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On the Neumann Problem for the
Schrodinger Equations with Singular
Potentials in Lipschitz Domains

Xiangxing Tao and Henggeng Wang

Abstract. 'We consider the Neumann problem for the Schrédinger equations —Au + Vu = 0, with
singular nonnegative potentials V belonging to the reverse Holder class By, in a connected Lipschitz
domain © C R". Given boundary datagin H? or L? for 1 —e < p < 2, where0 < € < %, it is shown
that there is a unique solution, u, that solves the Neumann problem for the given data and such that
the nontangential maximal function of Vu is in L? (9€2). Moreover, the uniform estimates are found.

1 Introduction

There has been increasing interest in boundary value problems with noncontinuous
data in Lipschitz domains (see [1, 3, 5, 10]). In particular, Shen [10] considered the
LP,1 < p < 2, Neumann problem for operator —A + V with positive potential V
belonging to the class B . Brown [1] studied the H? Neumann problem for Laplace
operator —Awith1 — e < p < 1 forsome 0 < € < 1.

The purpose of this paper is to extend these results in several directions without
additional assumption, and give optimal results for the solvability of the Neumann
problem for Schrodinger operators in Lipschitz domains with data in L? and H?. We
consider in this paper the Schrodinger equation —Au(X) + V(X)u(X) = 0, where V
is a nonnegative potential satisfying the reverse Holder condition B,,. As it is known,
a nonnegative locally L7 integrable function V(X) on R" is said to belong to B, (1 <
g < 00) if there exists a positive constant C; such that the reverse Holder inequality

1 . C
— [ vV(X)1dx q<—q/VXdX
(|B|/B” I IALCS

holds for every ball B in R" ([9]). One remarkable feature about the B, class is that,
if V€ B, for some g > 1, then there exists ¢ > 0, which depends only on 7 and the
constant C,, such that V € B,,.. On the other hand, B, C B, if1 < p < g < o0.
Throughout this paper, 2 C R”, n > 3, denotes the Lipschitz domain with con-
nected boundary. Our results will be proven for the regions above some Lipschitz
graphs, but it is not difficult to extend these results to general Lipschitz domains. For
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a point Q on the boundary 02, let I'(Q) denote the nontangential approach region
interior to €
Q) ={Xe:|X-Q|<2iX)}

and §(X) denotes the distance from X to the boundary of 2. For a function w which
is continuous in {2, we defined the nontangential maximal function w* on 0S) by

w (Q) = sup |w(X)|.
Xel(Q)

One of the main results is the following

Theorem 1.1 Letl < p <2andV € B, andlet g € LP(0) be given. Then there
exists a unique solution u to the following problem

—Au+Vu=0,inQ
(NLP) % — g ond
|(Vu)*||r a0y < oo,
where Ou/0v = g on O means that limy_,q xer(q) Vu(X) - 9(Q) = g(Q) for almost

every Q € 0%, and where U(Q) is the outward unit normal to OS2
Moreover, we have the following uniform estimates

an [ wwrpaes vt ac<c, [ gPao
oN Q o0

with each s € [0, 1], where

m(V,X):inf{% >0 12/ V(Y)dY < 1}.
B(X,r)

=

In order to pass to the H? theory, we need to recall some definitions. Let A(Q,r) =
Z(Q,r) N o for Q € 9N and r < diam(012), where

Z(Q,r) = {(X", X)) : | X' = Q| < 1,|Xy — Qu| < (1 +2m)r}

is the coordinate cylinder, and m is the Lipschitz character of the boundary. We
n—1

say that a is an atom for H?(992), == < p < 1, if for some Qo and r we have
supp a C A(Qo, 1), fA(Qo.r) adQ = 0and ||a||2(aqyn) < Cr~=D0/p=1/2),
The space HP(0N?) is defined as the collection

{g:g:Z)\jajwith Zx\f <oo}

for some sequence of atoms a;, and the quasi-normal for H?(0f2) given by

I8l o0y = nf{ Y A ig =" Na;}.
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We note that the dual space of H?(012), %1 < p < 1, is the space of Holder contin-
uous functions of exponent a(p) = (n — 1)(1 — p)/p, C*P(9€). Thus the pairing
between an element of H?(9€2) and C*?)(99) is defined. We will say Ou/Ov = g

in the H?-sense, if for each coordinate cylinder Z and compactly supported function
P € CP(9Q N Z) we have

im [ $(Q %ﬁ(@) dQ = /8 Q@) dQ

=0+ Jaanz

where u,(X) = u(X + 7(0,1)).

Theorem 1.2 LetV € Byand1l —e < p < 1, where0 < € < % depends on
the Lipschitz character. Given data g € HP(052), then there exists a unique function u

satisfying
—Au+Vu=0,inQ
ou .
(NHP) — =g, on 9Q in H-sense
ov
(Vi) || a0) < o0,
Moreover,
(1.2) (V)™ [ 00) < Cllgllmr@n)-

The work in this paper can be viewed as the continuation of the work in [10],
where Z. Shen solve the L?-Neumann problem (NLP) with B, potential V and 1 <
p < 2, and get the uniform estimate (1. 1) fors = 1;—;. A major difference between
Boo potential and B, potential is the following:

(1.3) V(X) <Cm(V,X) forV € By,

while the B, potential V' does not satisfy the above property. The property (1.3)
is important in the priori estimates, see for example Lemma 1.16 and 2.6 in [10]
for the Rellich estimates of solution to the L?-Neumann problem. Instead of using
this property, we establish some integral estimates for V, see Lemma 2.2, 2.3 and
3.4 below, for L?-Neumann problem. Moreover, we get over the non-integrability of
boundary data to solve the H”-Neumann problem.

The paper is organized in following way. We consider the case p = 2 of The-
orem 1.1 in Section 3 (Theorem 3.6), by establishing a variant of the Rellich type
identity (Theorem 3.1). As preliminary, we will observe the L?> Neumann problem
for the bounded domains (Theorem 2.8) in Section 2. The extensionto 1 < p < 2
in Theorem 1.1 and the case 1 — ¢ < p < 1 in Theorem 1.2 is done by two steps.
We first prove the uniqueness (Theorem 4.2) in Section 4. This is accomplished by
showing that for solutions u of the Schrodinger equation, we can control ||u*||14a0)
for some g > 1 by ||(Vu)*||rr00), when p > 1 — e. Finally, We prove the existence
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and regularity in Section 5 by estimating the L*-solutions with atomic data and found
the uniform estimates by harmonic techniques.

The letter C always denotes a positive constant which is not necessarily the same
at each occurrence, which depend at most on n, the Lipschitz character m and the
constant C,, for the class B,,. Capital letters X and Y will denote points in 2 or R",
while Q and P will be reserved for points on 9§2. We always assume that V' # 0 in
this paper, and let D(X, r) = B(X,r) N Q for X € Q.

2 Preliminaries
Observing that V' € B, implies that V(X)dX is a doubling measure, and V € B,
for some € > 0. Let U(V, X,r) = -5 fB(XJ) V(Y) dY, then, by Hélder’s inequality,

W(V,X,r) < C(H"#W(V,X,s) forany 0 < r < s < co. We define the auxiliary
function m(V, X) by

1
=sup{r: ¥(V,X,r) <1},
v, x) J

which appears in [11]. We will use the following property of m(V, X).

Lemma 2.1 [11] There exist two constants C > 0 and kg > 0 such that

1. m(V,X) ~ m(V,Y), if X = Y| < Cm(V,X)~;
2. m(V,Y) <C{1+|X =Y |m(V,X)}om(V,X);
3. m(V,Y) > C Y1+ |X — Y|m(V,X) o/ koD (v, X)

forevery X, Y in R".

Lemma 2.2 Letq > s> 0,q > max{l,sn/a}, o > 0, and k sufficiently large, then
there are positive constants ko, C and Cy. such that

V(Y)*
/ Xy (Y?na dy < Cro=%{1 + rm(V, X))}
X=Y|<r -

and

V(Y)sdY
(¥) < Cem(V, X)5@
o {1+ m(V, X)X — Y[} X — Y|r—@

foranyr>0,X € R"andV € B,

Proof Noting that V' € B, for some g, > g, it then follows from Holder’s inequality

V()
/ X (Y|)n—a dy < Crm UV, X, r)"
|X—Y|<r -

Put rg = m(V,X)™1, it is clear that U(V, X, r) < Cifr < ry. Sowelet 2/ry < r <
27*1ry, j > 0, one can see from the doubling property of V(Y )dY that

n—2
WV, X, r) < G0 < c2e) < C(rm(v, X)) ",
-
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where kg = log, C +2 — n > 0, thus the first formula holds.
Moreover, we have

/ V(Y)*dY - / vedy
o AL +m(V, X)X =YX Y[~ = [y yje 1 [X—Y[r—o

m(V,X)
o0
- vedy
+C Z 27kG=D / o < Cum(V,X)*.
-1 [X—Y|< 725 X —Y]
The lemma then follows. |

Lemma 2.3 LetV € B, for some q > n. Then there exists a dimensional constant
C, > 0 such that for every u € CY(R") and r > 0,

1
/ V232 dX < Cnn(XO,r)[—/ W2 dQ+/ IVul dX
D(Xo,1) " Jop(xo,n) D(Xo,1)

where 1(Xo, 1) = supxcp x,) U(V, X, 1)? /1%

Proof We consider the solution ¢ to the Neumann problem
A =V? in D(Xo, 7)

oY 1

o L V2dy on 0D(Xy, 1),
v |8D(X05 T')‘ D(Xo,7) ( '

where |0D(Xy, r)| denotes the surface measure of 9D(X, r). Then, with an analogous
argument as Lemma 1.1 in [4], we can get ||| o (x,.)) < Cut(Xo, 1), and then the
proof follows the lines of the proof of Lemma 1.1 in [4]. [ |

Lemma 2.4 [10] Suppose V € B, and —Au + Vu = 0 in Z(Xy, 2r) N §2 for some
Xo € Qandr > 0. Also assume (Vu)* € LZ(Z(XO,Zr) N 8(2) and that Ou/dv = 0
oru = 0on Z(Xy, 2r) NOSY. Then for each integer k there exists a constant Cy such that

Ck 1 5 3
sup  [u(X)| < —(—/ |u] dY) .
XED(Xo,7) {1 +rm(V, Xo) Y\ r ik, 2n)

One can deduce the lemma from the maximum principle and Cacciopoli’s in-
equalities of u, see [7] and [10] for detail.

Now let I'(X, Y) denote the fundamental solution for the Schrédinger operator
—A + V in R” with pole at X, and I'y(X,Y) be the fundamental solution for the
Laplace operator. Clearly, I'(X,Y) = I'(Y,X). Since V' > 0, it is well known that
0 <TXY) <TIyX,)Y) = m Moreover, we have the following inter
estimations (Theorem 1.14 in [10]), for every k > 0,

Cy 1
(2.2) [VI( < 1

X,Y)| < .
Yl s {1+m(V, X)X —Y|}r |X-Y|*!
with the constants Cy > 0 independentof X and Y € R".

https://doi.org/10.4153/CJM-2004-030-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-030-9

660 Tao and Wang

Lemma 2.5 AssumeV € B,and |X —Y| < 2/m(V,X), then

Cm(V,X)

|VXP(X7Y) - VXPO(X>Y)| < m
with the constant C independent of X and Y.

Proof Setr = 1|X — Y|, we first note that

I'X,Y) - T(X,Y) = —/ Lo(X, 2)V(2)I(Z,Y) dZ

n

From this and the interior estimates (2.1) and (2.2), we have

|IVxI'(X,Y) — VxI'o(X,Y)]

C V(Z C V(Z
- n—2/ ( )n—l dZ+ n—l/ ( )n—Z dZ
r 1z—x|<r 1Z = X r 1z—v|<r [Z = Y|
. / CV(2)dz
Z—X|>r _ n—1 _ k _ n—2
2 [Z = X[ m(V)|Z = YIJZ =Y
=L+L+1

Since V € B, a direct computation shows that I; + I, < Cr*~"m(V, X).

To estimate I3, we set ry = m ~ m, and use Holder’s inequality, B,, con-

dition and the doubling property to give

V(Z V(Z
B S L ROy S TR
r<|z—v|<n |Z =Y 1Z—v|>r 1Z = Y]

X = . vV, X
< SV | kS @i / v(z)dz < <7V X)

n—2 . n—2
r s 12— | <2717, r

where k sufficiently large. And so we obtain the Lemma 2.4. ]

For f € LP(092), p > 1, we define the single layer potential

SF(X) = / (X, Q) f(Q)dQ, forX €R"
oN

From estimate (2.2) and Lemma 2.5, and by using well-known techniques from the
theorem of Coifman, McIntosh and Meyer [2], one can show the following lemma
(see Theorem 1.18 in [10]).

Lemma 2.6 Let f € LP(00Q), 1 < p < oo and u = 8(f). Then ||(Vu)*||ro0) <
Cllfllzr o5, and for P € 09,

ou
0X;

(P) = %f(P)vi(P) +p.v. /89 VpI'(P, Q) f(Q) dQ.
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The rest of this section is devoted to solving L* Neumann problems for bounded
connect Lipschitz domains. Firstly, by Lemma 2.6, we can write

0 1 1
So8(A(P) = (51 +K) (N(P) = (51 +Ko+ K1) (NP,

where %I +Kj is the boundary operator related to Laplace’s equation, so it is invertible
on L*(92) and is a Fredholm operator with index zero. Since Lemma 2.5 implies that
Kj is compact, %I + K is a Fredholm operator with index zero. Moreover, it is not
difficult to show that %I +K is one-to-one and then invertible on L?(0S)). Hence, if
is a bounded Lipschitz domain and p = 2, the Neumann problem (NLP) is uniquely
solvable. Next we denote by N(X, Y) the corresponding Neumann function, and by
G(X,Y) the Green function.

Lemma 2.7  Let ) be a bounded Lipschitz domain. Assume k > 0 be any integer, then

Cx
— VIR 7p-

@23 INXDI+HIGX Y < e

with the constant Cy independent of X, Y and the diameter of domain ).

Proof Using Lemma 2.1 and 2.4, this lemma could be proved by an analogous argu-
ment as in [10]. n

Finally in this section we give the following theorem

Theorem 2.8  Suppose 2 is a bounded Lipschitz domain, V € B, and g € L*(69),
then there exists a unique solution u of the Schrédinger equation —Au + Vu = 0 in (2
such that ||(Vu)*||z00) < Cllgllzea), and 0u/0v = g a.e. on 0Q, in the sense of
non-tangential convergence. Moreover, we have the following uniform estimates

/ |Vu|*m(V, X) dX + / |ul>Vem(V, X)*~* dX < C, / lg)* dQ
Q Q o9
for each s € [0, 2], with the absolute constants C, independent of u and (.

Proof We just need to show the above uniform estimates. Let ¢(Q) = (Ju/dv)(Q), it
follows from Green’s representation formula, Holder’s inequality, the decay estimate
(2.3) and Lemma 2.2 that

2
0P = | / N(Q X)g(Q)dQ)
00

< Cm(V.X)! /d INQ 5P dQ.
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(2.4) / [u(X) PV (X)'m(V, X)*~* dX
Q

< Ck/(/ IN(Q,X)| Ig(QF dQ) VX m(V, X)?~ = dX
aNJoa

V(X)»m(V,X)>~>dX
C 2 / ’ d
= k/d Q) { o [T m(v, QX —QFx — g2 12

< C/ lg(Q)|* dQ
o0

To estimate the integral of |[Vu|?m(V, X) over the domain (2, we use the following
two inequalities (see Lemma 2.6 and 2.7 in [10])

(2.5) /IVu|2m<V,X) dXSC/ \%\ |ulm(V, Q) dQ
Q a0l Ov

+C/Q\Vu||u|m(V,X)2 dx
and
(2.6) /89|u|2m(V, Q)degC/Q|Vu||u\m(V,X)2dX+C/Q|u\2m(V7X)3 dx.
Now we have

/\vu|2m(v,X)ngc/ |g||u|m(V,Q)dQ+c/|Vu\|u|m(v,X)2dX
Q 1%9] Q
=¢ / g?dQ+C [ |uPm(V.Q?dQ+C / IV ul [um(V, X)? dX
[29) N Q

SC/ \g\de+C/ |Vu||u\m(V,X)2dX+C/|u\2m(V,X)3dX
o9 Q Q

Thus, by Cauchy inequalities, one can get

/|Vu|2m(V,X)dX§C/ |g|2dQ+C/ lu*m(V, X)? dX.
Q [29) Q

This and (2.4) imply the theorem. |

3 [? Data and Rellich Estimates

From now on, we assume that 2 is an unbounded region above a Lipschitz graph,
and write 2 = {(X’, X,) € R" : X,, > ©(X")}, where @ is a Lipschitz function. We
will use the following notation:

Qr={(X",X,) e R": [X'| <R,p(X") < X, < o(X") + R}.

The main result in this section is the following Rellich estimate.
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Theorem 3.1 LetV € B,, and —Au+ Vu = 0 in (Q, the region above a Lipschitz
graph. Also assume that (Vu)* € L2(09), Vu has non-tangential limits almost every-
where on 9Q and |u(X)| + |X| [Vu(X)| = O(|X|*™") as |X| — oc. Then

(3.1) / \@Pdw/ |vtu\2dQ+/ [ufPm(V, Q? dQ
oo Ov o0 o0

where Viu = Vu — (0u/0v)0 denotes the tangential derivative of u on OS.

Before carrying out the proof of Theorem 3.1, we give several lemmas:

Lemma 3.2 Suppose the same conditions as in Theorem 3.1, then
(3.2) / |Vu|*m(V,X) dX + / |ul?Vem(V, X)* "> dX < CS/ lg|* dQ
Q Q o0

for each s € [0, 2], with the absolute constants C, independent of u, V and .

Proof Let R > 0 be sufficiently large, it is suffices to show the above inequality with
Q replaced by 2z. Noting that the Neumann function in Qg has the same estimates
(2.3), and the constants Cy are independent of R. Therefore, we can show the above
inequality along the same lines of the proof of Theorem 2.8. ]

Lemma 3.3  Suppose the same conditions as in Theorem 3.1, then
(3.3) / IVul*m(V, X) dX < c/ ‘ @‘ lu|m(V, Q) dQ + c/ ulPm(V, X)? dX
Q aa! Ov Q
and
) ) Ou |2
(3.4) wQPmv,Q*dQ<c [ |25 dQ
0 an! oV

Proof We recall the inequalities (2.5) and (2.6) in the proof of Theorem 2.8, we can
see that (3.3) could be obtained from (2.5) and Cauchy’s inequality, and (3.4) from
(2.6) and Cauchy’s inequality. ]

Lemma 3.4  Suppose the same conditions as in Theorem 3.1, then
V(X
/ |u(X)|2# dx < c/ |Vu(X)|*m(V, X) dX
0 m(V, X) 0

+C/ u(Q)[*m(V, Q)ZdQ+C/ |u(X)|Pm(V, X)? dX.
N Q
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Proof Let Xo € Qand ry = m(V,Xp)"!, and let r = try, 1 < t < 2. Using
Lemma 2.3 and integrating in ¢, we get

(3.5) u|?V2 dX < C,,n(XO,ZrO){/ \Vul? dX

| X—Xo|<ro X—Xo|<2ro
XeN XeN
1 1
+— ul2dQ + = ul? dx}
1o J1Q—Xo| <21 15 JIX=Xo|<2r0
QeoN XeN

Recalling that n(Xo, 2ry) < Cry 2 with an absolute constant C. From this and
Lemma 2.1, the inequality (3.5) may be rewritten as

/ [ul?V2im" !l dx < C/X Xol< 1 |Vul*m"t dX
[X—Xo| < iz XEQ RIS vy
m(V.Xg) Xen

2 n+2 2 n+3
+C/Q7X0\S L |ultm dQ+C/X—Xo|§+ |u|*m"™* dX
Qe

mV.Xg) mV,Xg)

Q XeQ

with the constant C independent of Xj. Integrating both sides of the above inequality

in X, over {2, one can then prove the lemma by the property of m(V, X) in Lemma 2.1.
|

We are now in the position to give

The Proof of Theorem 3.1 Let ¥ = (vi,vp,...,0,) lle the unit normal to the
boundary 99, then v, = —1/41/1+ |V¢|>. We choose h = (0,...,0,1). Then a
simple computation shows that div (h|Vu|? — 2(AVu)Vu) = —2(hVu)Au, and so
we have the following Rellich identity

Oou Ou ou

—dQ -2 | Au
90 8X,, ov Q o) 8X,,

(3.6) / |Vu|*v,dQ =2 dx
o0

From this identity and the Cauchy inequality follows

/ \WPngc/ |%|2dQ+C/\Vu||u|VdX
o0 o Ov Q

Ou 2
gc/ ‘—” dQ+c/|vu|2m(V,X)dx+c/\u|2
aa! Ov Q Q

Ju
SC/ 72dQ7
6Q|8’U|

where the last inequality is because of Lemma 3.2. This, together with (3.4) in
Lemma 3.3, yields

V2dx
m(V, X)

(3.7) / \v,u|2do+/ lul>m(V, Q)deSC/ @|2dQ.
o0 o0

a0 8’1}

https://doi.org/10.4153/CJM-2004-030-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-030-9

On the Neumann Problem for Schrodinger Equations 665

On the other hand, noting Vu = V,u + % - U, one thus see from the Rellich
identity (3.6) that

/‘ ‘ dQ<C \Vtu|2dQ+C/|Vu|\u|VdX
o0 o0 Q

V2dx
m(V, X)

gc/ \Vtu|2dQ+C/|Vu|2m(V,X)dX+C/ ul?
o0 Q Q
) ou
c | |Vuldo+cC ‘—’ lu|m(V, Q) dQ
o0 a0 Ov
+C/|u\2m(V,X)3dX+C lul*m(V,Q)*dQ
Q 1%9]

where we have used Lemma 3.4 and the inequality (3.3) of Lemma 3.3. Thus we use
Cauchy’s inequality again to obtain

(3.8) /] ] dQ<C/ \Vtu|2dQ+C/ ulPm(V, Q) dQ
o0
+C/ lul*m(V, X)* dX
Q

Now we can deduce Theorem 3.1 from (3.7), (3.8) and the following Lemma 3.5.
|

Lemma 3.5  Suppose the same conditions as in Theorem 3.1. Then
[ eopmyxrax<c [ juQPmv,0?de
Q o9

Proof Let f € C§°(Q2) and v be the solution to —Vv + Vv = fin Qand v = 0 on
01, then

dQ \:
‘m(V,Q)*d / ) .
‘/Qu ‘/{m asz'u‘ (v, Q) Q ( BQ‘ m(V, Q)?

Then, by duality, it suffices to show that

|F(X)?
(3:9) AJ mweﬂgcémwxﬁﬂ‘

To show (3.9), let Q € 9N and r = 1/m(V,Q), using the Rellich identity (3.6)
for the function vn on D(Q, 2r), where n € Cg° (B(Q, 2r)) ,m = 1on B(Q,r) and
r|Vn| + r*|An| < C, we obtain

ov |2 a(vn)
KN ap =2 / Alvn) dx.
aU’ D(Q,2r) " 5‘X

2
[
B(Q,2r)Nox
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Therefore, by Cauchy’s inequality,

/ ov
|P—Q|<r,Pedn v

2
dp < Cr/ |f(X)|* dX
D(Q,2r)

vV 1
+C/ (rV2+—+—3)|v|2dX
D(Q.2r) rr

C
+ & / V2 dX.
" JpQan

By the usual trick, this gives

2
(3.10) / ‘@ 2 dQ <C/MdX
aa! Ov Q

m(V,Q?2 ~ m(V, X)3
|VV|2 ax V2 Vv X
o m(V,X) ’ C/Q m(V,X)? " m(V,X) +m(V, X) | [v]dX

Note that v(X) = fsz G(X,Y)f(Y)dY, where G(X,Y) denotes the Green function
on the domain 2, using Holder’s inequality, Fubini’s theorem, decay estimates of G
and Lemma 2.2, and using arguments similar to the proof of Theorem 2.8, we obtain

(3.11) [ veomwx-hwpax<c [ C.SIY
Q

Q I’YZ(V, X)3

where s € [0, 2]. We also get, from integration by parts,

C
/ |Vv|dX < —/ V| |v] dX+C/ [v| | f] dX,
D(Xo,7) " JD(Xp,2r) D(Xo,2r)

where r = m(V, X;) and X, € €. Then

|Vv|? ) fX))?
(3.12) /Qm(V,X) dxgc/QMX)\ m(V, X) d)<+c/97m(V,X)3 dx
SC/ AP
o m(V,X)?

Clearly, (3.10), (3.11) and (3.12) imply (3.9). Thus we complete the proof of the
lemma. |

Now from Theorem 3.1 and the standard arguments (see [3] or [10]), we can
obtain the following theorem.

Theorem 3.6  Suppose €) is a region above a Lipschitz graph, V. € B, and g €
L2(09), then the same results of Theorem 2.8 are valid.
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4 The Uniqueness

We always denote by N(X,Y) the Neumann function related to the L?-Neumann
problem for Schrodinger equation —Au + Vu = 0 in (), the region above a Lipschitz
graph. It is easy to see that N(X,Y) also satisfies the decay estimates, Lemma 2.7.

To prove the uniqueness, it is important to raise the integrability of the supposed
solution u especially for H? boundary data. The following lemma is crucial.

Lemma 4.1 Suppose —Au+Vu =0in{, V € By, andlet0 < p < n—1and
p* = (n—1)p/(n—1— p). Then there exists a constant C > 0 depending only on p
and the Lipschitz character of Q such that, for any 0 < o < min{1, p},

w*(Q)P"/* dQ +/ w*(Q)P dQ < C||(VW)*HIL7;(39)

/&79ﬂ{w*(Q)<C0|} N {w*(Q)>]Col }

where w = u — Cy, and Cy is a constant.

Proof Without loss of generality we may assume that (Vu)* € LP(92). Fix Q € 02
and X = (X', X,) € I'(Q). It is clear that (X’,s) € I'(Q) for s > X, and that
(X’,s) e T(P) if [P — Q| < C(s — X,,), where C is a constant depending only on the
Lipschitz character m. Thus

1) |VuX',s)| <C(s— Xn)_(”_l)/“(/ (V)" (P)| dp) e

AMQL(s—Xn))

forany o > 0. This implies that lim;_, o, Vu(X’,s) = 0, hence lim,_, o, (X', s) exists
and is independent of X’. Then we may take a constant Cy such that w = u — C,
vanishes at infinity. Also, after replacing u by u,(X) = u(X + 7(0, 1)) , We may
assume that w*(Q) < oo for almost every Q € 9f2.

On the other hand, since B( (X',s),C(s — Xn)) C  for proper small constant C,
we can see from the inner estimates that

1

C 1 :
(4.2) |Vw(X',s)| < { lu(Y)|? dY}
s—Xu | (s = X)" Jpxr 9).c5-x,))
< oW (Q) +|Co|

s— X,

for any s > X,,. Now we can see from (4.1) and (4.2) that

o0 !
o x| < [ | 2402 g
X, Os
00 « 11—« * @
cof|r@ie Ty o,
X, s = Xn AQCG—x,) (8= X"~
_ (Vw)*(P)
< Clw*(Q) +|Col]" “’/ s 9P
< Cw"(Q) ‘ OH 20 |Q_P|n—l—a
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This follows

(Vw)*(P)"

— P
o |Q— P|rize

(43) wiQ < Clw@+lcll ™
Noting (av/p*) = (a/p) — (o/(n — 1)) and p/ar > 1, we may obtain this lemma

from (4.3) by using the fraction integral theorem (see [12]), which completes the
proof. ]

Theorem 4.2 LetV € B,, —Au+ Vu = 0in Q and (Vu)* € LP(O0Q) for some
(n—1)/n < p < 2. Also assume Ou/0v = 0 non-tangentially almost everywhere on
O if p > 1, or Ou/Ov vanishes on OSY in the HP senseif p < 1. Then u = 0 in €.

Proof We prove the corresponding result in the case (n — 1)/n < p < 1. Fix any
pointY € €, and we may assume |Y| < r. Welet i) € C§°(R") be a cutoff function
satisfying ¥(X) = 1for | X — Y| < r, (X) = 0 for | X — Y| > 2r, and r|V¥| +
r?|Avp| < C with the constant C independent of r. Let w, = u, — Cy, we have

(4.4) w(Y) = —2 / Vw, VN dX — / w, AYN dX
Q Q

+ /(v — V)W, N dX — Co/ VN dX
Q Q

+ [ Nw, Chid dQ+ | Ny Owy
0 81} a0 ov

=Ki(Y) + K (Y) + K3(Y) + Ky (Y) + Ks5(Y) + Kg(Y)

dQ

Recalling that (Vu)* € LP(0Q) and p* = (n — 1)p/(n — 1 — p) > 1, 1let E(r) =
{X:r<|X—Y| < 2r}. Inview of Lemma 4.1, we have

001 5 [, @5 (35) 7 ()

and so K5(Y) — 0if r — oco. An analogous estimate yields K»(Y) — 0if r — oo.
In order to estimate the term K; (Y'), we note that (4.1) implies

Vi (X)] < C5C0 ™" VP|[(V)* |00

where §(X) denotes the distance from X to 0€2. Thus

C
<o [ vuoolax
r QNE(r)

C

rnfl

(V)|

Cr
;(59) /0 /m(vu)*(Q)PS—(n—l)(l—p)/P dQds

C

< oy (Vi) lwee) — 0, 7 — oo
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We also note that [w, (X)| < C6~"=D/®||w*|| (a0 for any a > 0; thus we can see
from Lemma 4.1 that
(4.5)

/ lw(X)|"/ "=V dx < C||w*||;ﬁ£”(5;2;/ SX)™VP o (X)| dX < C(r),
D(0,3r) D(0,3r)

with C(r) independent of 7. Since V € B, for some € > 0, one can set (1/3) =
[(mn—1)/n]+[1/(n+¢€)]and (1/t) = (1/8) — (2/n), and thent > 3 > 1. Using
fraction integral theorem and Cauchy’s inequality, we get

I1Ks|: 0. < CIIV = Vo)wz |l s pio,sr)

< Cllwr o o3m IV = Ve lliweo,30)-
From this and (4.5), we get

1Ko,y < CII(V = V7)

L”“(D(O,Svr)) — 0, T — 0

The term Kg vanishes as 7 — 0 because the normal derivative vanishes in the
HP-sense and the fact N(-,Y) € C*® for a(p) = (n — 1)(1 — p)/p. Finally, by
Lemma 2.2,

V(X)dX
Ky(Y) §C/ < C.
Kl C | T R = Vm(v, )X — V]2

Combining all the estimates above, we obtain
|u(Y)| < Cg, foranyr >R, and|Y| <,

with the constant Cr only dependent or R, where R is a constant sufficient large if
needed. Thus, using the decayed estimates in Lemma 2.4, we get u(Y) = 0. The
proof is complete. u

Remark 4.3 We can use similar arguments to prove Theorem 4.2 in the case 1 <
p <2

5 The Existence and Regularity

In this section, we will give the proof of Theorem 1.1 and 1.2. We first recall the
following decay Holder estimates for Neumann function related to the L*> Neumann
problem, see [8] or [10, p. 171].

Lemma5.1 LetV € B, and k > 0 be any integer. Then there exist 0 < a < 1, and
a positive constant Cy such that, for X,Y, Z € Qwith |Z — X| < -|X - Y|,

8+8m

CilZ — x|
V7 X)}k|X _ Y|n—2+(y’
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Lemma 5.2  Given an atom a for HP on 02, and 1 —e < p < 1 for some small e > 0,
let V€ B, and let u be the solution to —A\u+Vu = 0in Q such that (Vu)* € L*(0)

and Ou/0v = aa.e. on O8Y in the sense of nontangential convergence. Then Ju/Ov = a
in the H? -sense. Moreover

(5.2) (Vw*|PdQ < C
N

with the constant C independent of the atom a.

Proof Suppose suppa C A(Qq, 1) for some Qy € 9 and ro > 0, [|afl290) <
rg VWP gince J50a(Q) dQ = 0, we can write

MM:LJMKQ—NMQMMQﬂJ

Putr; = (8 + 8m)ry, then for X € , | X — Qo| > r1, we obtain from Lemma 5.1 that

Crgﬂr(nfl)/Z Crng(nfl)(lfp)/l’
(5.3) lu(X)| < WII%IILZ < X — Qe

Letr > 8r and €, = Q — Z(Qy, tr) for 1 <t < 1. Using Cauchy’s inequality and
the L?-estimate in §);, we get

1= Agle—eulsr (V) (QI" dQ
Qe

p/2
< c#"*l)(z*P’/z( / |(vu)*|2dQ)
o

< Crlme—p)/2 (/
QNAZ(Qo,tr)

Integrating in ¢, from Cacciopoli’s inequality and (5.3) we obtain that

p/2
I(r) S Crnflfnp/z{ [/4<|X7Q0‘<r/2 |VM(X)|2 dX}
ToxeQ

o)

/2 ap—(n—1)(1-p)
SCrn—l—p—nP/Z{/ |M(X)|2 dX} Sc{r_o} .
r/8<|X=Qo|<r r
Xen

Also, the L2-estimate gives
Z1)(2— /2
I :/ [(Vuy* [P dQ < Cry' ™ ")/2(/ (V[ dQ)
A(Qo.8r1) o

p/2
<crp e / aPaQ) " <c.
[29]
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Since ap — (n — 1)(1 — p) > 0 when we take p > 1 — —"—, we obtain
+00
[ Iurrae <ty 1 <c,
o0 s
with the constant C independent of the atom 4. The lemma is proved. ]
Finally, we turn to the proof of Theorem 1.1 and 1.2.
Proof of Theorem 1.1 The case p = 2 of Theorem 1.1 is treated in Theorem 3.6.
For 1 < p < 2, the uniqueness is contained in Theorem 4.2, while the existence
follows by interpolation between the L?-case and the H'-case which is contained in
Lemma 5.2. So it is sufficient to find the uniform estimates of Theorem 1.1.

We first consider the case p = 1 and use the same notation as in the proof of
Lemma 5.2. Analogously, for each s € [0, 1], we can estimate, by Lemma 2.2,

/ |u(X) |V (X)*m(V, X)*~> dX
D(Qo,r1)
S/ / IN(Q, X)| [a(Q)|V(X)'m(V, X)*~* dQdX
D(Qo,r1) /O
S/ [a(QldQ <C
N

and

/ |u(X)|V (X) m(V, X)*~* dX
|X—Qo|~2ir

< / | / IN(Q, X) — N(Qo, X)| [a(Q)|V (X)m(V, X)?~> dQdX
| X—Qo|~27r J A(Qo,r0)

< Curt V(X)ym(V,X)>~*dX
= “kTo X = Qo2 {1 + X — Qolm(V, Qo) }
[ X—Qo|~2ir 0 0 s K0

< Cc27ie,

Therefore there exists an absolute constant C such that

(5.4) / |u(X) |V (X)*m(V, X)*"* dX < C,,
Q

for the solution function u related to the boundary data a, any atom for H'. On the
other hand, recalling Theorem 3.6, we have

(5.5) / )PV (X)*m(V, X dX < C. / QP dQ,
Q o0
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for any boundary data ¢ € L*(9f2), where s € [0,2]. Now combining (5.4) with
(5.5), we can get the desired results by interpolation theorem. Theorem 1.1 is ob-
tained. [ ]

The Proof of Theorem 1.2 Theorem 1.2 can be regarded as a corollary of Theo-
rem 4.2 and Lemma 5.2. u
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