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On the Neumann Problem for the
Schrödinger Equations with Singular
Potentials in Lipschitz Domains

Xiangxing Tao and Henggeng Wang

Abstract. We consider the Neumann problem for the Schrödinger equations −∆u + Vu = 0, with

singular nonnegative potentials V belonging to the reverse Hölder class Bn, in a connected Lipschitz

domain Ω ⊂ Rn. Given boundary data g in H p or Lp for 1− ε < p ≤ 2, where 0 < ε < 1
n

, it is shown

that there is a unique solution, u, that solves the Neumann problem for the given data and such that

the nontangential maximal function of ∇u is in Lp(∂Ω). Moreover, the uniform estimates are found.

1 Introduction

There has been increasing interest in boundary value problems with noncontinuous

data in Lipschitz domains (see [1, 3, 5, 10]). In particular, Shen [10] considered the

Lp , 1 < p ≤ 2, Neumann problem for operator −∆ + V with positive potential V

belonging to the class B∞. Brown [1] studied the H p Neumann problem for Laplace

operator −∆ with 1 − ε < p < 1 for some 0 < ε < 1
n

.

The purpose of this paper is to extend these results in several directions without

additional assumption, and give optimal results for the solvability of the Neumann

problem for Schrödinger operators in Lipschitz domains with data in Lp and H p . We

consider in this paper the Schrödinger equation −∆u(X) + V (X)u(X) = 0, where V

is a nonnegative potential satisfying the reverse Hölder condition Bn. As it is known,

a nonnegative locally Lq integrable function V (X) on Rn is said to belong to Bq (1 <
q ≤ ∞) if there exists a positive constant Cq such that the reverse Hölder inequality

( 1

|B|

∫

B

V (X)q dX
)

1
q

≤
Cq

|B|

∫

B

V (X) dX

holds for every ball B in Rn ([9]). One remarkable feature about the Bq class is that,

if V ∈ Bq for some q > 1, then there exists ε > 0, which depends only on n and the

constant Cq, such that V ∈ Bq+ε. On the other hand, Bq ⊂ Bp if 1 < p < q ≤ ∞.

Throughout this paper, Ω ⊂ Rn, n ≥ 3, denotes the Lipschitz domain with con-

nected boundary. Our results will be proven for the regions above some Lipschitz

graphs, but it is not difficult to extend these results to general Lipschitz domains. For
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a point Q on the boundary ∂Ω, let Γ(Q) denote the nontangential approach region

interior to Ω

Γ(Q) = {X ∈ Ω : |X − Q| < 2 δ(X)}

and δ(X) denotes the distance from X to the boundary of Ω. For a function w which

is continuous in Ω, we defined the nontangential maximal function w∗ on ∂Ω by

w∗(Q) = sup
X∈Γ(Q)

|w(X)|.

One of the main results is the following

Theorem 1.1 Let 1 < p ≤ 2 and V ∈ Bn, and let g ∈ Lp(∂Ω) be given. Then there

exists a unique solution u to the following problem

(NLP)

−∆u + Vu = 0, in Ω

∂u

∂υ
= g, on ∂Ω

‖(∇u)∗‖Lp(∂Ω) <∞,

where ∂u/∂υ = g on ∂Ω means that limX→Q,X∈Γ(Q) ∇u(X) ·~υ(Q) = g(Q) for almost

every Q ∈ ∂Ω, and where~υ(Q) is the outward unit normal to ∂Ω.

Moreover, we have the following uniform estimates

(1.1)

∫

∂Ω

|(∇u)∗|p dQ +

∫

Ω

|u|pV spm(V,X)1+p−2sp dX ≤ Cs,p

∫

∂Ω

|g|p dQ

with each s ∈ [0, 1], where

m(V,X) = inf{
1

r
> 0 :

1

rn−2

∫

B(X,r)

V (Y ) dY ≤ 1}.

In order to pass to the H p theory, we need to recall some definitions. Let Λ(Q, r) =

Z(Q, r) ∩ ∂Ω for Q ∈ ∂Ω and r < diam(∂Ω), where

Z(Q, r) = {(X ′,Xn) : |X ′ − Q ′| < r, |Xn − Qn| < (1 + 2m)r}

is the coordinate cylinder, and m is the Lipschitz character of the boundary. We

say that a is an atom for H p(∂Ω), n−1
n

< p ≤ 1, if for some Q0 and r we have

supp a ⊂ Λ(Q0, r),
∫

Λ(Q0,r)
a dQ = 0 and ‖a‖L2(Λ(Q0,r)) ≤ Cr−(n−1)(1/p−1/2).

The space H p(∂Ω) is defined as the collection

{

g : g =

∑

λ ja j with
∑

λ
p
j <∞

}

for some sequence of atoms a j , and the quasi-normal for H p(∂Ω) given by

‖g‖
p
H p(∂Ω) = inf

{

∑

λ
p
j : g =

∑

λ ja j

}

.
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We note that the dual space of H p(∂Ω), n−1
n
< p < 1, is the space of Hölder contin-

uous functions of exponent α(p) = (n − 1)(1 − p)/p, Cα(p)(∂Ω). Thus the pairing

between an element of H p(∂Ω) and Cα(p)(∂Ω) is defined. We will say ∂u/∂υ = g

in the H p-sense, if for each coordinate cylinder Z and compactly supported function

ψ ∈ Cα(p)(∂Ω ∩ Z) we have

lim
τ→0+

∫

∂Ω∩Z

ψ(Q)
∂uτ

∂υ
(Q) dQ =

∫

∂Ω

ψ(Q)g(Q) dQ

where uτ (X) = u(X + τ (0, 1)).

Theorem 1.2 Let V ∈ Bn and 1 − ε < p ≤ 1, where 0 < ε < 1
n

depends on

the Lipschitz character. Given data g ∈ H p(∂Ω), then there exists a unique function u

satisfying

(NHP)

−∆u + Vu = 0, in Ω

∂u

∂υ
= g, on ∂Ω in H p-sense

‖(∇u)∗‖Lp(∂Ω) <∞,

Moreover,

(1.2) ‖(∇u)∗‖Lp(∂Ω) ≤ C‖g‖H p(∂Ω).

The work in this paper can be viewed as the continuation of the work in [10],

where Z. Shen solve the Lp-Neumann problem (NLP) with B∞ potential V and 1 <
p ≤ 2, and get the uniform estimate (1. 1) for s =

1+p
2p

. A major difference between

B∞ potential and Bn potential is the following:

(1.3) V (X) ≤ Cm(V,X) for V ∈ B∞,

while the Bn potential V does not satisfy the above property. The property (1.3)

is important in the priori estimates, see for example Lemma 1.16 and 2.6 in [10]

for the Rellich estimates of solution to the Lp-Neumann problem. Instead of using

this property, we establish some integral estimates for V , see Lemma 2.2, 2.3 and

3.4 below, for Lp-Neumann problem. Moreover, we get over the non-integrability of

boundary data to solve the H p-Neumann problem.

The paper is organized in following way. We consider the case p = 2 of The-

orem 1.1 in Section 3 (Theorem 3.6), by establishing a variant of the Rellich type

identity (Theorem 3.1). As preliminary, we will observe the L2 Neumann problem

for the bounded domains (Theorem 2.8) in Section 2. The extension to 1 < p < 2

in Theorem 1.1 and the case 1 − ε < p ≤ 1 in Theorem 1.2 is done by two steps.

We first prove the uniqueness (Theorem 4.2) in Section 4. This is accomplished by

showing that for solutions u of the Schrödinger equation, we can control ‖u∗‖Lq(∂Ω)

for some q > 1 by ‖(∇u)∗‖Lp(∂Ω), when p > 1 − ε. Finally, We prove the existence
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and regularity in Section 5 by estimating the L2-solutions with atomic data and found

the uniform estimates by harmonic techniques.

The letter C always denotes a positive constant which is not necessarily the same

at each occurrence, which depend at most on n, the Lipschitz character m and the

constant Cn for the class Bn. Capital letters X and Y will denote points in Ω or Rn,

while Q and P will be reserved for points on ∂Ω. We always assume that V 6= 0 in

this paper, and let D(X, r) = B(X, r) ∩ Ω for X ∈ Ω̄.

2 Preliminaries

Observing that V ∈ Bn implies that V (X)dX is a doubling measure, and V ∈ Bn+ε

for some ε > 0. Let Ψ(V,X, r) =
1

rn−2

∫

B(X,r)
V (Y ) dY , then, by Hölder’s inequality,

Ψ(V,X, r) ≤ C( r
s
)1+ ε

n+ε Ψ(V,X, s) for any 0 < r < s < ∞. We define the auxiliary

function m(V,X) by

1

m(V,X)
= sup

r>0

{r : Ψ(V,X, r) ≤ 1},

which appears in [11]. We will use the following property of m(V,X).

Lemma 2.1 [11] There exist two constants C > 0 and k0 > 0 such that

1. m(V,X) ∼ m(V,Y ), if |X − Y | ≤ Cm(V,X)−1;

2. m(V,Y ) ≤ C{1 + |X − Y |m(V,X)}k0 m(V,X);

3. m(V,Y ) ≥ C−1{1 + |X − Y |m(V,X)}k0/(k0+1)m(V,X)

for every X, Y in Rn.

Lemma 2.2 Let q > s ≥ 0, q ≥ max{1, sn/α}, α > 0, and k sufficiently large, then

there are positive constants k0, C and Ck such that

∫

|X−Y |<r

V (Y )s

|X − Y |n−α
dY ≤ Crα−2s{1 + rm(V,X)}sk0

and
∫

Rn

V (Y )s dY

{1 + m(V,X)|X − Y |}k|X − Y |n−α
≤ Ckm(V,X)2s−α

for any r > 0, X ∈ Rn and V ∈ Bq.

Proof Noting that V ∈ Bq0
for some q0 > q, it then follows from Hölder’s inequality

∫

|X−Y |<r

V (Y )s

|X − Y |n−α
dY ≤ Crα−2s

Ψ(V,X, r)s.

Put r0 = m(V,X)−1, it is clear that Ψ(V,X, r) ≤ C if r ≤ r0. So we let 2 jr0 ≤ r <
2 j+1r0, j ≥ 0, one can see from the doubling property of V (Y )dY that

Ψ(V,X, r) ≤ C j+1 rn−2
0

rn−2
≤ C(22−nC) j ≤ C

(

rm(V,X)
) k0
,
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where k0 = log2 C + 2 − n > 0, thus the first formula holds.

Moreover, we have

∫

Rn

V (Y )s dY

{1 + m(V,X)|X − Y |}k|X − Y |n−α
≤

∫

|X−Y |< 1
m(V,X)

V s dY

|X − Y |n−α

+ C

∞
∑

j=1

2−k( j−1)

∫

|X−Y |< 2 j

m(V,X)

V sdY

|X − Y |n−α
≤ Ckm(V,X)2s−α.

The lemma then follows.

Lemma 2.3 Let V ∈ Bq for some q > n. Then there exists a dimensional constant

Cn > 0 such that for every u ∈ C1(Rn) and r > 0,
∫

D(X0,r)

V 2u2 dX ≤ Cnη(X0, r)
[ 1

r

∫

∂D(X0,r)

u2 dQ +

∫

D(X0,r)

|∇u|2 dX
]

where η(X0, r) = supX∈Br (X0) Ψ(V,X, r)2/r2.

Proof We consider the solution ψ to the Neumann problem

4ψ = V 2 in D(X0, r)

∂ψ

∂υ
=

1

|∂D(X0, r)|

∫

D(X0,r)

V 2 dY on ∂D(X0, r),

where |∂D(X0, r)| denotes the surface measure of ∂D(X0, r). Then, with an analogous

argument as Lemma 1.1 in [4], we can get ‖ψ‖L∞(D(X0,r)) ≤ Cnη(X0, r), and then the

proof follows the lines of the proof of Lemma 1.1 in [4].

Lemma 2.4 [10] Suppose V ∈ Bn, and −∆u + Vu = 0 in Z(X0, 2r) ∩ Ω for some

X0 ∈ Ω̄ and r > 0. Also assume (∇u)∗ ∈ L2
(

Z(X0, 2r) ∩ ∂Ω
)

and that ∂u/∂υ = 0

or u = 0 on Z(X0, 2r)∩ ∂Ω. Then for each integer k there exists a constant Ck such that

sup
X∈D(X0,r)

|u(X)| ≤
Ck

{1 + rm(V,X0)}k

( 1

rn

∫

D(X0,2r)

|u|2 dY
)

1
2

.

One can deduce the lemma from the maximum principle and Cacciopoli’s in-

equalities of u, see [7] and [10] for detail.

Now let Γ(X,Y ) denote the fundamental solution for the Schrödinger operator

−∆ + V in Rn with pole at X, and Γ0(X,Y ) be the fundamental solution for the

Laplace operator. Clearly, Γ(X,Y ) = Γ(Y,X). Since V ≥ 0, it is well known that

0 ≤ Γ(X,Y ) ≤ Γ0(X,Y ) =
1

ωn(n−2)|X−Y |n−2 . Moreover, we have the following inter

estimations (Theorem 1.14 in [10]), for every k > 0,

|Γ(X,Y )| ≤
Ck

{1 + m(V,X)|X − Y |}k
·

1

|X − Y |n−2
(2.1)

|∇Γ(X,Y )| ≤
Ck

{1 + m(V,X)|X − Y |}k
·

1

|X − Y |n−1
(2.2)

with the constants Ck > 0 independent of X and Y ∈ Rn.
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Lemma 2.5 Assume V ∈ Bn and |X − Y | ≤ 2/m(V,X), then

|∇XΓ(X,Y ) −∇XΓ0(X,Y )| ≤
Cm(V,X)

|X − Y |n−2

with the constant C independent of X and Y .

Proof Set r =
1
2
|X − Y |, we first note that

Γ(X,Y ) − Γ0(X,Y ) = −

∫

Rn

Γ0(X,Z)V (Z)Γ(Z,Y ) dZ

From this and the interior estimates (2.1) and (2.2), we have

|∇XΓ(X,Y ) −∇XΓ0(X,Y )|

≤
C

rn−2

∫

|Z−X|<r

V (Z)

|Z − X|n−1
dZ +

C

rn−1

∫

|Z−Y |<r

V (Z)

|Z − Y |n−2
dZ

+ C

∫

|Z−X|≥r
|Z−Y |≥r

CkV (Z) dZ

|Z − X|n−1{1 + m(V,Y )|Z − Y |}k|Z − Y |n−2

= I1 + I2 + I3

Since V ∈ Bn, a direct computation shows that I1 + I2 ≤ Cr2−nm(V,X).

To estimate I3, we set r0 =
1

m(V,X)
∼ 1

m(V,Y )
, and use Hölder’s inequality, Bn con-

dition and the doubling property to give

I3 ≤ C

∫

r≤|Z−Y |≤r0

V (Z)

|Z − Y |2n−3
dZ + Ck · rk

0

∫

|Z−Y |≥r0

V (Z)

|Z − Y |2n−3+k
dZ

≤
Cm(V,X)

rn−2
+ Ckrk

0

∞
∑

j=1

(2 jr0)3−k−2n

∫

|Z−Y |≤2 j+1r0

V (Z) dZ ≤
Cm(V,X)

rn−2

where k sufficiently large. And so we obtain the Lemma 2.4.

For f ∈ Lp(∂Ω), p > 1, we define the single layer potential

S f (X) =

∫

∂Ω

Γ(X,Q) f (Q) dQ, for X ∈ Rn.

From estimate (2.2) and Lemma 2.5, and by using well-known techniques from the

theorem of Coifman, McIntosh and Meyer [2], one can show the following lemma

(see Theorem 1.18 in [10]).

Lemma 2.6 Let f ∈ Lp(∂Ω), 1 < p < ∞ and u = S( f ). Then ‖(∇u)∗‖Lp(∂Ω) ≤
C‖ f ‖Lp(∂Ω), and for P ∈ ∂Ω,

∂u

∂Xi

(P) =
1

2
f (P)υi(P) + p. v.

∫

∂Ω

∇PΓ(P,Q) f (Q) dQ.
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The rest of this section is devoted to solving L2 Neumann problems for bounded

connect Lipschitz domains. Firstly, by Lemma 2.6, we can write

∂

∂υ
S( f )(P) =

( 1

2
I + K

)

( f )(P) =

( 1

2
I + K0 + K1

)

( f )(P),

where 1
2
I+K0 is the boundary operator related to Laplace’s equation, so it is invertible

on L2(∂Ω) and is a Fredholm operator with index zero. Since Lemma 2.5 implies that

K1 is compact, 1
2
I + K is a Fredholm operator with index zero. Moreover, it is not

difficult to show that 1
2
I +K is one-to-one and then invertible on L2(∂Ω). Hence, if Ω

is a bounded Lipschitz domain and p = 2, the Neumann problem (NLP) is uniquely

solvable. Next we denote by N(X,Y ) the corresponding Neumann function, and by

G(X,Y ) the Green function.

Lemma 2.7 Let Ω be a bounded Lipschitz domain. Assume k > 0 be any integer, then

(2.3) |N(X,Y )| + |G(X,Y )| ≤
Ck

{1 + m(V,X)|X − Y |}k|X − Y |n−2

with the constant Ck independent of X, Y and the diameter of domain Ω.

Proof Using Lemma 2.1 and 2.4, this lemma could be proved by an analogous argu-

ment as in [10].

Finally in this section we give the following theorem

Theorem 2.8 Suppose Ω is a bounded Lipschitz domain, V ∈ Bn and g ∈ L2(∂Ω),

then there exists a unique solution u of the Schrödinger equation −∆u + Vu = 0 in Ω

such that ‖(∇u)∗‖L2(∂Ω) ≤ C‖g‖L2(∂Ω), and ∂u/∂υ = g a.e. on ∂Ω, in the sense of

non-tangential convergence. Moreover, we have the following uniform estimates

∫

Ω

|∇u|2m(V,X) dX +

∫

Ω

|u|2V sm(V,X)3−2s dX ≤ Cs

∫

∂Ω

|g|2 dQ

for each s ∈ [0, 2], with the absolute constants C s independent of u and Ω.

Proof We just need to show the above uniform estimates. Let g(Q) = (∂u/∂υ)(Q), it

follows from Green’s representation formula, Hölder’s inequality, the decay estimate

(2.3) and Lemma 2.2 that

|u(X)|2 =

∣

∣

∣

∫

∂Ω

N(Q,X)g(Q) dQ
∣

∣

∣

2

≤ Cm(V,X)−1

∫

∂Ω

|N(Q,X)| |g(Q)|2 dQ,
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and
∫

Ω

|u(X)|2V (X)sm(V,X)3−2s dX(2.4)

≤ Ck

∫

Ω

(

∫

∂Ω

|N(Q,X)| |g(Q)|2 dQ
)

V (X)sm(V,X)2−2s dX

≤ Ck

∫

∂Ω

|g(Q)|2
{

∫

Ω

V (X)sm(V,X)2−2s dX

{1 + m(V,Q)|X − Q|}k|X − Q|n−2
} dQ

≤ C

∫

∂Ω

|g(Q)|2 dQ

To estimate the integral of |∇u|2m(V,X) over the domain Ω, we use the following

two inequalities (see Lemma 2.6 and 2.7 in [10])
∫

Ω

|∇u|2m(V,X) dX ≤ C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣
|u|m(V,Q) dQ(2.5)

+ C

∫

Ω

|∇u||u|m(V,X)2 dX

and

(2.6)

∫

∂Ω

|u|2m(V,Q)2 dQ ≤ C

∫

Ω

|∇u| |u|m(V,X)2 dX + C

∫

Ω

|u|2m(V,X)3 dX.

Now we have
∫

Ω

|∇u|2m(V,X) dX ≤ C

∫

∂Ω

|g| |u|m(V,Q) dQ + C

∫

Ω

|∇u| |u|m(V,X)2 dX

≤ C

∫

∂Ω

|g|2 dQ + C

∫

∂Ω

|u|2m(V,Q)2 dQ + C

∫

Ω

|∇u| |u|m(V,X)2 dX

≤ C

∫

∂Ω

|g|2 dQ + C

∫

Ω

|∇u| |u|m(V,X)2 dX + C

∫

Ω

|u|2m(V,X)3 dX

Thus, by Cauchy inequalities, one can get
∫

Ω

|∇u|2m(V,X) dX ≤ C

∫

∂Ω

|g|2 dQ + C

∫

Ω

|u|2m(V,X)3 dX.

This and (2.4) imply the theorem.

3 L2 Data and Rellich Estimates

From now on, we assume that Ω is an unbounded region above a Lipschitz graph,

and write Ω = {(X ′,Xn) ∈ Rn : Xn > ϕ(X ′)}, where ϕ is a Lipschitz function. We

will use the following notation:

ΩR = {(X ′,Xn) ∈ Rn : |X ′| < R, ϕ(X ′) < Xn < ϕ(X ′) + R}.

The main result in this section is the following Rellich estimate.
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Theorem 3.1 Let V ∈ Bn, and −∆u + Vu = 0 in Ω, the region above a Lipschitz

graph. Also assume that (∇u)∗ ∈ L2(∂Ω), ∇u has non-tangential limits almost every-

where on ∂Ω and |u(X)| + |X| |∇u(X)| = O(|X|2−n) as |X| → ∞. Then

(3.1)

∫

∂Ω

|
∂u

∂υ
|2 dQ ∼

∫

∂Ω

|∇t u|
2 dQ +

∫

∂Ω

|u|2m(V,Q)2 dQ

where ∇t u = ∇u − (∂u/∂υ)~υ denotes the tangential derivative of u on ∂Ω.

Before carrying out the proof of Theorem 3.1, we give several lemmas:

Lemma 3.2 Suppose the same conditions as in Theorem 3.1, then

(3.2)

∫

Ω

|∇u|2m(V,X) dX +

∫

Ω

|u|2V sm(V,X)3−2s dX ≤ Cs

∫

∂Ω

|g|2 dQ

for each s ∈ [0, 2], with the absolute constants C s independent of u, V and Ω.

Proof Let R > 0 be sufficiently large, it is suffices to show the above inequality with

Ω replaced by ΩR. Noting that the Neumann function in ΩR has the same estimates

(2.3), and the constants Ck are independent of R. Therefore, we can show the above

inequality along the same lines of the proof of Theorem 2.8.

Lemma 3.3 Suppose the same conditions as in Theorem 3.1, then

(3.3)

∫

Ω

|∇u|2m(V,X) dX ≤ C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣
|u|m(V,Q) dQ + C

∫

Ω

|u|2m(V,X)3 dX

and

(3.4)

∫

∂Ω

|u(Q)|2m(V,Q)2 dQ ≤ C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣

2

dQ

Proof We recall the inequalities (2.5) and (2.6) in the proof of Theorem 2.8, we can

see that (3.3) could be obtained from (2.5) and Cauchy’s inequality, and (3.4) from

(2.6) and Cauchy’s inequality.

Lemma 3.4 Suppose the same conditions as in Theorem 3.1, then

∫

Ω

|u(X)|2
V 2(X)

m(V,X)
dX ≤ C

∫

Ω

|∇u(X)|2m(V,X) dX

+ C

∫

∂Ω

|u(Q)|2m(V,Q)2 dQ + C

∫

Ω

|u(X)|2m(V,X)3 dX.
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Proof Let X0 ∈ Ω and r0 = m(V,X0)−1, and let r = tr0, 1 ≤ t ≤ 2. Using

Lemma 2.3 and integrating in t , we get

(3.5)

∫

|X−X0|≤r0

X∈Ω

|u|2V 2 dX ≤ Cnη(X0, 2r0)
{

∫

|X−X0|≤2r0

X∈Ω

|∇u|2 dX

+
1

r0

∫

|Q−X0|≤2r0

Q∈∂Ω

|u|2 dQ +
1

r2
0

∫

|X−X0|≤2r0

X∈Ω

|u|2 dX
}

Recalling that η(X0, 2r0) ≤ Cr−2
0 with an absolute constant C . From this and

Lemma 2.1, the inequality (3.5) may be rewritten as

∫

|X−X0|≤
1

m(V,X0)
X∈Ω

|u|2V 2mn−1 dX ≤ C

∫

|X−X0|≤
1

m(V,X0)

X∈Ω

|∇u|2mn+1 dX

+ C

∫

|Q−X0|≤
1

m(V,X0)

Q∈∂Ω

|u|2mn+2 dQ + C

∫

|X−X0|≤
1

m(V,X0)

X∈Ω

|u|2mn+3 dX

with the constant C independent of X0. Integrating both sides of the above inequality

in X0 over Ω, one can then prove the lemma by the property of m(V,X) in Lemma 2.1.

We are now in the position to give

The Proof of Theorem 3.1 Let ~υ = (υ1, υ2, . . . , υn) be the unit normal to the

boundary ∂Ω, then υn = −1/
√

1 + |∇ϕ|2. We choose~h = (0, . . . , 0, 1). Then a

simple computation shows that div
(

~h|∇u|2 − 2(~h∇u)∇u
)

= −2(~h∇u)∆u, and so

we have the following Rellich identity

(3.6)

∫

∂Ω

|∇u|2υn dQ = 2

∫

∂Ω

∂u

∂Xn

∂u

∂υ
dQ − 2

∫

Ω

∆u
∂u

∂Xn

dX

From this identity and the Cauchy inequality follows

∫

∂Ω

|∇u|2 dQ ≤ C

∫

∂Ω

|
∂u

∂υ
|2 dQ + C

∫

Ω

|∇u| |u|V dX

≤ C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣

2

dQ + C

∫

Ω

|∇u|2m(V,X) dX + C

∫

Ω

|u|2
V 2 dX

m(V,X)

≤ C

∫

∂Ω

|
∂u

∂υ
|2 dQ,

where the last inequality is because of Lemma 3.2. This, together with (3.4) in

Lemma 3.3, yields

(3.7)

∫

∂Ω

|∇t u|
2 dQ +

∫

∂Ω

|u|2m(V,Q)2 dQ ≤ C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

2
dQ.
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On the other hand, noting ∇u = ∇t u + ∂u
∂~υ · ~υ, one thus see from the Rellich

identity (3.6) that

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣

2

dQ ≤ C

∫

∂Ω

|∇t u|
2 dQ + C

∫

Ω

|∇u| |u|V dX

≤ C

∫

∂Ω

|∇t u|
2 dQ + C

∫

Ω

|∇u|2m(V,X) dX + C

∫

Ω

|u|2
V 2 dX

m(V,X)

≤ C

∫

∂Ω

|∇t u|
2 dQ + C

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣
|u|m(V,Q) dQ

+ C

∫

Ω

|u|2m(V,X)3 dX + C

∫

∂Ω

|u|2m(V,Q)2 dQ

where we have used Lemma 3.4 and the inequality (3.3) of Lemma 3.3. Thus we use

Cauchy’s inequality again to obtain

(3.8)

∫

∂Ω

∣

∣

∣

∂u

∂υ

∣

∣

∣

2

dQ ≤ C

∫

∂Ω

|∇t u|
2 dQ + C

∫

∂Ω

|u|2m(V,Q)2 dQ

+ C

∫

Ω

|u|2m(V,X)3 dX

Now we can deduce Theorem 3.1 from (3.7), (3.8) and the following Lemma 3.5.

Lemma 3.5 Suppose the same conditions as in Theorem 3.1. Then

∫

Ω

|u(X)|2m(V,X)3 dX ≤ C

∫

∂Ω

|u(Q)|2m(V,Q)2 dQ.

Proof Let f ∈ C∞
0 (Ω) and v be the solution to −∇v + V v = f in Ω and v = 0 on

∂Ω, then

∣

∣

∣

∫

Ω

u f
∣

∣

∣
=

∣

∣

∣

∫

∂Ω

u ·
∂v

∂υ

∣

∣

∣
≤

(

∫

∂Ω

|u|2m(V,Q)2 dQ
)

1
2

(
∫

∂Ω

∣

∣

∣

∂v

∂υ

∣

∣

∣

2 dQ

m(V,Q)2

)
1
2

.

Then, by duality, it suffices to show that

(3.9)

∫

∂Ω

∣

∣

∣

∂v

∂υ

∣

∣

∣

2 dQ

m(V,Q)2
≤ C

∫

Ω

| f (X)|2

m(V,X)3
dX.

To show (3.9), let Q ∈ ∂Ω and r = 1/m(V,Q), using the Rellich identity (3.6)

for the function vη on D(Q, 2r), where η ∈ C∞
0

(

B(Q, 2r)
)

, η ≡ 1 on B(Q, r) and

r|∇η| + r2|4η| ≤ C , we obtain

∫

B(Q,2r)∩∂Ω

η2υn

∣

∣

∣

∂v

∂υ

∣

∣

∣

2

dP = 2

∫

D(Q,2r)

4(vη)
∂(vη)

∂Xn

dX.
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Therefore, by Cauchy’s inequality,

∫

|P−Q|≤r,P∈∂Ω

∣

∣

∣

∂v

∂υ

∣

∣

∣

2

dP ≤ Cr

∫

D(Q,2r)

| f (X)|2 dX

+ C

∫

D(Q,2r)

(

rV 2 +
V

r
+

1

r3

)

|v|2 dX

+
C

r

∫

D(Q,2r)

|∇v|2 dX.

By the usual trick, this gives

(3.10)

∫

∂Ω

∣

∣

∣

∂v

∂υ

∣

∣

∣

2 dQ

m(V,Q)2
≤ C

∫

Ω

| f (X)|2

m(V,X)3
dX

+C

∫

Ω

|∇v|2 dX

m(V,X)
+ C

∫

Ω

(

V 2

m(V,X)3
+

V

m(V,X)
+ m(V,X)

)

|v|2 dX

Note that v(X) =
∫

Ω
G(X,Y ) f (Y ) dY , where G(X,Y ) denotes the Green function

on the domain Ω, using Hölder’s inequality, Fubini’s theorem, decay estimates of G

and Lemma 2.2, and using arguments similar to the proof of Theorem 2.8, we obtain

(3.11)

∫

Ω

V (X)sm(V,X)1−2s|v(X)|2 dX ≤ C

∫

Ω

| f (X)|2

m(V,X)3
dX,

where s ∈ [0, 2]. We also get, from integration by parts,

∫

D(X0,r)

|∇v| dX ≤
C

r

∫

D(X0,2r)

|∇v| |v| dX + C

∫

D(X0,2r)

|v| | f | dX,

where r = m(V,X0) and X0 ∈ Ω̄. Then

(3.12)

∫

Ω

|∇v|2

m(V,X)
dX ≤ C

∫

Ω

|v(X)|2m(V,X) dX + C

∫

Ω

| f (X)|2

m(V,X)3
dX

≤ C

∫

Ω

| f (X)|2

m(V,X)3
dX.

Clearly, (3.10), (3.11) and (3.12) imply (3.9). Thus we complete the proof of the

lemma.

Now from Theorem 3.1 and the standard arguments (see [3] or [10]), we can

obtain the following theorem.

Theorem 3.6 Suppose Ω is a region above a Lipschitz graph, V ∈ Bn and g ∈
L2(∂Ω), then the same results of Theorem 2.8 are valid.
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4 The Uniqueness

We always denote by N(X,Y ) the Neumann function related to the L2-Neumann

problem for Schrödinger equation −4u + Vu = 0 in Ω, the region above a Lipschitz

graph. It is easy to see that N(X,Y ) also satisfies the decay estimates, Lemma 2.7.

To prove the uniqueness, it is important to raise the integrability of the supposed

solution u especially for H p boundary data. The following lemma is crucial.

Lemma 4.1 Suppose −4u + Vu = 0 in Ω, V ∈ Bn, and let 0 < p < n − 1 and

p∗
= (n − 1)p/(n − 1 − p). Then there exists a constant C > 0 depending only on p

and the Lipschitz character of Ω such that, for any 0 < α < min{1, p},

∫

∂Ω∩{w∗(Q)≤|C0|}

w∗(Q)p∗/α dQ +

∫

∂Ω∩{w∗(Q)≥|C0|}

w∗(Q)p∗

dQ ≤ C‖(∇w)∗‖
p∗

Lp(∂Ω)

where w = u −C0, and C0 is a constant.

Proof Without loss of generality we may assume that (∇u)∗ ∈ Lp(∂Ω). Fix Q ∈ ∂Ω

and X = (X ′,Xn) ∈ Γ(Q). It is clear that (X ′, s) ∈ Γ(Q) for s > Xn, and that

(X ′, s) ∈ Γ(P) if |P − Q| ≤ C(s − Xn), where C is a constant depending only on the

Lipschitz character m. Thus

(4.1) |∇u(X ′, s)| ≤ C(s − Xn)−(n−1)/α
(

∫

Λ(Q,C(s−Xn))

|(∇u)∗(P)|α dP
) 1/α

for any α > 0. This implies that lims→∞ ∇u(X ′, s) = 0, hence lims→∞ u(X ′, s) exists

and is independent of X ′. Then we may take a constant C0 such that w = u − C0

vanishes at infinity. Also, after replacing u by uτ (X) = u
(

X + τ (0, 1)
)

, we may

assume that w∗(Q) <∞ for almost every Q ∈ ∂Ω.

On the other hand, since B
(

(X ′, s),C(s − Xn)
)

⊂ Ω for proper small constant C ,

we can see from the inner estimates that

(4.2) |∇w(X ′, s)| ≤
C

s − Xn

{

1

(s − Xn)n

∫

B((X ′,s),C(s−Xn))

|u(Y )|2 dY

}
1
2

≤ C
w∗(Q) + |C0|

s − Xn

for any s > Xn. Now we can see from (4.1) and (4.2) that

|w(X ′,Xn)| ≤

∫ ∞

Xn

∣

∣

∣

∂w(X ′, s)

∂s

∣

∣

∣
ds

≤ C

∫ ∞

Xn

∣

∣

∣

∣

w∗(Q) + |C0|

s − Xn

∣

∣

∣

∣

1−α ∫

Λ(Q,C(s−Xn))

(∇u)∗(P)α

(s − Xn)n−1
dP ds

≤ C[w∗(Q) + |C0|]
1−α

∫

∂Ω

(∇w)∗(P)α

|Q − P|n−1−α
dP.
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This follows

(4.3) w∗(Q) ≤ C[w∗(Q) + |C0|]
1−α

∫

∂Ω

(∇w)∗(P)α

|Q − P|n−1−α
dP

Noting (α/p∗) =
(

α/p) − (α/(n − 1)
)

and p/α > 1, we may obtain this lemma

from (4.3) by using the fraction integral theorem (see [12]), which completes the

proof.

Theorem 4.2 Let V ∈ Bn, −4u + Vu = 0 in Ω and (∇u)∗ ∈ Lp(∂Ω) for some

(n − 1)/n < p < 2. Also assume ∂u/∂υ = 0 non-tangentially almost everywhere on

∂Ω if p ≥ 1, or ∂u/∂υ vanishes on ∂Ω in the H p sense if p < 1. Then u ≡ 0 in Ω.

Proof We prove the corresponding result in the case (n − 1)/n < p < 1. Fix any

point Y ∈ Ω, and we may assume |Y | < r. We let ψ ∈ C∞
0 (Rn) be a cutoff function

satisfying ψ(X) = 1 for |X − Y | < r, ψ(X) = 0 for |X − Y | > 2r, and r|∇ψ| +

r2|4ψ| ≤ C with the constant C independent of r. Let wτ = uτ −C0, we have

(4.4) wτ (Y ) = −2

∫

Ω

∇wτ∇ψN dX −

∫

Ω

wτ4ψN dX

+

∫

Ω

(V −Vτ )wτψN dX −C0

∫

Ω

VτψN dX

+

∫

∂Ω

Nwτ
∂ψ

∂υ
dQ +

∫

∂Ω

Nψ
∂wτ

∂υ
dQ

= K1(Y ) + K2(Y ) + K3(Y ) + K4(Y ) + K5(Y ) + K6(Y )

Recalling that (∇u)∗ ∈ Lp(∂Ω) and p∗
= (n − 1)p/(n − 1 − p) > 1, let E(r) =

{X : r < |X − Y | < 2r}. In view of Lemma 4.1, we have

|K5(Y )| ≤
C

rn−1

∫

∂Ω∩E(r)

w∗(Q) dQ ≤
( C

rn−1

)
1

p∗

+
( C

rn−1

)
α

p∗

and so K5(Y ) → 0 if r → ∞. An analogous estimate yields K2(Y ) → 0 if r → ∞.

In order to estimate the term K1(Y ), we note that (4.1) implies

|∇uτ (X)| ≤ Cδ(X)−(n−1)/p‖(∇u)∗‖Lp(∂Ω),

where δ(X) denotes the distance from X to ∂Ω. Thus

|K1(Y )| ≤
C

rn−1

∫

Ω∩E(r)

|∇uτ (X)| dX

≤
C

rn−1
‖(∇u)∗‖

1−p
Lp(∂Ω)

∫ Cr

0

∫

∂Ω

(∇u)∗(Q)ps−(n−1)(1−p)/p dQ ds

≤
C

r−1+(n−1)/p
‖(∇u)∗‖Lp(∂Ω) → 0, r → ∞.
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We also note that |wτ (X)| ≤ Cδ−(n−1)/α‖w∗‖Lα(∂Ω) for any α > 0; thus we can see

from Lemma 4.1 that

(4.5)
∫

D(0,3r)

|wτ (X)|n/(n−1) dX ≤ C‖w∗‖
1/(n−1)

Lp∗ (∂Ω)

∫

D(0,3r)

δ(X)−1/p∗

|wτ (X)| dX ≤ C(r),

with C(r) independent of τ . Since V ∈ Bn+ε for some ε > 0, one can set (1/β) =

[(n − 1)/n] + [1/(n + ε)] and (1/t) = (1/β) − (2/n), and then t > β > 1. Using

fraction integral theorem and Cauchy’s inequality, we get

‖K3‖Lt (D(0,r)) ≤ C‖(V −Vτ )wτ‖Lβ (D(0,3r))

≤ C‖wτ‖Ln/(n−1)(D(0,3r))‖V −Vτ‖Ln+ε(D(0,3r)).

From this and (4.5), we get

‖K3‖Lt (D(0,r)) ≤ C‖(V −Vτ )‖Ln+ε(D(0,3r)) → 0, τ → 0.

The term K6 vanishes as τ → 0 because the normal derivative vanishes in the

H p-sense and the fact N(·,Y ) ∈ Cα(p) for α(p) = (n − 1)(1 − p)/p. Finally, by

Lemma 2.2,

|K4(Y )| ≤ C

∫

|X−Y |≤2r

V (X) dX

{1 + |X − Y |m(V,Y )}k|X − Y |n−2
≤ C.

Combining all the estimates above, we obtain

|u(Y )| ≤ CR, for any r > R, and |Y | < r,

with the constant CR only dependent or R, where R is a constant sufficient large if

needed. Thus, using the decayed estimates in Lemma 2.4, we get u(Y ) = 0. The

proof is complete.

Remark 4.3 We can use similar arguments to prove Theorem 4.2 in the case 1 ≤
p ≤ 2.

5 The Existence and Regularity

In this section, we will give the proof of Theorem 1.1 and 1.2. We first recall the

following decay Hölder estimates for Neumann function related to the L2 Neumann

problem, see [8] or [10, p. 171].

Lemma 5.1 Let V ∈ Bn, and k > 0 be any integer. Then there exist 0 < α < 1, and

a positive constant Ck such that, for X,Y,Z ∈ Ω̄ with |Z − X| ≤ 1
8+8m

|X − Y |,

(5.1) |N(X,Y ) − N(Z,Y )| ≤
Ck|Z − X|α

{1 + m(V,X)}k|X − Y |n−2+α
,
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Lemma 5.2 Given an atom a for H p on ∂Ω, and 1−ε < p ≤ 1 for some small ε > 0,

let V ∈ Bn and let u be the solution to −4u +Vu = 0 in Ω such that (∇u)∗ ∈ L2(∂Ω)

and ∂u/∂υ = a a.e. on ∂Ω in the sense of nontangential convergence. Then ∂u/∂υ = a

in the H p-sense. Moreover

(5.2)

∫

∂Ω

|(∇u)∗|p dQ ≤ C

with the constant C independent of the atom a.

Proof Suppose supp a ⊂ Λ(Q0, r0) for some Q0 ∈ ∂Ω and r0 > 0, ‖a‖L2(∂Ω) ≤

r
−(n−1)(1/p−1/2)
0 . Since

∫

∂Ω
a(Q) dQ = 0, we can write

u(X) =

∫

∂Ω

(

N(X,Q) − N(X,Q0)
)

a(Q) dQ.

Put r1 = (8 + 8m)r0, then for X ∈ Ω, |X − Q0| ≥ r1, we obtain from Lemma 5.1 that

(5.3) |u(X)| ≤
Cr

α+(n−1)/2
0

|X − Q0|n−2+α
‖a‖L2 ≤

Cr
α−(n−1)(1−p)/p
0

|X − Q0|n−2+α

Let r ≥ 8r1 and Ωt = Ω−Z(Q0, tr) for 1
4
≤ t ≤ 1

2
. Using Cauchy’s inequality and

the L2-estimate in Ωt , we get

I(r) =

∫

2r≤|Q−Q0|≤r
Q∈∂Ω

|(∇u)∗(Q)|p dQ

≤ Cr(n−1)(2−p)/2
(

∫

∂Ωt

|(∇u)∗|2 dQ
) p/2

≤ Cr(n−1)(2−p)/2
(

∫

Ω∩∂Z(Q0,tr)

∣

∣

∣

∂u

∂υ

∣

∣

∣

2

dQ
) p/2

.

Integrating in t , from Cacciopoli’s inequality and (5.3) we obtain that

I(r) ≤ Crn−1−np/2
{

∫

r/4≤|X−Q0|≤r/2
X∈Ω

|∇u(X)|2 dX
} p/2

≤ Crn−1−p−np/2
{

∫

r/8≤|X−Q0|≤r
X∈Ω

|u(X)|2 dX
} p/2

≤ C
[ r0

r

]αp−(n−1)(1−p)

.

Also, the L2-estimate gives

I1 =

∫

Λ(Q0,8r1)

|(∇u)∗|p dQ ≤ Cr
(n−1)(2−p)/2
0

(

∫

∂Ω

|(∇u)∗|2 dQ
) p/2

≤ Cr
(n−1)(2−p)/2
0

(

∫

∂Ω

|a|2 dQ
) p/2

≤ C.
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Since αp − (n − 1)(1 − p) > 0 when we take p > 1 − α
α+n−1

, we obtain

∫

∂Ω

|(∇u)∗|p dQ ≤ I1 +

+∞
∑

j=3

I(2 jr1) ≤ C,

with the constant C independent of the atom a. The lemma is proved.

Finally, we turn to the proof of Theorem 1.1 and 1.2.

Proof of Theorem 1.1 The case p = 2 of Theorem 1.1 is treated in Theorem 3.6.

For 1 < p < 2, the uniqueness is contained in Theorem 4.2, while the existence

follows by interpolation between the L2-case and the H1-case which is contained in

Lemma 5.2. So it is sufficient to find the uniform estimates of Theorem 1.1.

We first consider the case p = 1 and use the same notation as in the proof of

Lemma 5.2. Analogously, for each s ∈ [0, 1], we can estimate, by Lemma 2.2,

∫

D(Q0,r1)

|u(X)|V (X)sm(V,X)2−2s dX

≤

∫

D(Q0,r1)

∫

∂Ω

|N(Q,X)| |a(Q)|V (X)sm(V,X)2−2s dQ dX

≤

∫

∂Ω

|a(Q)| dQ ≤ C

and

∫

|X−Q0|∼2 j r1

|u(X)|V (X)sm(V,X)2−2s dX

≤

∫

|X−Q0|∼2 j r1

∫

Λ(Q0,r0)

|N(Q,X) − N(Q0,X)| |a(Q)|V (X)sm(V,X)2−2s dQ dX

≤ Ckrα0

∫

|X−Q0|∼2 j r1

V (X)sm(V,X)2−2s dX

|X − Q0|n−2+α{1 + |X − Q0|m(V,Q0)}k

≤ C2− jα.

Therefore there exists an absolute constant C such that

(5.4)

∫

Ω

|u(X)|V (X)sm(V,X)2−2s dX ≤ Cs,

for the solution function u related to the boundary data a, any atom for H1. On the

other hand, recalling Theorem 3.6, we have

(5.5)

∫

Ω

|u(X)|2V (X)sm(V,X)3−2s dX ≤ Cs

∫

∂Ω

|g(Q)|2 dQ,
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for any boundary data g ∈ L2(∂Ω), where s ∈ [0, 2]. Now combining (5.4) with

(5.5), we can get the desired results by interpolation theorem. Theorem 1.1 is ob-

tained.

The Proof of Theorem 1.2 Theorem 1.2 can be regarded as a corollary of Theo-

rem 4.2 and Lemma 5.2.
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