralizers of noncentral
p-regular elements are conjugated. In order to solve this case, we are going to base
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our arguments on the proof of a theorem of Camina [2, Theorem 1]. We stress that
while Camina used the classification obtained by Gorenstein and Walter [3] of those
groups whose Sylow 2-subgroups are dihedral (this having been used to complete
the classification of the simple finite groups), we present a more simple proof by
making use of a well-known theorem of Kazarin which asserts that in any finite group
the subgroup generated by an element of prime power class size is always solvable
[4, Theorem 15.7].

Furthermore, we remark that it is not feasible that all the centralizers of noncentral
elements of a group G are conjugate, but it is easy to find examples where all
the centralizers of noncentral p-regular elements are conjugate (consequently G has
exactly two p-regular conjugacy class sizes) for some prime p. For instance, the
centralizers of all noncentral 2-elements of SL(2, 3) are conjugate and the 3-regular
class sizes are {1, 6}. Another example is Alt(4), whose 2-regular class sizes are {1, 4}.

We shall assume that every group is finite and we shall denote by G p′ the set of
p-regular elements of G.

2. Preliminary results

We shall need some results on conjugacy classes of p-regular elements.

LEMMA 1. Let G be a finite group. Then all the conjugacy class sizes in G p′ are
p-numbers if and only if G has Abelian p-complements.

PROOF. See [1, Lemma 2]. 2

The following is exactly [2, Lemma 1], but we present an easier proof. It
generalizes [1, Lemma 3] by eliminating the hypothesis of p-solvability.

LEMMA 2. Suppose that G is a finite group and that p is not a divisor of the sizes of
p-regular conjugacy classes. Then G = P × H where P is a Sylow p-subgroup and
H is a p-complement of G.

PROOF. Let g ∈ G and consider its {p, p′}-decomposition as g = gpgp′ . Suppose that
gp′ is noncentral. As the class size of gp′ is a p′-number, if we fix a Sylow p-subgroup
P of G, then there exists some t ∈ G such that gp ∈ P t

⊆ CG(gp′). Therefore,

G =
⋃
t∈G

P t CG(P
t ).

Then G = PCG(P) and so, G = P × H where H is a p-complement of G. 2

LEMMA 3. Let P be an Abelian p-group, with p a prime and let K be a group of
automorphisms of P such that |K | is divisible by p. Suppose that CP(x)= CP(y) for
all x, y ∈ K − {1}. Then Op′(K )= 1.

PROOF. Assume that H =Op′(K ) > 1 and we shall get a contradiction. Suppose
first that CP(H)= 1 and take some nontrivial x ∈ H . If there exists some element
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w ∈ CP(x)− {1}, then clearly w ∈ CP(H) and so, necessarily, CP(x)= 1 and hence,
CP(y)= 1 for all y ∈ K − {1}. But if we count the orbit sizes this cannot happen
because p divides |K |.

As a result, CP(H) 6= 1. Now, as P is Abelian, by coprime action we can write
P = CP(H)× [P, H ], and since CP(K )= CP(H) and K is a group of
automorphisms of P , it follows that [P, H ] 6= 1. Thus, if x ∈ K − {1}, then CP(x)=
CP(K )× C[P,H ](x). Now, if w ∈ C[P,H ](x)− {1}, then CP(w)= CP(K ), so w ∈
CP(K ) ∩ [P, H ] = 1. This is not possible, so C[P,H ](x)= 1 for all x ∈ K − {1}. But
this contradicts again the fact that p is a divisor of |K |. 2

LEMMA 4. Let G be a finite group such that all its Sylow subgroups are cyclic. If r
and s are two distinct primes dividing |G|, then there exists a subgroup U of G such
that |U | = rs.

PROOF. We work by induction on the order of G. First, it is known that any finite
group whose Sylow subgroups are all cyclic is solvable (see for instance [6, 10.1.10]).
Let M be a maximal normal subgroup of G, so |G : M | = p for some prime p. We can
assume that M is a p′-subgroup, otherwise we can apply the inductive hypothesis to M
and the result is obtained. Also, we only have to show that there exists a subgroup of
order pq for any prime q 6= p dividing |M |, since the other cases are obtained by the
inductive hypothesis as well. If P is a Sylow p-subgroup of G, then P acts coprimely
on M , so if we fix a prime q dividing |M |, we know (see for example [4, 14.3]) that
there exists some P-invariant Sylow q-subgroup Q of G, which is cyclic. Hence, if
x ∈ Q has order q , then U = 〈x〉P has order pq, as required. 2

3. Proof of Theorem A

We shall prove by induction on the order of G that either G has Abelian p-
complements or G is a {p, q}-group for some prime q 6= p without considering central
factors. Likewise, we notice that when G is solvable then the theorem is already proved
by [1, Theorem A]. We shall assume then that the p-complements of G are not Abelian
and that there exist at least two prime divisors of the order of G/Z(G) different from p,
in order to get a contradiction.

As we have already pointed out in the introduction, we are also going to assume
that all the centralizers of noncentral elements in G p′ are conjugated in G. In the other
case the theorem can be proved exactly the same as case 2 of [1, Theorem A], where
the condition of p-solvability is not necessary. More precisely, the conjugation of the
centralizers of all noncentral elements in G p′ will be used from Step 4.

The first two steps are exactly Steps 1 and 4 of [1, Theorem A], so we shall omit
their proofs.

STEP 1. We can assume that CG(x)= Px × Lx , with Px a Sylow p-subgroup of
CG(x) and Lx ≤ Z(CG(x)), for any noncentral x ∈ G p′ .

STEP 2. CG(x) < NG(CG(x)) for every noncentral x ∈ G p′ .
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STEP 3. If x ∈ G p′ is noncentral, then every Sylow subgroup of
NG(CG(x))/CG(x) is cyclic or generalized quaternion. Furthermore, if q 6= p is a
prime divisor of the order of this group, then the Sylow q-subgroup has order q .

We fix some x ∈ G p′ and write W = NG(CG(x))/CG(x). Let Q be a Sylow q-
subgroup of W for some prime q dividing |W | (possibly q = p). By the assumptions
we have made at the beginning of the proof there exists some prime r , divisor of
|G/Z(G)|, distinct from q and p. Clearly r divides |CG(x)| since all these centralizers
have the same size. Let Rx be a Sylow r -subgroup of CG(x) and notice that Q acts as a
permutation group on Rx since if g ∈ Q, then CRx (g)= Rx ∩ Z(G). Moreover, since
this is a coprime action and Rx is Abelian, we can write Rx = [Rx , Q] × CRx (Q).
Also, observe that Q acts fixed-point-freely on [Rx , Q], for if t ∈ [Rx , Q] − {1}, then
CG(t)= CG(x) by Step 1, so no element of Q − {1} may fix t . Consequently, we can
apply a well known result ([4, Theorem 16.12] for instance) to obtain that Q is cyclic
or generalized quaternion.

Assume now that q 6= p and take Qx a Sylow q-subgroup of CG(x), which is
normal by Step 1. Accordingly, Q acts on Qx = Qx/Z(G)q . If M is the semidirect
product defined by this action, we can take some element in Z(M) ∩ Qx which
has exactly order q . If t ∈ Qx , with t ∈ Qx is such an element, we can construct
the subgroup T = 〈t〉Z(G)q ≤ CG(x). Observe that Q acts faithfully on T , that is,
CQ(T )= 1, since CG(t)= CG(x) by Step 1. Furthermore, notice that [T, Q] ⊆
Z(G)q . We claim now that Q is a q-elementary subgroup. Let v ∈ Q. As tq

∈ Z(G),
then 1= [tq , v] = [t, v]q , where the last equality follows because T is Abelian. Also,
since [t, v] ∈ Z(G) we have [t, v]q = [t, vq

], so we conclude that vq
∈ CQ(T )= 1

and thus Q is elementary, as claimed. But this implies that Q is cyclic of order q by
the above paragraph, and hence the step is proved.

STEP 4. For any x ∈ G p′ , we have |NG(CG(x))/CG(x)| = q for some fixed prime
q 6= p.

First we are going to prove that W = NG(CG(x))/CG(x) is q-group for some
prime q (including the possibility q = p). Suppose that |W | is divisible by at least
two distinct primes and we shall prove that there exists a subgroup U of W such that
|U | is the product of two prime numbers. By Step 3, if every Sylow subgroup of
W is cyclic then there exists such subgroup U by Lemma 4. We can assume then
that 2 divides |W | and that the Sylow 2-subgroups of W are generalized quaternion,
so we can apply a classic theorem of Brauer and Suzuki (see [4, 45.1]) to obtain
that O2′(W )〈τ 〉� W , where τ is an involution of W . Again by Step 3, the Sylow
subgroups of O2′(W ) are cyclic, so if |O2′(W )| is divisible by at least two distinct
primes then the subgroup U exists by Lemma 4 as well. So we can suppose that
O2′(W ) is a cyclic r -group for some prime r 6= 2. Hence we can take α ∈O2′(W )

of order r and we may construct the subgroup U = 〈α〉〈τ 〉 of order 2r . As a result,
in all the cases we have a subgroup U ≤W such that |U | = rs, for some primes r
and s, as we wanted to prove. We shall see now that this leads to a contradiction.
If both primes are distinct from p, then either U has a normal r -complement or has
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a normal s-complement, and we shall assume without loss that the r -complement is
normal. In the other case, that is, if |U | = pr , with r 6= p then, arguing as in the first
paragraph of Step 3, we get that U operates as a permutation group and fixed-point-
freely on [Sx ,U ] − 1, where Sx is the Sylow s-subgroup of CG(x) for some prime
s 6∈ {p, r}. Notice that such s exists by the assumption we have made at the beginning.
Furthermore, in this second case (by applying for instance [4, Lemma 16.12]) we get
that U is cyclic, so in particular, U has nontrivial normal r -complement. Thus, in
both cases, U has a normal r -complement for some prime r 6= p. However, U is an
automorphism group of Rx , where Rx is the Abelian Sylow r -subgroup of CG(x).
Moreover, if u, v ∈U − {1}, then CRx (u)= CRx (v)= Z(G)r , so by Lemma 3, we get
Or ′(U )= 1, which is a contradiction.

Take now a noncentral Sylow r -subgroup Rx of CG(x), for some prime r 6= p. If
t ∈ Rx is noncentral, then by applying Step 1, we have CG(x)= CG(t). If w ∈
NG(Rx ), then by the same reason, CG(tw)= CG(t). Therefore, CG(x)= CG(t)w =
CG(x)w and w ∈ NG(CG(x)). Thus NG(Rx )≤ NG(CG(x)). Nevertheless, notice that
if Rx is not a Sylow r -subgroup of G, then Rx < NG(Rx ), so r divides |NG(Rx )/Rx |,
and this implies that |W | is divisible by r , so W cannot be a p-group. By taking into
account Step 3, the step is proved.

The fact that all the centralizers are conjugated implies that we can assume for the
rest of the proof that |NG(CG(x))/CG(x)| = q , for a fixed prime q 6= p and for any
noncentral x ∈ G p′ .

STEP 5. We can assume that Op(G)= 1 and that |G : NG(CG(x))| is a p-number
for any noncentral x ∈ G p′ .

We fix a noncentral x ∈ G p′ and for any prime r 6= p we take R a Sylow r -subgroup
of G. If R is Abelian, as all the centralizers of noncentral elements in G p′ have
the same order, then the Sylow r -subgroup of CG(x), Rx , is a Sylow r -subgroup
of G and R is conjugated to Rx . Thus, r does not divide |G : NG(CG(x))|. If R
is not Abelian, then it is an elementary fact that there exists some t ∈ R − Z(R)
such that CR(t)� R. As the centralizers of all noncentral p-regular elements are
conjugate, we can assume without loss that CG(t)= CG(x). In particular, CR(t)⊆
CG(x). On the other hand, is g ∈ NG(CR(t)), then tg

∈ CR(t) and CG(t)=
CG(tg) by Step 1. Consequently, CG(x)= CG(t)= CG(tg)= CG(x)g and so g ∈
NG(CG(x)). Thus R ≤ NG(CR(t))≤ NG(CG(x)), and so |G : NG(CG(x))| is an r ′-
number too. Accordingly, in both cases we have proved that |G : NG(CG(x))| is a
p-number.

Now we assume that Op(G) 6= 1 and we are going to see that G = G/Op(G)
satisfies the hypotheses of the theorem. We fix some noncentral element x ∈ G p′ .
Let y ∈ CG(x) and notice that [x, y] ∈Op(G). Hence, we can write x y

= xa, with
a ∈Op(G), so x y is a p′-element of CG(x)Op(G), and then x y

∈ L t
x , for some

t ∈Op(G), where Lx is the p′-subgroup appearing in Step 1. Therefore x yt−1
∈ Lx

and CG(x)= CG(x yt−1
). As a consequence, yt−1

∈ NG(CG(x)), so y = wt with
w ∈ NG(CG(x)). Thus, y = w and wx = xw, that is, [w, x] ∈Op(G). On the other
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hand, as w ∈ NG(CG(x)) and x is a p-regular element, this forces [w, x] to be a p-
regular element, so [x, w] = 1. Therefore, CG(x)= CG(x) and we conclude that G
has two class sizes of p-regular elements. By the inductive hypothesis, either G has
an Abelian p-complement or G = P Q × A, with P ∈ Sylp(G), Q ∈ Sylq(G) and
A ≤ Z(G). In the first case, G has an Abelian p-complement, contradicting our first
assumptions and in the second one, G is a solvable group, so the proof would be
finished.

STEP 6. Or (G)⊆ Z(G), for every prime r 6= p.
Let r be any prime distinct from p and suppose that K =Or (G) is noncentral.

By Step 5, we have K ⊆ NG(CG(x)), for all x ∈ G p′ . The hypothesis and Step 1
imply that there exists an Abelian noncentral normal Sylow s-subgroup of CG(x),
say Sx , for some prime s 6= p, r . Notice that Sx is normalized by K and thus
[Sx , K ] ⊆ Sx ∩ K = 1, so K ⊆ CG(Sx )= CG(x), where the last equality follows as
a consequence of Step 1. On the other hand, if t ∈ K − Z(G), then CG(t)= CG(x)
again by Step 1. Moreover, if w ∈ NG(K ), then CG(tw)= CG(x), hence CG(x)w =
CG(t)w = CG(tw)= CG(x). Thus, G = NG(K )⊆ NG(CG(x)) and CG(x)� G. By
Step 4, we have |G : CG(x)| = q . This means that m = q , so by applying Lemma 2
and Itô’s theorem on groups with two conjugacy class sizes (see for instance
[4, Theorem 33.6]) , we obtain G = P × Q × A, with P ∈ Sylp(G), Q ∈ Sylq(G)
and A Abelian, against our initial assumption.

STEP 7. We can now derive the conclusion.
First, we notice that Z(G)q 6= 1, since any element lying in the centre of a Sylow

q-subgroup of G must be central in G too because q divides m by Step 4. We write
G = G/Z(G)q and we shall prove that G has two p-regular conjugacy class sizes.

We can trivially assume that G is not Abelian, otherwise G would be solvable and
the proof is finished. If a ∈ G − Z(G), we observe that CG(a)⊆ CG(a). If CG(a)=
CG(a) for all a ∈ G − Z(G), it certainly follows that G has two p-regular conjugacy
class sizes, as we wanted. Suppose then that there is a p-regular element a ∈ G such
that CG(a) 6= CG(a). It is easy to see that if w ∈ CG(a) then w ∈ NG(CG(a)), that
is, CG(a)⊆ NG(CG(a)). As |NG(CG(a)) : CG(a)| = q by Step 4, this implies that
NG(CG(a))= CG(a) and so, by Step 5 we conclude that |G : CG(a)| is a p-number.
Now, by a renowned theorem due to Kazarin (see for example [4, 15.7]), the subgroup
〈aG
〉 is a solvable normal subgroup of G. It is easy to see then that this implies that

〈aG
〉 is a noncentral solvable normal subgroup of G too, but this is not possible in view

of Steps 5 and 6.
Therefore, we have proved that G has two p-regular conjugacy class sizes, and

by induction we obtain that G has an Abelian p-complement or G = P Q × A, with
P ∈ Sylp(G), Q ∈ Sylq(G) and A ⊆ Z(G). Both cases lead to the solvability of G, so
the proof is finished.

The last assertions in the statement of the theorem will follow then by immediate
application of Lemmas 1 and 2.
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