FINITE GROUPS WITH TWO \(p \)-REGULAR CONJUGACY CLASS LENGTHS II

ELENA ALEMANY, ANTONIO BELTRÁN\(^\natural\) and MARÍA JOSÉ FELIPE

(Received 16 June 2008)

Abstract

Let \(G \) be a finite group. We prove that if the set of \(p \)-regular conjugacy class sizes of \(G \) has exactly two elements, then \(G \) has Abelian \(p \)-complement or \(G = P Q \times A \), with \(P \in \text{Syl}_p(G) \), \(Q \in \text{Syl}_q(G) \) and \(A \) Abelian.

Keywords and phrases: finite-groups, \(p \)-regular elements, conjugacy class sizes.

1. Introduction

Itô proved in [5] that if \(G \) is a finite group such that all its noncentral conjugacy classes have equal size, then \(G = Q \times A \), where \(Q \) is a Sylow \(q \)-subgroup of \(G \), for some prime \(q \), and \(A \) lies in \(Z(G) \). In [1], Beltrán and Felipe proved a generalization of this result for \(p \)-regular conjugacy class sizes and some prime \(p \), with the assumption that the group \(G \) is \(p \)-solvable. In the present paper, we improve this result by showing that the \(p \)-solvability condition is not necessary.

Theorem A. Let \(G \) be a finite group. If the set of \(p \)-regular conjugacy class sizes of \(G \) has exactly two elements, for some prime \(p \), then \(G \) has Abelian \(p \)-complement or \(G = P Q \times A \), with \(P \in \text{Syl}_p(G) \), \(Q \in \text{Syl}_q(G) \) and \(A \subseteq Z(G) \), with \(q \) a prime distinct from \(p \). As a consequence, if \(\{1, m\} \) are the \(p \)-regular conjugacy class sizes of \(G \), then \(m = p^a q^b \). In particular, if \(b = 0 \) then \(G \) has Abelian \(p \)-complements and if \(a = 0 \) then \(G = P \times Q \times A \) with \(A \subseteq Z(G) \).

The proof given in [1] for \(p \)-solvable groups is divided into two cases, when the centralizers of noncentral \(p \)-regular elements are all \(G \)-conjugated and when they are not. In the second case, it is easy to check that the hypothesis of \(p \)-solvability is not needed, so our study reduces then to the case in which all the centralizers of noncentral \(p \)-regular elements are conjugated. In order to solve this case, we are going to base

\(^\natural\) This work was partially supported by grant MTM2007-68010-C03-03 and the second author is also supported by grant Fundació Caixa-Castelló P1-1A2006-06.

© 2009 Australian Mathematical Society 0004-9727/2009 $16.00
our arguments on the proof of a theorem of Camina [2, Theorem 1]. We stress that while Camina used the classification obtained by Gorenstein and Walter [3] of those groups whose Sylow 2-subgroups are dihedral (this having been used to complete the classification of the simple finite groups), we present a more simple proof by making use of a well-known theorem of Kazarin which asserts that in any finite group the subgroup generated by an element of prime power class size is always solvable [4, Theorem 15.7].

Furthermore, we remark that it is not feasible that all the centralizers of noncentral elements of a group G are conjugate, but it is easy to find examples where all the centralizers of noncentral p-regular elements are conjugate (consequently G has exactly two p-regular conjugacy class sizes) for some prime p. For instance, the centralizers of all noncentral 2-elements of $\text{SL}(2, 3)$ are conjugate and the 3-regular class sizes are $\{1, 6\}$. Another example is $\text{Alt}(4)$, whose 2-regular class sizes are $\{1, 4\}$.

We shall assume that every group is finite and we shall denote by $G_{p'}$ the set of p-regular elements of G.

2. Preliminary results

We shall need some results on conjugacy classes of p-regular elements.

Lemma 1. Let G be a finite group. Then all the conjugacy class sizes in $G_{p'}$ are p-numbers if and only if G has Abelian p-complements.

Proof. See [1, Lemma 2].

The following is exactly [2, Lemma 1], but we present an easier proof. It generalizes [1, Lemma 3] by eliminating the hypothesis of p-solvability.

Lemma 2. Suppose that G is a finite group and that p is not a divisor of the sizes of p-regular conjugacy classes. Then $G = P \times H$ where P is a Sylow p-subgroup and H is a p-complement of G.

Proof. Let $g \in G$ and consider its $\{p, p'\}$-decomposition as $g = g_p g_{p'}$. Suppose that $g_{p'}$ is noncentral. As the class size of $g_{p'}$ is a p'-number, if we fix a Sylow p-subgroup P of G, then there exists some $t \in G$ such that $g_p \in P^t \subseteq C_G(g_{p'})$. Therefore,

$$G = \bigcup_{t \in G} P^t C_G(P^t).$$

Then $G = PC_G(P)$ and so, $G = P \times H$ where H is a p-complement of G.

Lemma 3. Let P be an Abelian p-group, with p a prime and let K be a group of automorphisms of P such that $|K|$ is divisible by p. Suppose that $C_P(x) = C_P(y)$ for all $x, y \in K - \{1\}$. Then $O_{p'}(K) = 1$.

Proof. Assume that $H = O_{p'}(K) > 1$ and we shall get a contradiction. Suppose first that $C_P(H) = 1$ and take some nontrivial $x \in H$. If there exists some element...
Let G be a finite group such that all its Sylow subgroups are cyclic. If r and s are two distinct primes dividing $|G|$, then there exists a subgroup U of G such that $|U| = rs$.

Proof. We work by induction on the order of G. First, it is known that any finite group whose Sylow subgroups are all cyclic is solvable (see for example [6, 10.1.10]). Let M be a maximal normal subgroup of G, so $|G : M| = p$ for some prime p. We can assume that M is a p'-subgroup, otherwise we can apply the inductive hypothesis to M and the result is obtained. Also, we only have to show that there exists a subgroup of order pq for any prime $q \neq p$ dividing $|M|$, since the other cases are obtained by the inductive hypothesis as well. If P is a Sylow p-subgroup of G, then P acts coprimely on M, so if we fix a prime q dividing $|M|$, we know (see for example [4, 14.3]) that there exists some P-invariant Sylow q-subgroup Q of G, which is cyclic. Hence, if $x \in Q$ has order q, then $U = \langle x \rangle P$ has order pq, as required.

3. Proof of Theorem A

We shall prove by induction on the order of G that either G has Abelian p-complements or G is a $\{p, q\}$-group for some prime $q \neq p$ without considering central factors. Likewise, we notice that when G is solvable then the theorem is already proved by [1, Theorem A]. We shall assume then that the p-complements of G are not Abelian and that there exist at least two prime divisors of the order of $G/Z(G)$ different from p, in order to get a contradiction.

As we have already pointed out in the introduction, we are also going to assume that all the centralizers of noncentral elements in $G_{p'}$ are conjugated in G. In the other case the theorem can be proved exactly the same as case 2 of [1, Theorem A], where the condition of p-solvability is not necessary. More precisely, the conjugation of the centralizers of all noncentral elements in $G_{p'}$ will be used from Step 4.

The first two steps are exactly Steps 1 and 4 of [1, Theorem A], so we shall omit their proofs.

Step 1. We can assume that $C_G(x) = P_x \times L_x$, with P_x a Sylow p-subgroup of $C_G(x)$ and $L_x \leq Z(C_G(x))$, for any noncentral $x \in G_{p'}$.

Step 2. $C_G(x) < N_G(C_G(x))$ for every noncentral $x \in G_{p'}$.
STEP 3. If $x \in G_{p'}$ is noncentral, then every Sylow subgroup of $N_G(C_G(x))/C_G(x)$ is cyclic or generalized quaternion. Furthermore, if $q \neq p$ is a prime divisor of the order of this group, then the Sylow q-subgroup has order q.

We fix some $x \in G_{p'}$ and write $W = N_G(C_G(x))/C_G(x)$. Let Q be a Sylow q-subgroup of W for some prime q dividing $|W|$ (possibly $q = p$). By the assumptions we have made at the beginning of the proof there exists some prime r, divisor of $|G/Z(G)|$, distinct from q and p. Clearly r divides $|C_G(x)|$ since all these centralizers have the same size. Let R_x be a Sylow r-subgroup of $C_G(x)$ and notice that Q acts as a permutation group on R_x since if $g \in Q$, then $C_{R_x}(g) = R_x \cap Z(G)$. Moreover, since this is a coprime action and R_x is Abelian, we can write $R_x = [R_x, Q] \times C_{R_x}(Q)$.

Also, observe that Q acts fixed-point-freely on $[R_x, Q]$, for if $t \in [R_x, Q] - \{1\}$, then $C_G(t) = C_G(x)$ by Step 1, so no element of $Q - \{1\}$ may fix t. Consequently, we can apply a well known result ([4, Theorem 16.12] for instance) to obtain that Q is cyclic or generalized quaternion.

Assume now that $q \neq p$ and take Q_x a Sylow q-subgroup of $C_G(x)$, which is normal by Step 1. Accordingly, Q acts on $\overline{Q}_x = Q_x/Z(G)q$. If M is the semidirect product defined by this action, we can take some element in $Z(M) \cap \overline{Q}_x$ which has exactly order q. If $t \in \overline{Q}_x$, with $t \in Q_x$ is such an element, we can construct the subgroup $T = \langle t \rangle Z(G)q \leq C_G(x)$.

Observe that Q acts faithfully on T, that is, $C_Q(T) = 1$, since $C_G(t) = C_G(x)$ by Step 1. Furthermore, notice that $[T, Q] \subseteq Z(G)q$. We claim now that Q is a q-elementary subgroup. Let $v \in Q$. As $t^q \in Z(G)$, then $1 = [t^q, v] = [t, v]^q$, where the last equality follows because T is Abelian. Also, since $[t, v] \in Z(G)$ we have $[t, v]^q = [t, v]^q$, so we conclude that $v^q \in C_Q(T) = 1$ and thus Q is elementary, as claimed. But this implies that Q is cyclic of order q by the above paragraph, and hence the step is proved.

STEP 4. For any $x \in G_{p'}$, we have $|N_G(C_G(x))/C_G(x)| = q$ for some fixed prime $q \neq p$.

First we are going to prove that $W = N_G(C_G(x))/C_G(x)$ is q-group for some prime q (including the possibility $q = p$). Suppose that $|W|$ is divisible by at least two distinct primes and we shall prove that there exists a subgroup U of W such that $|U|$ is the product of two prime numbers. By Step 3, if every Sylow subgroup of W is cyclic then there exists such subgroup U by Lemma 4. We can assume then that 2 divides $|W|$ and that the Sylow 2-subgroups of W are generalized quaternion, so we can apply a classic theorem of Brauer and Suzuki (see [4, 45.1]) to obtain that $O_2(W)(\tau) \leq W$, where τ is an involution of W. Again by Step 3, the Sylow subgroups of $O_2(W)$ are cyclic, so if $|O_2(W)|$ is divisible by at least two distinct primes then the subgroup U exists by Lemma 4 as well. So we can suppose that $O_2(W)$ is a cyclic r-group for some prime $r \neq 2$. Hence we can take $\alpha \in O_2(W)$ of order r and we may construct the subgroup $U = \langle \alpha \rangle (\tau)$ of order $2r$. As a result, in all the cases we have a subgroup $U \leq W$ such that $|U| = rs$, for some primes r and s, as we wanted to prove. We shall see now that this leads to a contradiction. If both primes are distinct from p, then either U has a normal r-complement or has
a normal s-complement, and we shall assume without loss that the r-complement is normal. In the other case, that is, if $|U| = pr$, with $r \neq p$ then, arguing as in the first paragraph of Step 3, we get that U operates as a permutation group and fixed-point-freely on $[S_r, U] − 1$, where S_r is the Sylow s-subgroup of $C_G(x)$ for some prime $s \notin \{p, r\}$. Notice that such s exists by the assumption we have made at the beginning. Furthermore, in this second case (by applying for instance [4, Lemma 16.12]) we get that U is cyclic, so in particular, U has nontrivial r-complement. Thus, in both cases, U has a normal r-complement for some prime $r \neq p$. However, U is an automorphism group of R_x, where R_x is the Abelian Sylow r-subgroup of $C_G(x)$. Moreover, if $u, v \in U − \{1\}$, then $C_{R_x}(u) = C_{R_x}(v) = Z(G)_r$, so by Lemma 3, we get $O_{p'}(U) = 1$, which is a contradiction.

Take now a noncentral Sylow r-subgroup R_x of $C_G(x)$, for some prime $r \neq p$. If $t \in R_x$ is noncentral, then by applying Step 1, we have $C_G(x) = C_G(t)$. If $w \in N_G(R_x)$, then by the same reason, $C_G(t^w) = C_G(t)$. Therefore, $C_G(x) = C_G(t^w) = C_G(x)^w$ and $w \in N_G(C_G(x))$. Thus $N_G(R_x) \leq N_G(C_G(x))$. Nevertheless, notice that if R_x is not a Sylow r-subgroup of G, then $R_x \leq N_G(R_x)$, so r divides $|N_G(R_x)/R_x|$, and this implies that $|W|$ is divisible by r, so W cannot be a p-group. By taking into account Step 3, the step is proved.

The fact that all the centralizers are conjugated implies that we can assume for the rest of the proof that $|N_G(C_G(x))/C_G(x)| = q$, for a fixed prime $q \neq p$ and for any noncentral $x \in G_{p'}$.

STEP 5.* We can assume that $O_{p'}(G) = 1$ and that $|G : N_G(C_G(x))|$ is a p-number for any noncentral $x \in G_{p'}$.

We fix a noncentral $x \in G_{p'}$ and for any prime $r \neq p$ we take R a Sylow r-subgroup of G. If R is Abelian, as all the centralizers of noncentral elements in $G_{p'}$ have the same order, then the Sylow r-subgroup of G, R_x, is a Sylow r-subgroup of G and R is conjugated to R_x. Thus, r does not divide $|G : N_G(C_G(x))|$. If R is not Abelian, then it is an elementary fact that there exists some $t \in R − Z(R)$ such that $C_R(t) \triangleleft R$. As the centralizers of all noncentral p-regular elements are conjugate, we can assume without loss that $C_R(t) = C_G(x)$. In particular, $C_R(t) \leq C_G(x)$. On the other hand, is $g \in N_G(C_R(t))$, then $t^g \in C_R(t)$ and $C_R(t) = C_G(t^g)$ by Step 1. Consequently, $C_G(x) = C_G(t) = C_G(t^g) = C_G(x)^g$ and so $g \in N_G(C_G(x))$. Thus $R \leq N_G(C_R(t)) \leq N_G(C_G(x))$, and so $|G : N_G(C_G(x))|$ is an r'-number too. Accordingly, in both cases we have proved that $|G : N_G(C_G(x))|$ is a p-number.

Now we assume that $O_{p'}(G) \neq 1$ and we are going to see that $\overline{G} = G/O_{p'}(G)$ satisfies the hypotheses of the theorem. We fix some noncentral element $x \in G_{p'}$. Let $\overline{y} \in C_{G}(\overline{x})$ and notice that $[x, y] \in O_{p'}(G)$. Hence, we can write $x^y = xa$, with $a \in O_{p'}(G)$, so x^y is a p'-element of $C_G(x)O_{p'}(G)$, and then $x^y \in L_x^t$, for some $t \in O_{p'}(G)$, where L_x is the p'-subgroup appearing in Step 1. Therefore $x^{yt^{-1}} \in L_x$ and $C_G(x) = C_G(x^{yt^{-1}})$. As a consequence, $yt^{-1} \in N_G(C_G(x))$, so $y = wt$ with $w \in N_G(C_G(x))$. Thus, $\overline{y} = \overline{w}$ and $\overline{w} = \overline{x}\overline{w}$, that is, $[w, x] \in O_{p'}(G)$. On the other
hand, as \(w \in N_G(C_G(x)) \) and \(x \) is a \(p \)-regular element, this forces \([w, x] \) to be a \(p \)-regular element, so \([x, w] = 1 \). Therefore, \(C_{\overline{G}}(\overline{x}) = C_G(x) \) and we conclude that \(\overline{G} \) has two class sizes of \(p \)-regular elements. By the inductive hypothesis, either \(\overline{G} \) has an Abelian \(p \)-complement or \(\overline{G} = \overline{P} \overline{Q} \times \overline{A} \), with \(\overline{P} \in Syl_p(\overline{G}) \), \(\overline{Q} \in Syl_q(\overline{G}) \) and \(\overline{A} \leq Z(\overline{G}) \). In the first case, \(G \) has an Abelian \(p \)-complement, contradicting our first assumptions and in the second one, \(G \) is a solvable group, so the proof would be finished.

Step 6. \(O_r(G) \subseteq Z(G) \), for every prime \(r \neq p \).

Let \(r \) be any prime distinct from \(p \) and suppose that \(K = O_r(G) \) is noncentral. By Step 5, we have \(K \subseteq N_G(C_G(x)) \), for all \(x \in G_{p'} \). The hypothesis and Step 1 imply that there exists an Abelian noncentral normal Sylow \(s \)-subgroup of \(C_G(x) \), say \(S_x \), for some prime \(s \neq p, r \). Notice that \(S_x \) is normalized by \(K \) and thus \([S_x, K] \subseteq S_x \cap K = 1 \), so \(K \subseteq C_G(S_x) = C_G(x) \), where the last equality follows as a consequence of Step 1. On the other hand, if \(t \in K - Z(G) \), then \(C_G(t) = C_G(x) \) again by Step 1. Moreover, if \(w \in N_G(K) \), then \(C_G(t^w) = C_G(x) \), hence \(C_G(x)^w = C_G(t)^w = C_G(t^w) = C_G(x) \). Thus, \(G = N_G(K) \subseteq N_G(C_G(x)) \) and \(C_G(x) \subseteq G \). By Step 4, we have \(|G : C_G(x)| = q \). This means that \(m = q \), so by applying Lemma 2 and Ito’s theorem on groups with two conjugacy class sizes (see for instance \([4, \text{Theorem } 33.6]\)), we obtain \(G = P \times Q \times A \), with \(P \in Syl_p(G) \), \(Q \in Syl_q(G) \) and \(A \) Abelian, against our initial assumption.

Step 7. We can now derive the conclusion.

First, we notice that \(T(G)_q \neq 1 \), since any element lying in the centre of a Sylow \(q \)-subgroup of \(G \) must be central in \(G \) too because \(q \) divides \(m \) by Step 4. We write \(\overline{G} = G/Z(G)_q \) and we shall prove that \(\overline{G} \) has two \(p \)-regular conjugacy class sizes.

We can trivially assume that \(\overline{G} \) is not Abelian, otherwise \(G \) would be solvable and the proof is finished. If \(\overline{a} \in \overline{G} - Z(\overline{G}) \), we observe that \(C_{\overline{G}}(\overline{a}) \subseteq C_{\overline{G}}(\overline{a}) \). If \(C_{\overline{G}}(\overline{a}) = C_{\overline{G}}(\overline{a}) \) for all \(\overline{a} \in \overline{G} - Z(\overline{G}) \), it certainly follows that \(\overline{G} \) has two \(p \)-regular conjugacy class sizes, as we wanted. Suppose then that there is a \(p \)-regular element \(\overline{a} \in \overline{G} \) such that \(C_{\overline{G}}(\overline{a}) \neq C_{\overline{G}}(\overline{a}) \). It is easy to see that if \(\overline{w} \in C_{\overline{G}}(\overline{a}) \) then \(w \in N_G(C_G(a)) \), that is, \(C_{\overline{G}}(\overline{a}) \subseteq N_G(C_G(a)) \). As \(|N_G(C_G(a)) : C_G(a)| = q \) by Step 4, this implies that \(N_G(C_G(a)) = C_{\overline{G}}(\overline{a}) \) and so, by Step 5 we conclude that \(|G : C_{\overline{G}}(\overline{a})| \) is a \(p \)-number. Now, by a renowned theorem due to Kazarin (see for example \([4, 15.7]\)), the subgroup \(\langle \overline{a} \overline{G} \rangle \) is a solvable normal subgroup of \(\overline{G} \). It is easy to see then that this implies that \(\langle a^G \rangle \) is a noncentral solvable normal subgroup of \(G \) too, but this is not possible in view of Steps 5 and 6.

Therefore, we have proved that \(\overline{G} \) has two \(p \)-regular conjugacy class sizes, and by induction we obtain that \(\overline{G} \) has an Abelian \(p \)-complement or \(\overline{G} = \overline{P} \overline{Q} \times \overline{A} \), with \(\overline{P} \in Syl_p(\overline{G}) \), \(\overline{Q} \in Syl_q(\overline{G}) \) and \(\overline{A} \subseteq Z(\overline{G}) \). Both cases lead to the solvability of \(G \), so the proof is finished.

The last assertions in the statement of the theorem will follow then by immediate application of Lemmas 1 and 2.
References

ELENA ALEMANY, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain
e-mail: ealemany@mat.upv.es

ANTONIO BELTRÁN, Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain
e-mail: abeltran@mat.uji.es

MARÍA JOSÉ FELIPE, Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain
e-mail: mfelipe@mat.upv.es