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Abstract. We prove effective equidistribution of horospherical flows in SO(n, 1)◦/�
when � is geometrically finite and the frame flow is exponentially mixing for the
Bowen–Margulis–Sullivan measure. We also discuss settings in which such an exponential
mixing result is known to hold. As part of the proof, we show that the Patterson–Sullivan
measure satisfies some friendly like properties when � is geometrically finite.
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Effective equidistribution 2781

1. Introduction
The group G = SO(n, 1)◦ with n ≥ 2 can be considered as the group of orientation
preserving isometries of the hyperbolic space H

n. Let � ⊆ G be a geometrically finite
and Zariski dense subgroup of G with infinite covolume. In this paper, we establish an
effective rate of equidistribution of orbits under the action of a horospherical subgroup
U ⊆ G under a certain exponential mixing assumption (Assumption 1.1).

An early result on the equidistribution of horocyclic flows in G/� for G = SL2(R)

and � a lattice was obtained by Dani and Smillie in [4]. They proved that if U = {( 1 t
0 1 ) :

t ∈ R} and if x does not have a closed U-orbit in G/�, then for every f ∈ Cc(X),

lim
T→∞

1
T

∫ T

0
f (utx) dt = m(f ), (1)

where m denotes the normalized Haar probability measure on X. The lattice case is well
understood in general, thanks to Ratner’s celebrated theorems on unipotent flows [28].

Results such as these are not considered to be effective, because they do not address
the rate of convergence, and this is important in many applications. Burger proved
effective equidistribution of horocyclic flows for SL2(R)/� when � is a uniform lattice
or convex cocompact with critical exponent at least 1/2 in [3]. Sarnak proved effective
equidistribution of translates of closed horocycles when � is a non-uniform lattice in [31].
More general results were obtained for non-uniform lattices using representation theoretic
methods by Flaminio and Forni in [9], and also by Strömbergsson in [36]. The case
where � = SL2(Z) was also obtained independently by Sarnak and Ubis in [32]. The
higher dimensional setting has recently been considered by Katz [15] and McAdam [21].
McAdam proved equidistribution of abelian horospherical flows in SLn(R)/� for n ≥ 3
when � is a cocompact lattice or SLn(Z), and Katz proved equidistribution in
greater generality when � is a lattice in a semi-simple linear group without compact
factors.

In infinite volume, we cannot hope for a result such as (1) for the Haar measure: by the
Hopf ratio ergodic theorem, for almost every point,

lim
T→∞

1
T

∫ T

0
f (utx) dt = 0.

This tells us that this is not the correct measure to consider. A key characteristic of the Haar
probability measure in the lattice case is that it is the unique U-invariant ergodic Radon
measure that is not supported on a closed U orbit, [4, 10]. By [3, 29, 40], the measure with
this property in the infinite volume setting is the Burger–Roblin (BR) measure, which is
defined fully in §3. The correct normalization will be given by the Patterson–Sullivan
(PS) measure, which is a geometrically defined measure on U orbits. This is also
defined in §3.

Maucourant and Schapira proved equidistribution of horocycle flows on geometrically
finite quotients of SL2(R) in [20], and in [24], Mohammadi and Oh generalize these results
to geometrically finite quotients of SO(n, 1)◦ for n ≥ 2, but these results are not effective.
Oh and Shah also proved equidistribution on the unit tangent bundle of geometrically finite
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hyperbolic manifolds in [26]. In [8], Edwards proves effective results for geometrically
finite quotients of SL2(R).

In this paper, we extend these results to geometrically finite quotients of SO(n, 1)◦,
under the assumption of exponential mixing of the frame flow for the Bowen–Margulis–
Sullivan (BMS) measure, which is defined in §3. More explicitly, in §§6–8 (but not §4 or
§5), we will assume the following holds, where {as : s ∈ R} denotes the frame flow on
G/�.

Assumption 1.1. (Exponential mixing) There exist c, κ > 0 and � ∈ N which depend only
on �, such that for ψ , ϕ ∈ C∞

c (G/�) and s > 0,

∣∣∣∣
∫
X

ψ(asx)ϕ(x) dm
BMS(x)−mBMS(ψ)mBMS(ϕ)

∣∣∣∣ < cS�(ψ)S�(ϕ)e
−κs .

Assumption 1.1 is known to hold when � is convex cocompact by [30]. In [23],
Mohammadi and Oh prove such a result for geometrically finite � under a spectral
gap assumption (see Definition 2.1), using decay of matrix coefficients. Edwards and
Oh recently proved effective mixing for the geodesic flow on the unit tangent bundle
of a geometrically finite hyperbolic manifold when the critical exponent is larger than
(n− 1)/2 in [7]. Further details about this assumption are discussed in §2.

We will need to restrict consideration to points satisfying the following geometric
property, which means that the point does not travel into a cusp ‘too fast’. Here, d is a
left-invariant Riemannian metric on G/� that projects to the hyperbolic distance on H

n.

Definition 1.2. For 0 < ε < 1 and s0 ≥ 1, we say that x ∈ G/� with x− ∈ �(�) is
(ε, s0)-Diophantine if for all s ≥ s0,

d(C0, a−sx) < (1 − ε)s,

where C0 is a compact set arising from the thick-thin decomposition, and is fully defined
in §3.2. We say that x ∈ G/� with x− ∈ �(�) is Diophantine if x is (ε, s0)-Diophantine
for some ε and s0.

Here, �(�) denotes the set of limit points of �, and is defined fully in §3, as is
the notation x±. In the case that � is a lattice, the condition x− ∈ �(�) is always
satisfied. Also, if � is convex cocompact, every point x ∈ G/� with x− ∈ �(�) will be
Diophantine, because all limit points are radial in this case (see §3).

Note that x is (ε, s0)-Diophantine if (1 − ε)s is a bound on the asymptotic excursion
rate of the geodesic {a−sx}, that is,

lim sup
s→∞

d(C0, a−sx)
s

≤ 1 − ε. (2)

Sullivan’s logarithm law for geodesics when � is geometrically finite with δ� >

(n− 1)/2 was shown in [16, 35] (and is a strengthening of Sullivan’s logarithm law for
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non-compact lattices [38, §9]), and implies that for almost all x ∈ G/�,

lim sup
s→∞

d(C0, a−sx)
log s

= 1
2δ� − k

, (3)

where k is the maximal cusp rank. In [16], Kelmer and Oh showed a strengthening
of the above, considering excursion to individual cusps and obtaining a limit for the
shrinking target problem of the geodesic flow. Note also that the result stated in [16] is for
x ∈ T1(G/�), but since the distance function there is assumed to be K-invariant, where
H
n = K\G, and the set C0 is K-invariant as well (see §3.2), we can deduce the form above.
It follows from (3) that the limit on the left-hand side of (2) is zero for almost every

point x ∈ G/� (with respect to the invariant volume measure) in this case. Moreover, for
any ε, the Hausdorff dimension of the set of directions in T1(Hn/�) around a fixed point
in H

n/� that do not satisfy (2) is computed in [22, Theorem 1]. For geometrically finite �,
the Hausdorff dimension of the set of directions around a fixed point that do not satisfy (2)
can be found in [11, 35].

The main goal of this paper is to establish the following two theorems. Here, mBR

denotes the BR measure, mBMS denotes the BMS measure, and μPS denotes the PS
measure. These measures are defined in §3. Throughout the paper, the notation

x 	 y

means there exists a constant c such that

x ≤ cy.

If a subscript is denoted, e.g. 	� , this explicitly indicates that this constant depends on �.
Let U = {ut : t ∈ R

n−1} denote the expanding horospherical flow. Let BU(r) denote
the ball in U of radius r with the max norm on R

n−1. See §3 for more details on notation.

THEOREM 1.3. Assume that � satisfies Assumption 1.1. For any 0 < ε < 1 and
s0 ≥ 1, there exist constants � = �(�) ∈ N and κ = κ(�, ε) > 0 satisfying for every
ψ ∈ C∞

c (G/�), there exists c = c(�, supp ψ) such that for every x ∈ G/� that is
(ε, s0)-Diophantine, and for every r 
�,ε s0,∣∣∣∣ 1

μPS
x (BU(r))

∫
BU (r)

ψ(utx) dμ
PS
x (t)−mBMS(ψ)

∣∣∣∣ ≤ cS�(ψ)r
−κ ,

where S�(ψ) is the �-Sobolev norm.

For the Haar measure, we will prove the following equidistribution result.

THEOREM 1.4. Assume that � satisfies Assumption 1.1. For any 0 < ε < 1 and s0 ≥ 1,
there exist � = �(�) ∈ N and κ = κ(�, ε) > 0 satisfying for every ψ ∈ C∞

c (G/�), there
exists c = c(�, supp ψ) such that for every x ∈ G/� that is (ε, s0)-Diophantine, and for
all r 
�,supp ψ ,ε s0,∣∣∣∣ 1

μPS
x (BU(r))

∫
BU (r)

ψ(utx) dt −mBR(ψ)

∣∣∣∣ ≤ cS�(ψ)r
−κ ,

where S�(ψ) is the �-Sobolev norm.
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Note that the assumption that x is Diophantine is required to obtain quantitative
non-divergence results in §4, which is key in proving the above theorems. The dependence
on a Diophantine condition is necessary, and is analogous to known effective equidistribu-
tion results for when � is a non-cocompact lattice (see [21, 36]).

In [39], we apply the above result to obtain a quantitative ratio theorem for the
distribution of orbits for � acting on U\G. This improves upon the work of Maucourant
and Schapira in [20].

A key step toward proving Theorem 1.3 is the following, which is proved in §6.

THEOREM 1.5. Assume that � satisfies Assumption 1.1. There exist κ = κ(�) and � =
�(�) which satisfy the following: for any ψ ∈ C∞

c (X), there exists c = c(�, supp ψ) > 0
such that for any f ∈ C∞

c (BU(r)), 0 < r < 1, x ∈ supp mBMS, and s 
� d(C0, x), we
have ∣∣∣∣

∫
U

ψ(asutx)f (t) dμPS
x (t)− μPS

x (f )m
BMS(ψ)

∣∣∣∣ < cS�(ψ)S�(f )e
−κs .

In §6, we also prove an analogous statement for the Haar measure. Such a result is
proven in [23] under a spectral gap assumption on �, but we show in this paper how to
prove it whenever the frame flow is exponentially mixing.

The proof will use similar techniques as in [24, 26]; in particular, we will rely on
Margulis’ ‘thickening trick’ from his thesis [19].

In the proofs of our main theorems (Theorems 1.3 and 1.4), we use partition of unity
arguments. In particular, the bounds we get are on slightly bigger sets. As a result, we need
an effective bound on the PS measure of a small neighborhood of a boundary of a ball
relative to the PS measure of that ball. The following theorem achieves this. It is shown
using [5, Lemma 3.8] and [35, Theorem 2].

THEOREM 1.6. There exists a constant α = α(�) > 0, such that for every x ∈ G/� that is
(ε, s0)-Diophantine, for every 0 < s ≤ T ε/(1−ε), every 0 < ξ 	� 1, and every T 
�,ε s0,

μPS
a−sx(BU(ξ + T ))

μPS
a−sx(BU(T ))

− 1 	� ξ
α .

In the appendix, a stronger version is obtained under the assumption that all cusps of
G/� have maximal rank.

This paper is organized as follows. In §2, we discuss under what conditions
Assumption 1.1 is known to hold. In §3, we set out notation used in the article, and
define the measures we will be using, along with proving some important facts about
them. In §4, we prove quantitative non-divergence of horospherical orbits of Diophantine
points, which is needed in the following sections. In §5, we control the PS measure of the
boundary of a set by proving Theorem 1.6. In §6, we use Margulis’ ‘thickening trick’ to
prove Theorem 1.5 and an analogous result for the Haar measure, which are key in the
proofs of Theorems 1.3 and 1.4. In §7, we use quantitative non-divergence and Theorem
1.5 to prove Theorem 1.3. In §8, we use Theorem 1.6 and the Haar measure analogue of
Theorem 1.5 to prove Theorem 1.4. Several technical details of the proof of Theorem 1.6
are in the appendix, §A, and in §A.3, we prove stronger statements hold in the setting
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that all cusps have maximal rank, because the PS measure is absolutely friendly (see [5,
Theorem 1.9]).

2. Known exponential mixing results
Throughout the paper, we assume the existence of an exponential mixing result (see
Assumption 1.1). In this section, we elaborate on the conditions under which such a result
is known. Here we assume that � is a Zariski dense discrete subgroup of G.

There is a natural action of G on H
n and ∂Hn, the hyperbolic n-space and its boundary,

respectively. Let�(�) ⊆ ∂(Hn) denote the limit set of X, that is, the set of all accumulation
points of �z for some z ∈ H

n ∪ ∂(Hn). The convex core of X is the image in X of the
minimal convex subset of Hn which contains all geodesics connecting any two points in
�(�). We say that � is convex cocompact if the convex core of Hn/� is compact, and
geometrically finite if a unit neighborhood of the convex core of � has finite volume.

For � convex cocompact, Assumption 1.1 was proved by Sarkar and Winter in [30,
Theorem 1.1].

Fix a point wo ∈ T1(Hn) and denote M = StabG(wo). Denote by Ĝ and M̂ the unitary
dual of G and M respectively. A representation (π , H) ∈ Ĝ is called tempered if for
any K-finite v ∈ H, the associated matrix coefficient function g �→ 〈π(g)v, v〉 belongs
to L2+ε(G) for any ε > 0, and non-tempered otherwise. The non-tempered part of Ĝ
consists of the trivial representation, and complementary series representations U(v, s −
n+ 1) parameterized by v ∈ M̂ and s ∈ Iv , where Iv ⊆ ((n− 1)/2, n− 1) is an interval
depending on v (see [12]).

Definition 2.1. The space L2(X) has a spectral gap if there exist (n− 1)/2 < s0 =
s0(�) < δ and n0 = n0(�) ∈ N such that:
(1) the multiplicity of U(v, δ� − n+ 1) contained in L2(X) is at most dim(v)n0 for any

v ∈ M̂;
(2) L2(X) does not weakly contain any U(v, s − n+ 1) with s ∈ (s0, δ) and v ∈ M̂ .

According to [23, Theorem 3.27], if δ� > (n− 1)/2 for n = 2, 3, or if δ� > n− 2 for
n ≥ 4, then L2(X) has a spectral gap. If δ� ≤ (n− 1)/2, then there is no spectral gap,
but it was conjectured that whenever δ� > (n− 1)/2, L2(X) has a spectral gap (see [23]).
Note that if there are cusps of maximal rank n− 1, it follows that δ� > (n− 1)/2.

For � geometrically finite such that L2(X) has a spectral gap and δ� > (n− 1)/2,
Mohammadi and Oh stated in [23, Theorem 1.6] an exponential mixing result similar to
Assumption 1.1. In their statement, the constant c depends on � and the support of the
functions. The dependence on the support of the functions arises in the last part of the proof
(see [23, §6.3]) and can be omitted by using the following lemma (the BR-measure is
defined in §3.3), hence obtaining a result of the form needed in Assumption 1.1.

LEMMA 2.2. If δ > (n− 1)/2, then there exists c = c(�) > 0 such that any B ⊂ X of
diameter smaller than 1 satisfies

mBR(B) ≤ c.
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Proof. For any g ∈ G denote

�0(g) = |νg(o)|,
where o is the projection of wo onto H

n and for any x ∈ H
n, νx is the Patterson–Sullivan

density defined in §3.1. Since �0 is �-invariant, it can be considered as a smooth function
on X. Moreover, by assuming B contains K = StabG(o) and using the Cauchy–Schwartz
inequality, we get

mBR(B) =
∫
B

�0(g) dm
Haar(g)

≤
√
dmHaar(B)‖�0‖2

	 ‖�0‖2.

According to [37, §7] and by the assumption δ > (n− 1)/2, we have that φ0 ∈ L2(X).

3. Notation and preliminaries
Recall from §1 thatG = SO(n, 1)◦ and � ⊆ G is a geometrically finite Kleinian subgroup
of G. Denote

X := G/�.

Here, G acts transitively on H
n, the hyperbolic n-space. Fix a reference point o ∈ H

n

and let K = StabG(o), then K\G = H
n. Let π : G → H

n be the projection

π(g) = g(o). (4)

We will abuse notation and also write π for the induced map from G/� to H
n/�. For

convenience, we will assume throughout the paper that we have chosen o so that o� ∈
π(C0), where C0 is defined in §3.2. This says that o� is in the convex core of Hn/�.

Let d denote the left G-invariant metric on G which induces the hyperbolic metric on
K\G = H

n.
Recall from §2 that �(�) ⊆ ∂(Hn) denotes the limit set of X. We denote the Hausdorff

dimension of �(�) by δ� . It is equal to the critical exponent of � (see [27]).
We say that a limit point ξ ∈ �(�) is radial if there exists a compact subset of X so

that some (and hence every) geodesic ray toward ξ has accumulation points in that set. An
element g ∈ G is called parabolic if the set of fixed points of g in ∂(Hn) is a singleton. We
say that a limit point is parabolic if it is fixed by a parabolic element of �. A parabolic limit
point ξ ∈ �(�) is called bounded if the stabilizer �ξ acts cocompactly on �(�)− {ξ}.

We denote by �r(�) and �bp(�) the set of all radial limit points and the set of all
bounded parabolic limit points respectively. Since � is geometrically finite (see [2]),

�(�) = �r(�) ∪�bp(�).
Fix wo ∈ T1(Hn) and letM = StabG(wo) so that T1(Hn)may be identified withM\G.

For w ∈ T1(Hn),

w± ∈ ∂Hn
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denotes the forward and backward endpoints of the geodesic w determined. For g ∈ G, we
define

g± := w±
o g.

Without loss of generality, we may assume that w±
o ∈ �(�), and hence every γ ∈ � will

satisfy γ± ∈ �(�).
Let A = {as : s ∈ R} be a one parameter diagonalizable subgroup such that M and A

commute, and such that the right action on M\G = T1(Hn) corresponds to unit speed
geodesic flow. We parameterize A by A = {as : s ∈ R}, where

as =
⎛
⎝es I

e−s

⎞
⎠ (5)

and I denotes the (n− 1)× (n− 1) identity matrix.
Let U denote the expanding horospherical subgroup

U = {g ∈ G : a−sgas → e as s → +∞},
let Ũ be the contracting horospherical subgroup

Ũ = {g ∈ G : asga−s → e as s → +∞},
and let P = MAŨ be the parabolic subgroup.

The group U is a connected abelian group, isomorphic to R
n−1. We may use the

parameterization t �→ ut so that for any s ∈ R,

asuta−s = ues t. (6)

Similarly, we parameterize Ũ by t �→ vt ∈ Ũ so that for s ∈ R,

asvta−s = ve−s t. (7)

More explicitly, if t ∈ R
n−1 is viewed as a row vector,

ut =
⎛
⎝1 t 1

2‖t‖2

I tT

1

⎞
⎠ (8)

and

vt =
⎛
⎝ 1

tT I
1
2‖t‖2 t 1

⎞
⎠ .

For a subset H of G and η > 0,Hη denotes the closed η-neighborhood of e in H, that is,

Hη = {h ∈ H : d(h, e) ≤ η}.
For any r > 0, let

BU(r) = {ut : ‖t‖ ≤ r} and B
Ũ
(r) = {vt : ‖t‖ ≤ r},

where ‖t‖ is the sup-norm of t ∈ R
n−1.
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LEMMA 3.1. For 0 < η < 1/4 and p ∈ Pη, there exists ρp : BU(1) → BU(1 +O(η))

that is a diffeomorphism onto its image and a constant D = D(η) < 3η such that

utp
−1 ∈ PDuρp(t).

Explicitly, if p = asvr, then ρp(t) = (t − 1
2‖t‖2r)/es(1 − (t · r)+ 1

4‖r‖2‖t‖2).

Proof. For s ∈ R and r ∈ R
n−1, let p = asvr. Then

p−1 =
⎛
⎜⎝

e−s

−e−srT I

1
2e

−s‖r‖2 −r es

⎞
⎟⎠ ,

so

utp
−1 =

⎛
⎜⎝
e−s(1 − (t · r)+ 1

4‖r‖2‖t‖2) t − 1
2‖t‖2r 1

2e
s‖t‖2

−e−srT + 1
2e

−s‖r‖2tT I − tT r estT
1
2e

−s‖r‖2 −r es

⎞
⎟⎠ .

Now, if p′ = as′vr′ , we obtain that

p′ut′ =
⎛
⎜⎝

es
′

es
′ t′ 1

2e
s′ ‖t′‖2

r′T r′T t′ + I 1
2‖t′‖2r′T + t′T

1
2e

−s′ ‖r′‖2 1
2e

−s′ ‖r′‖2t′ + e−s′r′ e−s′( 1
4‖r′‖2‖t′‖2 + (r′ · t′)+ 1)

⎞
⎟⎠ .

We wish to solve for t′.
Setting entries equal yields

t − 1
2‖t‖2r = es

′
t′

and

es
′ = e−s

(
1 − (t · r)+ 1

4‖r‖2‖t‖2). (9)

Combining these implies that

t′ = t − 1/2‖t‖2r
es(1 − (t · r)+ 1/4‖r‖2‖t‖2)

.

We define ρp(t) to be this quantity. One can directly check that it satisfies the claim.

3.1. Patterson–Sullivan and Lebesgue measures. For x, y ∈ H
n and ξ ∈ ∂(Hn), the

Busemann function is given by

βξ (x, y) := lim
t→∞ d(x, ξt )− d(y, ξt ),

where ξt is a geodesic ray towards ξ .
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A family of finite measures {μx : x ∈ H
n} on ∂(Hn) is called a �-invariant conformal

density of dimension δμ > 0 if for every x, y ∈ H
n, ξ ∈ ∂(Hn), and γ ∈ �,

γ∗μx = μxγ and
dμy

dμx
(ξ) = e−δμ βξ (y,x), (10)

where γ∗μx(F ) = μx(Fγ ) for any Borel subset F of ∂(Hn).
We let {νx}x∈Hn denote the Patterson–Sullivan density on ∂Hn, that is, the unique (up to

scalar multiplication) conformal density of dimension δ� .
For each x ∈ H

n, we denote by mx the unique probability measure on ∂(Hn) which is
invariant under the compact subgroup StabG(x). Then {mx : x ∈ H

n} forms a G-invariant
conformal density of dimension n− 1, called the Lebesgue density. Fix o ∈ H

n.
For g ∈ G, we can define measures on Ug using the conformal densities defined

previously. The Patterson–Sullivan measure (abbreviated as the PS measure)

dμPS
Ug(utg) := e

δ�β(utg)+ (o,utg(o))dνo((utg)
+), (11)

and the Lebesgue measure

μLeb
Ug (utg) := e

(n−1)β(utg)+ (o,utg(o))dmo((utg)
+).

We similarly define the opposite PS measure on Ũg:

dμPS −
Ũg

(vtg) := e
δ�β(vtg)− (o,vtg(o))dνo((vtg)

−). (12)

The conformal properties of mx and νx imply that these definitions are independent of
the choice of o ∈ H

n.
We often view μPS

Ug as a measure on U via

dμPS
g (t) := dμPS

Ug(utg),

and similarly for μPS −
Ũg

on Ũ . For g ∈ G, s ∈ R and E ⊆ U a Borel subset (or E ⊆ Ũ for

μPS −), these measures satisfy

μLeb
g (E) = e(n−1)sμLeb

a−sg(a−sEas), (13)

μPS
g (E) = eδ�sμPS

a−sg(a−sEas), (14)

μPS −
g (E) = eδ�sμPS −

asg
(asEa−s). (15)

In particular,

μPS
g (BU(e

s)) = eδ�sμPS
a−sg(BU(1)) and μPS −

g (BU−(es)) = eδ�sμPS −
asg

(BU(1)).

The measure

dμLeb
Ug (utg) = dμLeb

U (ut) = dt

is independent of the orbit Ug and is simply the Lebesgue measure on U ≡ R
n−1 up to a

scalar multiple.

https://doi.org/10.1017/etds.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.47


2790 N. Tamam and J. M. Warren

We will need the following fundamental results, which are stated for μPS and U, but
also hold if we replace them with μPS − and Ũ .

LEMMA 3.2. The map g �→ μPS
g is continuous, where the topology on the space of regular

Borel measures on U is given by μn → μ ⇐⇒ μn(f ) → μ(f ) for all f ∈ Cc(U).

Proof. This is clear from the definition of the PS measure, since it is defined using the
Busemann function and stereographic projection.

COROLLARY 3.3. For any compact set � ⊆ G and any r > 0,

0 < inf
g∈�,g+∈�(�)

μPS
g (BU(r)g) ≤ sup

g∈�,g+∈�(�)
μPS
g (BU(r)g) < ∞.

To define the PS measure on Ux for x ∈ X, note that

if x− ∈ �r(�), then u �→ ux is injective, (16)

and we can define the PS measure on Ux ⊆ X, denoted μPS
x , simply by pushforward of

μPS
g , where x = g�. In general, defining μPS

x requires more care, see e.g. [24, §2.3] for
more details. As before, we can view μPS

x as a measure on U via

dμPS
x (t) = dμPS

x (utx).

3.2. Thick–thin decomposition and the height function. There exists a finite set of
�-representatives ξ1, . . . , ξq ∈ �bp(�). For i = 1, . . . , q, fix gi ∈ G such that g−

i = ξi ,
and for any R > 0, set

Hi (R) :=
⋃
s>R

Ka−sUgi and Xi (R) := Hi (R)� (17)

(recall, K = StabG(o)). Each Hi (R) is a horoball of depth R.
The rank of Hi (R) is the rank of the finitely generated abelian subgroup �ξi =

Stab�(ξi). We say that the cusp has maximal rank if rank �ξ = n− 1. It is known that
each rank is strictly smaller than 2δ� .

We denote

supp mBMS := {g� ∈ X : g± ∈ �(�)}.
(For now, this is simply notation. The measure mBMS will be defined in the next section,
and this set is its support. It projects onto the convex core of H

n/�.) Note that the
condition g± ∈ �(�) is independent of the choice of representative of x = g� in the above
definition, because �(�) is �-invariant. Thus, the notation x± ∈ �(�) is well defined,
even though x± itself is not.

According to [2], there exists R0 ≥ 1 such that X1(R0), . . . , Xq(R0) are disjoint, and
for some compact set C0 ⊂ G/�,

supp mBMS ⊆ C0 � X1(R0) � · · · � Xq(R0).
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For 1 ≤ i ≤ q and R ≥ R0, denote

X (R) := X1(R) � · · · � Xq(R), C(R) := supp mBMS − X (R).
We will need a version of Sullivan’s shadow lemma, obtained by Schapira–Maucourant

(see Proposition 5.1 and Remark 5.2 in [20]).

PROPOSITION 3.4. There exists a constant λ = λ(�) ≥ 1 such that for all x ∈ supp mBMS

and all T > 0, we have

λ−1T δ�e(k1(x,T )−δ�)d(π(C0),π(a− log T x)) ≤ μPS
x (BU(T )) (18)

≤ λT δ�e(k1(x,T )−δ�)d(π(C0),π(a− log T x)) (19)

and

λ−1T δ�e(k2(x,T )−δ�)d(π(C0),π(alog T x)) ≤ μPS −
x (B

Ũ
(T ))

≤ λT δ�e(k2(x,T )−δ�)d(π(C0),π(alog T x)), (20)

where k1(x, T ) is the rank of Xi (R0) if a− log T x ∈ Xi (R0) for some 1 ≤ i ≤ � and equals
0 if a− log T x ∈ C0, and k2(x, T ) is defined analogously for alog T x. Recall the definition
of π from (4) as the projection from G to H

n.

Definition 3.5. For x ∈ G/�, we define the height of x by

height(x) = d(π(C0), π(x)), (21)

where π : G/� → H
n/� is the projection map as in (4), recalling that Hn/� ∼= K\G/�.

LEMMA 3.6. For any x ∈ supp mBMS and R ≥ R0, we have that

x ∈ C(R) ⇐⇒ height(x) ≤ R − R0.

Proof. The claim follows from the disjointness of Xi (R0), 1 ≤ i ≤ q from C0, and the fact
that Xi (R) ⊆ Xi (R0).

If x ∈ C(R), then either x ∈ C0, in which case height(x) = 0 and we are done, or
x ∈ Xi (R0). Assume the latter, then the Busemann function between x and the boundary
of Xi (R0) (which intersects C0) is at most R − R0. Thus, we may deduce the claim in this
case.

Next, assume x ∈ Xi (R) for some i. The Busemann function between two points in
different horoballs is at least R − R0. Since a point from Xi (R) cannot go into C0 without
passing through Xi (R0), this is a lower bound for the distance between the base points,
that is, the height.

COROLLARY 3.7. Let x ∈ G/� be (ε, s0)-Diophantine. Then

height(x) < (2 − ε)s0.

Proof. By Definition 1.2,

d(C0, a−s0x) < (1 − ε)s0.
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Hence, we have that

height(x) ≤ d(C0, x)

< d(C0, a−s0x)+ d(a−s0x, x)

< (1 − ε)s0 + s0.

The injectivity radius at x ∈ X is defined to be the supremum over all ε > 0 such that
the map

h �→ hx is injective on Gε.

We denote the injectivity radius at x by

inj(x).

The injectivity radius of a set � is defined to be

inf
x∈� inj(x).

By the proof of [25, Proposition 6.7], there exists a constant σ = σ(�) > 0 such that
for all x ∈ supp mBMS,

σ−1 inj(x) ≤ e− height(x) ≤ σ inj(x). (22)

The following fact is well known, but we include a proof for completion.

LEMMA 3.8. There exists T0 = T0(�) > 0 which satisfies the following. Let x ∈ G/�
with x− ∈ �(�), and let R > 0 be such that d(C0, x) < R. Then there exists
t ∈ BU(2(R + T )) such that

(utx)
± ∈ �(�).

In particular, for every 0 < ε < 1, s0 ≥ 1, and (ε, s0)-Diophantine point x, there exists
|t| 	� s0 such that

(utx)
± ∈ �(�).

Proof. Let g, h′ ∈ G be such that x = g�, h′− = g−, h′� ∈ KC0, and

d(g, h′) ≤ height(x) < R.

Since KC0 is a compact set, by [24, Lemma 3.3], there exists a constant T0, which only
depends on C0 (that is, on �) such that for some t ∈ BU(T0),

(uth
′)± ∈ �(�).

Fix h := uth
′ and observe that

d(g, h) < R + T0. (23)

We must flow h� with an element of A so that it lies on Ux.
Because h− = g−, if s = βg−(h, g), then

ash ∈ Ug.
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Since βg−(h, g) ≤ d(h, g), we arrive at

d(g, ash) ≤ d(g, h)+ d(h, ash)

≤ 2d(g, h)

≤ 2(R + T ).

For (ε, s0)-Diophantine x, observe that

d(C0, x) ≤ d(C0, a−s0x)+ d(a−s0 , x)

< (1 − ε)s0 + s0

< 2s0,

so we see that R = 2s0 works for all such points.

3.3. Bowen–Margulis–Sullivan and Burger–Roblin measures. Recall π : G → H
n

from (4). In this section, we will abuse notation and write π for the restriction of π
to T1(Hn) ∼= M\G. Recalling the fixed reference point o ∈ H

n as before, the map

w �→ (w+, w−, s := βw−(o, π(w)))

is a homeomorphism between T1(Hn) and

(∂(Hn)× ∂(Hn)− {(ξ , ξ) : ξ ∈ ∂(Hn)})× R.

This homeomorphism allows us to define the Bowen–Margulis–Sullivan (BMS) and
Burger–Roblin (BR) measures on T1(Hn), denoted by m̃BMS and m̃BR respectively:

dm̃BMS(w) := eδ�βw+ (o,π(w))eδ�βw− (o,π(w))dνo(w
+)dνo(w−)ds,

dm̃BR(w) := e(n−1)βw+ (o,π(w))eδ�βw− (o,π(w))dmo(w
+)dνo(w−)ds.

The conformal properties of {νx} and {mx} imply that these definitions are independent
of the choice of o ∈ H

n. Using the identification of T1(Hn) with M\G, we lift the above
measures to G so that they are all invariant under M from the left. By abuse of notation,
we use the same notation (m̃BMS and m̃BR). These measures are right �-invariant, and
hence induce locally finite Borel measures on X, which are the Bowen–Margulis–Sullivan
measure mBMS and the Burger–Roblin measure mBR respectively.

Note that

supp mBMS := {x ∈ X : x± ∈ �(�)}
and

supp mBR = {x ∈ X : x− ∈ �(�)}.
Recall P = MAŨ , which is exactly the stabilizer of w+

o in G. We can define another
measure ν on Pg for g ∈ G, which will give us a product structure for m̃BMS and m̃BR that
will be useful in our approach. For any g ∈ G, define

dν(pg) := e
δ�β(pg)− (o,pg(o))

dνo(w
−
o pg)dmds (24)
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on Pg, where s = β(pg)−(o, pg(o)), p = mav ∈ MAŨ , and dm is the probability Haar
measure on M.

Then for any ψ ∈ Cc(G) and g ∈ G, we have

m̃BMS(ψ) =
∫
Pg

∫
U

ψ(utpg) dμ
PS
pg(t) dν(pg) (25)

and

m̃BR(ψ) =
∫
Pg

∫
U

ψ(utpg) dt dν(pg). (26)

LEMMA 3.9. There exists a constant λ = λ(�) > 1 such that for all g ∈ supp m̃BMS and
all 0 < ε < inj(g), we have

λ−1εδ�+1/2(n−1)(n−2)+1e(k2(x,ε)−δ�)d(π(C0),π(alog εx))

≤ ν(Pεg)

≤ λεδ�+1/2(n−1)(n−2)+1e(k2(x,ε)−δ�)d(π(C0),π(alog εx)),

where x = g� and k2(x, ε) is as defined in Proposition 3.4.

Proof. Let x = g�. By Proposition 3.4, there exists λ̃ > 1 such that for all such ε,

λ̃−1εδ�e(k2(x,ε)−δ�)d(π(C0),π(alog εx)) ≤ μPS −
g (B

Ũ
(ε))

≤ λ̃εδ� e(k2(x,ε)−δ�)d(π(C0),π(alog εx)). (27)

From (24), if m denotes the probability Haar measure on M, we then have

ν(Pεg) ≤
∫
Aε

∫
Mε

μPS −
g (B

Ũ
(ε)) dm ds

≤ Cλ̃εδ�+1/2(n−1)(n−2)+1e(k2(x,ε)−δ�)d(π(C0),π(alog εx)),

where C is determined by the scaling of the probability Haar measures on A and M.
The lower bound follows similarly. Then, λ = max{Cλ̃, λ̃} satisfies the conclusion of the
lemma.

3.4. Admissible boxes and smooth partitions of unity. Recall that for η > 0, we denoted
by Gη the closed η-neighborhood of e in G.

Take ε > 0 such that the map

g �→ gx is injective on Gε for all x ∈ �.

For x ∈ X and η1 > 0, η2 ≥ 0 less than inj(x), we call

B = BU(η1)Pη2x

an admissible box (with respect to the PS measure) if B is the injective image ofBU(η1)Pη2

in X under the map h �→ hx and

μPS
px(BU(η1)px) �= 0
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for all p ∈ Pη2 . For g ∈ G, we say that B = BU(η1)Pη2g is an admissible box if
B = BU(η1)Pη2x is one.

Note that if BU(η1)Pη2g is an admissible box, then there exists ε > 0 such that
BU(η1 + ε)Pη2+εg is also an admissible box. Moreover, every point has an admissible
box around it by [26, Lemma 2.17].

The error terms in our main theorems are in terms of Sobolev norms, which we
define here. For � ∈ N, 1 ≤ p ≤ ∞, and ψ ∈ C∞(X) ∩ Lp(X), we consider the following
Sobolev norm:

Sp,�(ψ) =
∑

‖Uψ‖p,

where the sum is taken over all monomials U in a fixed basis of g = Lie(G) of order at
most �, and ‖ · ‖p denotes the Lp(X)-norm. Since we will be using S2,� most often, we set

S� = S2,�.

Our proofs will require constructing smooth indicator functions and partitions of unity
with controlled Sobolev norms. We prove such lemmas below.

LEMMA 3.10. Let H be a horospherical subgroup of G (that is, U or Ũ ). For every ξ1, ξ2 >

0 and g ∈ G, there exists a non-negative smooth function χξ1,ξ2 defined on Hξ1+ξ2g such
that 0 ≤ χξ1,ξ2 ≤ 1, S�(χξ1,ξ2) 	n,� ξ

n−1
1 ξ

−�−(n−1)/2
2 , and

χξ1,ξ2(h) =
{

0 if h �∈ Hξ1+ξ2g,

1 if h ∈ Hξ1−ξ2g.

Proof. According to [17, Lemma 2.4.7(b)], there exists c1 = c1(n) > 0 such that for every
ξ > 0, there exists a non-negative smooth function σξ defined on Hξ such that∫

H

σξ (h) dm
Haar(h) = 1, S�(σξ ) < c1ξ

−�−(n−1)/2. (28)

For g ∈ �, let χξ1,ξ2 = 1Hξ1g ∗ σξ2 . Then for any h ∈ H , we have 0 ≤ χξ1,ξ2(h) ≤ 1 and

χξ1,ξ2(h) =
{

0 if h /∈ Hξ1+ξ2g,

1 if h ∈ Hξ1−ξ2g.

Since for some c2 = c2(�) > 0,

S1,0(1Hξ1g0) = mHaar(Hξ1) < c2ξ1
n−1,

by the properties of the Sobolev norm and (28), we arrive at

S�(χξ1,ξ2) ≤ S1,0(1Hξ1g0)S�(σξ2) < c1c2ξ1
n−1ξ2

−�−(n−1)/2.

LEMMA 3.11. Let H be a horospherical subgroup of G, r > 0, � ∈ N, and let E ⊂ H be
bounded. Then, there exists a partition of unity σ1, . . . , σk of E in HrE, that is,

k∑
i=1

σi(x) =
{

0 if x /∈ HrE,

1 if x ∈ E,
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such that for some u1, . . . , uk ∈ E and all 1 ≤ i ≤ k,

σi ∈ C∞
c (Hrui), S�(σi) 	n r

−�+n−1.

Moreover, if there exists R > r such that E = HR , then k 	n (R/r)
n−1.

Proof. Let {u1, . . . , uk} be a maximal r/4-separated set in E. Then

E ⊆
k⋃
i=1

Hr/2ui . (29)

Let 1 ≤ i ≤ k. According to [13, Theorem 1.4.2], there exists χi ∈ C∞
c (Hrui) such that

0 ≤ χi ≤ 1, χi(u) = 1 for any u ∈ Hr/2ui , and for 1 ≤ m ≤ �,

|χ(m)i | 	 r−m (30)

(where the implied constant depends only on n). Let σi be defined by

σi = χi(1 − χi−1) · · · (1 − χ1).

Then, each σi ∈ C∞
c (Hrui) and

1 −
k∑
i=1

σi =
k∏
i=1

(1 − χi) = 0 on
k⋃
i=1

Hrui

implies that
∑k
i=1 σi = 1 on

⋃k
i=1 Hr/2ui .

By the rules for differentiating a product and (30) for 1 ≤ m ≤ �, we have

|σ (m)i | ≤ Cr−m,

where C is the multiplicity of the cover in (29). By Besicovitch covering theorem, C is
bounded by a constant which depends only on n. Using the definition of the Sobolev norm,
we arrive at

S�(σi) 	n r
−�+n−1.

Now, assume there exists R > r such that E = HR . Since the geometry of H is of an
Euclidean space of dimension dim H , we then have

k 	n

(
R

r

)n−1

.

LEMMA 3.12. Let H be either U or G. There exists �′ = �′(H) > 0 such that for any
integer � > �′, η > 0,H ∈ {U , G}, and f ∈ C∞

c (H), there exist functions fη,± ∈ C∞
c (H)

which are supported on an 2η neighborhood of supp f , and for any h ∈ H , satisfy:
(1) fη,−(h) ≤ minw∈Hη f (wh) ≤ maxw∈Hη f (wh) ≤ fη,+(h);
(2) |fη,±(h)− f (h)| 	supp f ηS�(f );
(3) S�(fη,±) 	H ,supp f η

−2�S�(f ).

Proof. First, according to [1], there exists �′ ∈ N such that any � > �′ satisfies
S∞,1(ψ) 	supp ψ S�(ψ) for any ψ ∈ C∞

c (H).
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Let f ′
η,± be defined by

f ′
η,+(h) := sup

w∈Hη
f (wh) and f ′

η,−(h) := inf
w∈Hη

f (wh)

for any h ∈ H .
As before, we use [17, Lemma 2.4.7(b)] to deduce that there exist c1 = c1(H) > 0,

n1 = n1(H), and a non-negative smooth function ση supported on Hη such that∫
H

ση(h) dm
Haar(h) = 1, S�(ση) < c1η

−�−n1 .

Define fη,± by

fη,± := f ′
2η,± ∗ ση.

Then, fη,± are smooth functions which are supported on a 2η neighborhood of supp f .
Moreover, for any h ∈ H ,

f ′
η,+(h) =

∫
Hη

f ′
η,+(h)ση(u−1) dmHaar(u)

≤
∫
Hη

f ′
2η,+(uh)ση(u−1) dmHaar(u) by definition of f ′

2η,+ (31)

= fη,+(h)

≤
∫
Hη

f ′
3η,+(h)ση(u−1) dmHaar(u) by (31) and definition of f ′

3η,+

= f ′
3η,+(h).

In a similar way, one can show

f ′
3η,− ≤ fη,− ≤ f ′

η,−,

proving the first inequality.
By the mean value theorem, for any h ∈ H , w ∈ H3η,

|f (wh)− f (h)| 	 ηS∞,1(f ) 	supp f S�(f ).

Since f ′
3η,− ≤ fη,− ≤ fη,+ ≤ f ′

3η,+, there exist some w+, w− ∈ H3η such that

|fη,±(h)− f (h)| ≤ |f (w±h)− f (h)|,
and we have the second inequality.

Now, we have

S�(fη,±) ≤ S∞,1(f
′
2η,±)S�(ση) 	H ,supp f S�(f )η

−�−n1+1.

By choosing �′ > n1, we may deduce the last inequality.

4. Quantitative non-divergence
In this section, we prove a quantitative non-divergence result that is crucial in the following
sections. We use the notation established in §3.2. The results in this section hold for any �
that is geometrically finite, without need for Assumption 1.1.
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Recall from §1 that for 0 < ε < 1 and s0 ≥ 1, we say that x ∈ X is (ε, s0)-Diophantine
if for all τ > s0,

d(C0, a−τ x) < (1 − ε)τ , (32)

where C0 is the compact set defined in §3.2. Let R0 and q also be as defined in §3.2.
This section is dedicated to the proof of the following theorem, which says (in a

quantitative way) that most of the U orbit of a Diophantine point is not in the cusp.

THEOREM 4.1. There exists β > 0 satisfying the following: for every 0 < ε < 1 and
s0 ≥ 1, and for every (ε, s0)-Diophantine element x ∈ X, every R ≥ R0, every T 
�,ε s0,
and every 0 < s ≤ T ε, we have

μPS
a− log sx

(BU(T /s)a− log sx ∩ X (R)) 	n,� μ
PS
a− log sx

(BU(T /s)a− log sx)e
−βR .

We now follow the notation of Mohammadi and Oh in [25, §6]. Equip R
n+1 with the

Euclidean norm. Recall from §3.2 that for 1 ≤ i ≤ q, g−
i = ξi . Without loss of generality,

we may further assume that gi satisfies ‖g−1
i e1‖ = 1. Let

vi = g−1
i e1.

LEMMA 4.2. For any i = 1, . . . , q, �vi is a discrete subset of Rn+1.

Proof. Since ξi is assumed to be a bounded parabolic limit point, by definition, (�(�) \
{ξi})/�ξi = (�(�) \ {ξi})/�vi is compact, where

Gvi = g−1
i MUgi and �vi = � ∩Gvi .

If γ ∈ �vi , then Hi (R0)γ = Hi (R0). Therefore, the visual map induces a homeo-
morphism between Hi (R0)/�vi and (∂Hn \ {ξi})/�vi . It follows that the quotient of
{g+ ∈ � : g ∈ Hi (R0)} by the action of �vi is compact. Using Iwasawa decomposition,
it follows that there exists a compact set U0 ⊂ U such that for any g = kaugi ∈ Hi (R0)

such that g+ ∈ �(�), k ∈ K , a ∈ A, and u ∈ U , there exist γ ∈ �vi , k′ ∈ K , u′ ∈ U0 so
that gγ = k′au′gi .

Since ξi is assumed to be a parabolic limit point, there exists a parabolic element
γ0 ∈ �ξi , that is, γ0 = g−1

i mugi .
Assume for contradiction that there exists an infinite sequence {γj } ∈ � such that {γjvi}

converges. Note that translating by an element of γ allows us to assume, without loss
of generality, that the limit of this sequence is 0. Using the Iwasawa decomposition, we
get that for all j, there exist atj ∈ A, kj ∈ K , and uniformly bounded uj ∈ U such that
γj = kjatj ujgi . Since

‖γjvi‖ = ‖kjatj uj e1‖ = etj ,

we may deduce that tj → −∞. In particular, γj ∈ Hi(R0) for all large enough j.
We have

γjγ0γ
−1
j = (kj atj ujgi)(g

−1
i mugi)(g

−1
i u−1

j a−1
tj
k−1
j )

= kjatj ujmuu
−1
j a−1

tj
k−1
j .
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Since ujmu−1
j = mju

′
j ∈ MU , with u′

j uniformly bounded, and since M centralizes A, we
have

γjγ0γ
−1
j = kjmjatj u

′
j ua

−1
tj
k−1
j .

Since u′
j u is in a bounded subset of U, we get that atj u

′
j ua

−1
tj

→ e as tj → −∞. Since

K and M are compact, it then follows that the sequence γjγ0γ
−1
j has a convergent

subsequence. This contradicts the discreteness of �, since the γj terms were assumed to
be distinct.

For any g ∈ G, we have that g� ∈ Xi (R) if and only if there exists γ ∈ � such that

‖gγ vi‖ ≤ e−R . (33)

Indeed, by the Iwasawa decomposition and (17), if g� ∈ Xi (R), then there exist γ ∈ �,
k ∈ K , s > R, and u ∈ U , such that

‖gγ vi‖ = ‖ka−sugivi‖ = ‖a−sei‖ = e−s .

Moreover, it follows from [25, Lemmas 6.4 and 6.5] that the γ in (33) is unique. Note that
both lemmas are proved under the additional assumption that n = 3, but the proofs also
hold without it.

However, by [25, Lemma 6.5] and Lemma 4.2, there exists a constant η0 = η0(�) > 0
such that if g� /∈ Xi (R0), then for any γ ∈ �,

‖gγ vi‖ > η0. (34)

LEMMA 4.3. There exists c = c(�) > 0 which satisfies the following. Let ε, s0 > 0 and
let g ∈ G. If x = g� is (ε, s0)-Diophantine, then for any T 
�,ε s0,

sup
‖t‖≤T

inf
γ∈� inf

i=1,...,q
‖utgγ vi‖ > cT ε. (35)

Proof. Fix T > T0 = max{s0, η1/(ε−1)
0 }. We will first show that

inf
γ∈� inf

i=1,...,q
‖a− log T gγ vi‖ > cT ε−1, (36)

for some constant 1 > c = c(�) > 0.
There are two cases to consider. If a− log T x /∈ Xi (R0), then (36) follows from (34) and

the choice of T.
Otherwise, a− log T x ∈ Xi (R) for some maximal R > R0. According to Lemma 3.6,

we have

d(x, C0) ≥ R − R0.

Then, because x is (ε, s0) Diophantine and T > s0, by (32), we may deduce that

R − R0 < (1 − ε) log T .

Hence, a− log T x �∈ Xi ((1 − ε) log T + R0), so (33) implies (36).
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Now, fix γ ∈ � and 1 ≤ i ≤ q, and let⎛
⎜⎝
x1
...

xn+1

⎞
⎟⎠ = a− log T gγ vi .

According to (36), there exists 1 ≤ k ≤ n such that |xk| > cT ε−1. If |x1| > cT ε−1, then it
follows from the action of a− log T on R

n+1 that

‖gγ vi‖ ≥ |cT x1| > cT ε.

Otherwise, there exists 2 ≤ k ≤ n such that |xk| > cT ε−1. Then, for any t ∈ R
n−1, the

first coordinate of uta− log T gγ vi is

x1 + t · x′ + 1
2
‖t‖2xn+1 where x′ =

⎛
⎜⎝
x2
...
xn

⎞
⎟⎠ .

In particular, by taking tk = ±T (the kth entry in t) one can ensure that ‖alog T uta− log T

gγ vi‖ > cT ε.

A measure μ is called D-Federer if for all v ∈ supp(μ) and 0 < η ≤ 1,

μ(B(v, 3η)) ≤ Dμ(B(v, η)).

It is proved in §A (specifically Corollary A.9) that there exists D = D(�) > 0 such that

if x ∈ X satisfies x− ∈ �(�), then μPS
x is D-Federer. (37)

Indeed, Corollary A.9 actually establishes that there exists a constant σ = σ(�) > 0
such that for all x ∈ supp mBMS, c > 1, and T > 0,

μPS
x (BU(cT )) 	� c

σμPS
x (BU(T )). (38)

For f : Rd → R and B ⊂ R
d , let

‖f ‖B := sup
x∈B

|f (x)|.

Recall that U ∼= R
n−1.

LEMMA 4.4. Let σ = σ(�) > 0 be as in (38). Let y ∈ supp mBMS and let f : BU(η) →
R
n−1 be such that there exists b �= 0 so that for every coordinate function fi : BU(η) → R,

there exist ai ∈ R, such that

fi(t) = ai + bti .

Then for 0 < η ≤ 1 and 0 < ε < 1, we have

μPS
y ({t ∈ BU(η) : ‖f (t)‖ < ε}) 	�

(
ε

‖f ‖BU (η)
)σ
μPS
y (BU(η)), (39)

where ‖f (x)‖ denotes the max norm.
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Proof. First, note that if ‖f ‖BU (η) < 2ε, then the result holds by assuming that the implied
coefficient in (39) is bigger than 2σ : in this case, the right-hand side is greater or equal to

2σ
(

ε

‖f ‖BU (η)
)σ
μPS
y (BU(η)) ≥ 2σ

(
ε

2ε

)σ
μPS
y (BU(η))

≥ μPS
y ({t ∈ BU(η) : ‖f (t)‖ < ε}),

as desired. Thus, we now assume that

‖f ‖BU (η) ≥ 2ε. (40)

If ‖f (t)‖ ≥ ε for all t ∈ BU(η) such that (uty)
+ /∈ �(�), then there is nothing to prove.

So assume that ‖f (t)‖ < ε and (uty)
+ ∈ �(�). Since each fi is linear, for all t′ ∈ BU(η)

with ‖f (t′)‖ < ε, we get that for all 1 ≤ i ≤ n− 1,

|fi(t′)| = |ai + bt′| < ε,

|b(t ′i − ti )| = |fi(t′)− fi(t)| < 2ε.

Therefore,

‖f (x)‖ < ε �⇒ x ∈ BU(2ε/b)z.
Thus, by (38), we have that there exists σ = σ(�) > 0 so that

μPS
y ({x ∈ BU(η)y : ‖f (x)‖ < ε}) ≤ μPS

z (BU(2ε/b))

	�

(
2ε
bη

)σ
μPS
z (BU(η))

	�

(
2ε
bη

)σ
μPS
y (BU(3η))

	�

(
6ε
bη

)σ
μPS
y (BU(η)).

Assuming ‖f (t)‖ < ε for some t ∈ BU(η) (otherwise, as before, there is nothing to
prove), for any t′′ ∈ BU(η) and 1 ≤ i ≤ n− 1, we have

|fi(t′′)| ≤ |fi(t′′)− fi(t)| + |fi(t)| < 2bη + ε.

Thus, ‖f ‖BU (η)y − ε ≤ 2bη, so by (40),

1
2‖f ‖BU (η) ≤ 2bη,

which completes the proof.

A function f which satisfies (39) with the implied constant C for any ε > 0 and any ball
B ⊂ U ⊂ R

m is called (C, σ)-good on U with respect to μ. Observe that

if g is (C, σ)-good and if |g(x)| ≤ |f (x)| for μ-almost every x, then f is (C, σ)-good.
(41)
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In the proof of the following theorem, we use similar ideas to those which appear in
the proof of [18, Lemma 5.2]. Note that the proof in this case is simplified by the third
assumption, reflecting our rank-one setting.

PROPOSITION 4.5. Given positive constants C, β, D, and 0 < η < 1, there exists
C′ = C′(C, β, D) > 0 with the following property. Suppose μ is a D-Federer measure
on R

m, f : Rm → SLk(R) is a continuous map, 0 ≤ � ≤ η, z ∈ supp μ, � ⊂ R
k ,

B = B(z, r0) ⊂ R
m, and B̃ = B(z, 3r0) satisfy the following.

(1) For any v ∈ �, the function t �→ ‖f (t)v‖ is (C, β)-good on B̃ with respect to μ.
(2) For any v ∈ �, there exists t ∈ B such that ‖f (t)v‖ ≥ �.
(3) For any t ∈ B, there is at most one v ∈ � which satisfies ‖f (t)v‖ < η.
Then, for any 0 < ε < �,

μ({t ∈ B : there exists v ∈ � such that ‖f (t)v‖ < ε}) ≤ C′
(
ε

�

)β
μ(B).

Proof. For any t ∈ B, denote

f�(t) = min{‖f (t)v‖ : v ∈ �}.
Let

E = {t ∈ B : f�(t) < �} ∩ supp μ,

and for each v ∈ �, define

Ev = {t ∈ B : ‖f (t)v‖ < �} ∩ supp μ.

Observe that by assumption (3), the Ev terms are a disjoint cover of E. For each t ∈ Ev ,
define

rt,v = sup{r : ‖f (s)v‖ < � for all s ∈ B(t, r)}.
By assumption (2), we know that for every t ∈ E, the set B(t, rt,v) does not contain B.

Thus, since t ∈ B, we deduce that rt,v < 2r0. For any fixed rt,v < r ′t,v < 2r0, we have that

B(t, r ′t,v) ⊂ B(z, 3r0) = B̃, (42)

and by the definition of rt,v , there exists s ∈ B(t, r ′t,v) such that

‖f (s)v‖ ≥ �.

Note that {B(t, rt,v) : t ∈ E, v ∈ �} is a cover of E. According to the Besicovitch
covering theorem, there exists a countable subset I ⊂ E ×� such that {B(t, rt,v) :
(t, v) ∈ I } is a cover of E with a covering number bounded by a constant which only
depends on m. Thus,

∑
(t,v)∈I

μ(B(t, rt,v)) 	m μ

( ⋃
(t,v)∈I

B(t, rt,v)
)

. (43)
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By assumption (3) and the continuity of f, for any (t, v) ∈ I and s ∈ E ∩ B(t, rt,v),
f�(s) = ‖f (s)v‖.

Thus,

μ({s ∈ B(t, rt,v) : f�(s) < ε}) = μ({s ∈ B(t, rt,v) : ‖f (s)v‖ < ε})
≤ μ({s ∈ B(t, r ′t,v) : ‖f (s)v‖ < ε}).

Thus, assumption (1) and the assumption that μ is D-Federer together imply that

μ({s ∈ B(t, rt,v) : f�(s) < ε}) ≤ μ({s ∈ B(t, r ′t,v) : ‖f (s)v‖ < ε})

≤ C

(
ε

�

)β
μ(B(t, r ′t,v))

≤ CD

(
ε

�

)β
μ(B(t, rt,v)). (44)

Since E covers the set of points for which f� is less than ε, we may now conclude

μ({t ∈ B : f�(t) < ε})
≤

∑
(t,v)∈I

μ({s ∈ B(t, rt,v) : f�(t) < ε})

≤ CD
∑
(t,v)∈I

(
ε

�

)β
μ(B(t, rt,v)) by (44)

	m CD

(
ε

�

)β
μ

( ⋃
(t,v)∈I

B(t, rt,v)
)

by (43)

	m CD

(
ε

�

)β
μ(B̃) by (42)

	m CD
2
(
ε

�

)β
μ(B) μ is D-Federer.

Remark 4.6. Fix x ∈ X such that x− ∈ �(�). Since the PS measure μPS
x is supported on

Ux ∩ supp mBMS, it follows from Lemma 4.4 and (37) that Proposition 4.5 holds for μPS
x

and function f, which satisfies the assumption of Lemma 4.4.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let x0 = a− log sx and fix g ∈ G such that x = g�. By Lemma 4.3,
for all T 
�,ε s0, we have (35), that is, that

sup
‖t‖≤T

inf
γ∈� inf

i=1,...,q
‖utgγ vi‖ > T ε.

Let f : Rn−1 → SLn+1(R) be defined by

f (t) = uta− log sg.
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We first show that parts (1), (2), and (3) of Proposition 4.5 for μ = μPS
x0

, f, � = 1, z = x0,
r = T/s, η = e−R0 , and

� = �{v1, . . . , vq}.
Note that 0 /∈ �.

It follows from the action of ut on R
n+1 that for any v ∈ R

n+1, there exists v′ =
(v′

1, . . . , v′
n+1)

T ∈ R
n+1 such that

f (t)v = (
v′

1 + t · v′′ + 1
2‖t‖2v′

n+1, v′
2 − t1v

′
n+1, . . . , v′

n − tn−1v
′
n+1, v′

n+1
)T , (45)

where v′′ = (v′
2, . . . , v′

n)
T . Thus, if v′

n+1 �= 0, then t �→ f (t)v is bounded from below
by a function which satisfies the assumption of Lemma 4.4. Therefore, by (41), for any
v ∈ �, the function t �→ ‖f (t)v‖ is (C, β)-good on B̃ with respect to μPS

x0
for some

C = C(�) ≥ 1, β = β(�) > 0, which proves (1) of Proposition 4.5. Note that these
constants are uniform across all v so that v′

n+1 �= 0.
However, if v �= 0 and

v′
n+1 = 0,

then t �→ f (t)v is bounded below by some positive constant, and since positive constant
functions are (C, β)-good for any C ≥ 1, β > 0, we conclude that so is this function
by (41).

By (6), we have

uta− log s = a− log sust.

Since multiplication by a− log s only changes the matrix entries by scaling, using (35), for
i = 1, . . . , q, we get

sup
‖t‖≤T/s

‖a− log sustgγ vi‖ > s−1 sup
‖t‖≤T

‖utgγ vi‖ > s−1T ε.

Thus, for any s ≤ T ε, ‖t‖ < T/s, and v ∈ �,

‖f (t)v‖ ≥ 1,

which establishes (2) of Proposition 4.5.
Since η = e−R0 and Hi (R0) terms are pairwise disjoint, part (3) of Proposition 4.5

follows from the uniqueness of γ in (33) and (34).
According to 37, the measure μPS

x0
is D-Federer for any D > 0. Thus, we may now use

(33) and Proposition 4.5 to deduce

μPS
x0
(BU(T /s) ∩ Hi (R))

= μPS
x0
({t ∈ BU(T /s) : there exists γ ∈ �, 1 ≤ i ≤ q such that ‖f (t)γ vi‖ < e−R})

	 e−RβμPS
x0
(BU(T /s)x0),

where the implied constant depends on n and �.
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5. Friendliness properties of the PS measure
In this section, we prove several key properties of the PS measure, including that slightly
enlarging a ball does not increase the measure too much and that scaling the size of the ball
has a bounded multiplicative increase on the measure. Note that the results in this section
hold for any � that is geometrically finite; we do not require Assumption 1.1. In the setting
that all cusps have maximal rank, stronger statements hold. See the appendix, specifically
§A.3, for more details.

The main results in this section are the following, which both establish control over
the measure of a slightly enlarged ball. Many technical details of the proofs are hidden in
Proposition 5.4, which is proved in §A.

THEOREM 5.1. There exists a constant α′ = α′(�) > 0 such that for every x ∈ G/�
that is (ε, s0)-Diophantine, for every 0 < s ≤ T ε/(1−ε), every 0 < ξ 	� 1, and every
T 
�,ε s0,

μPS
a− log sx

(BU(ξ + T ))

μPS
a− log sx

(BU(T ))
− 1 	� ξ

α′
.

THEOREM 5.2. There exist α′ = α′(�) > 0, θ ′ = θ ′(�) ≥ α′, ω′ = ω′(�) ≥ 2δ� , such
that for any g ∈ G with g− ∈ �(�) and 0 < ξ < η 	� e

− height(g�), we have that

ν(Pξ+ηg)
ν(Pηg)

− 1 	� e
ω′ height(g�) ξ

α′

ηθ
′ .

Theorem 5.2 will be obtained as a corollary of the following.

PROPOSITION 5.3. There exist constants α = α(�) > 0, θ = θ(�) ≥ α, andω = ω(�) ≥
2δ� such that for x ∈ G/�, which satisfies x+ ∈ �(�), and 0 < ξ < η 	� e

− height(x), we
have

μPS
x (BU(ξ + η))

μPS
x (BU(η))

− 1 	� e
ω height(x) ξ

α

ηθ
.

We first show how to obtain Theorem 5.2 from Proposition 5.3.

Proof of Theorem 5.2 assuming Proposition 5.3. Using the product structure of ν, we can
write

ν(Pηg) =
∫
Aη

∫
Mη

μPS −
g (B

Ũ
(η)) dm ds.

Then, by an analogous statement to Proposition 5.3 for μPS −, there exists a constant
c0 = c0(�) > 0 such that

ν(Pη+ξ g) =
∫
Aξ+η

∫
Mξ+η

μPS −
g (B

Ũ
(ξ + η)) dm ds

≤
∫
Aξ+η

∫
Mξ+η

μPS −
g (B

Ũ
(η))

[
1 + c0

ξα

ηθ
eω height(g�)

]
dm ds

https://doi.org/10.1017/etds.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.47


2806 N. Tamam and J. M. Warren

=
[

1 + c0
ξα

ηθ
eω height(g�)

][
(ξ + η)1/2(n−1)(n−2)+1

η1/2(n−1)(n−2)+1 ν(Pηg)

]

≤
[

1 + c0
ξα

ηθ
eω height(g�)

][
1 + c1

ξ

η

]
ν(Pηg),

where c1 > 0 is an absolute constant (which depends only on n) arising from the binomial
theorem. Therefore,

ν(Pξ+ηg)
ν(Pηg)

− 1 	� e
ω height(g�) ξ

α

ηθ
· ξ
η

+ ξ

η
+ eω height(g�) ξ

α

ηθ
. (46)

Since ξ < η, the first term on the left-hand side of (46) is dominated by the last term,
and so

ν(Pξ+ηg)
ν(Pηg)

− 1 	�

ξ

η
+ eω height(g�) ξ

α

ηθ
.

Since eω height(g�) ≥ 1, if we define

α′ = min{1, α}, θ ′ = max{1, θ},
then both terms are dominated by

eω height(g�) ξ
α′

ηθ
′ ,

which completes the proof.

The following result, showing that the PS measure is not concentrated near hyperplanes,
is proved in the appendix to improve the readability of this section. See Proposition A.11
for the proof. This result builds upon the work of Das et al. in [5], where it is shown that
the PS density νo is friendly when � is geometrically finite.

For a hyperplane L ⊂ U ∼= R
n−1 and ξ > 0, define

NU(L, ξ) := {uty : y ∈ L, t ∈ BU(ξ)}.
PROPOSITION 5.4. Let � be geometrically finite and Zariski dense. There exist constants
α = α(�) > 0, ω = ω(�) ≥ 0, and θ = θ(�) > α satisfying the following: for any x ∈
G/� with x+ ∈ �(�), and for every ξ > 0 and 0 < η 	� e

− height(x), we have that for
every hyperplane L,

μPS
x (NU(L, ξ) ∩ BU(η)) 	� e

ω height(x) ξ
α

ηθ
μPS
x (BU(η)).

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3. It follows from the geometry of BU(ξ + η)x − BU(η)x that
there exist hyperplanes L1, . . . , Lm, where m only depends on n, such that

BU(ξ + η)x − BU(η)x ⊆
m⋃
i=1

NU(Li , 2ξ).
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For any 0 < ξ < η 	� e
− height(x), we have that

μPS
x (BU(ξ + η))

μPS
x (BU(η))

− 1 = μPS
x (BU(ξ + η)− BU(η))

μPS
x (BU(η))

≤
m∑
i=1

μPS
x (N (Li , ξ) ∩ B(x, ξ + η))

μPS
x (BU(η))

by Proposition 5.4

	� me
ω height(x) ξ

α

ηθ
· μ

PS
x (BU(2η))
μPS
x (BU(η))

.

By (37), μPS
x is D-Federer (see Corollary A.8 for more detail), in particular,

μPS
x (BU(2η)) 	� μ

PS
x (BU(η)).

Thus, we obtain

μPS
x (BU(ξ + η))

μPS
x (BU(η))

− 1 	� e
ω height(x) ξ

α

ηθ
,

and relabeling the constants completes the proof.

In (37), we saw that μPS
x is Federer when x ∈ supp mBMS. Below, we show that μPS

x

satisfies a similar condition for sufficiently large balls when x is Diophantine, but not
necessarily a BMS point.

COROLLARY 5.5. There exists a constant σ = σ(�) ≥ δ� such that for every c ≥ 1 and
every x ∈ G/� that is (ε, s0)-Diophantine, if T 
�,ε s0, then

μPS
x (BU(cT )) 	� c

σμPS
x (BU(T )).

Proof. By Lemma 3.8, for some T0 
�,ε s0, there exists

y ∈ BU(T0)x ∩ supp mBMS.

Then for T ≥ T0, we have

BU(T − T0)y ⊆ BU(T )x ⊆ BU(T + T0)y.

Since c ≥ 1, we therefore have that for T ≥ 2T0,

μPS
x (BU(cT )) ≤ μPS

y (BU(cT + T0))

≤ μPS
y (BU((c + 1)T ))

	� (c + 1)σμPS
y (BU(T /2)) by (37)

	� (c + 1)σμPS
y (BU(T − T0))

	� (c + 1)σμPS
x (BU(T ))

	� (2c)σμPS
x (BU(T )) since c ≥ 1

	� c
σμPS

x (BU(T )).
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Remark 5.6. Observe that if x is (ε, s0)-Diophantine and T 
�,ε s0, then T is sufficiently
large to use Corollary 5.5 on a−sx for s > 0. To see this, observe that in the notation of
the proof of Corollary 5.5, T0 is such that for any (ε, s0)-Diophantine point x, there exists
y ∈ supp mBMS and t ≤ T0 so that x = uty. Then

a−sx = a−suty = ue−s ta−sy.

Thus, the distance to the nearest BMS point in the U orbit shrinks, and so T is still
sufficiently large.

PROPOSITION 5.7. Let HR = {y ∈ G/� : height(y) ≤ R}. There exist constants α =
α(�) > 0, and ω = ω(�) ≥ 0 such that for every x ∈ G/� that is (ε, s0)-Diophantine
and for every 0 < ξ < 1/2, and T 
�,ε s0,

μPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

μPS
x (BU(T ))

	� e
ωRξα .

Proof. Let T0 
�,ε s0 satisfy the conclusion of Lemma 3.8. For T ≥ T0, let

ET := N (L, ξ) ∩ BU(T ) ∩HR ∩ supp mBMS,

and observe that μPS
x (ET ) = μPS

x (N (L, ξ) ∩ BU(T ) ∩HR).
Let c1 = c1(�) > 0 be the implied constant in Proposition 5.4. Fix r = c1e

−R and let
{u1, . . . , uk} be a maximal r/2-separated set in ET−r/4. Then,

ET ⊆
k⋃
i=1

BU(r)ui .

Note also that by (37), we have that there exists a constant c2 = c2(�) > 0 such that
for all ui ,

μPS
ui
(BU(r)) = μPS

ui
(BU(8(r/8)) ≤ c2μ

PS
ui
(BU(r/8)). (47)

Therefore,

μPS
x (N (L, ξ) ∩ BU(T ) ∩HR)

≤
k∑
i=1

μPS
ui
(N (L, ξ) ∩ BU(r))

	� e
ωR ξ

α

rθ

k∑
i=1

μPS
ui
(BU(r)) by Proposition 5.4

	� e
(ω+θ)Rξα

k∑
i=1

μPS
ui
(BU(r/8)) by (47)

	� e
(ω+θ)RξαμPS

x (BU(T + 1)) as the 1/8 balls are disjoint.
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By Corollary 5.5, there exists σ = σ(�) ≥ δ� so that

μPS
x (BU(T + 1)) ⊆ μPS

x (BU(2T )) 	� 2σμPS
x (BU(T )).

Let

ω′ = ω + θ .

It follows from the geometry of BU(ξ + T )x − BU(T )x that there exist L1, . . . , Lm,
where m only depends on n, such that

BU(ξ + T )x − BU(T )x ⊆
m⋃
i=1

NU(Li , 2ξ).

Thus, we also have

(BU(ξ + T )x − BU(T )x) ∩HR ⊆
m⋃
i=1

NU(Li , 2ξ).

We arrive at

μPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

μPS
x (BU(T ))

≤
m∑
i=1

μPS
x (N (Li , 2ξ) ∩ BU(ξ + T ))

μPS
x (BU(T ))

	� me
ω′Rξα

μPS
x (BU(ξ + T ))

μPS
x (BU(T ))

.

By Corollary 5.5 again, we conclude that

μPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

μPS
x (BU(T ))

	� e
ω′Rξα ,

which completes the proof.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Observe that by Lemma 3.6, for any R > R0,

μPS
a− log sx

(BU(T )) = μPS
a− log sx

(BU(T ) ∩HR−R0)+ μPS
a− log sx

(BU(T ) ∩ X (R)),

μPS
a− log sx

(BU(T + ξ)) = μPS
a− log sx

(BU(T + ξ) ∩HR−R0)+ μPS
a− log sx

(BU(T + ξ) ∩ X (R)).
(48)

By Theorem 4.1, for T 
�,ε s0, 0 < s ≤ T ε/(1−ε), and any R ≥ R0,

μPS
a− log sx

(BU(T + ξ) ∩ X (R)) = μPS
a− log sx

(BU((s(T + ξ)/s) ∩ X (R))

	� μ
PS
a− log sx

(BU(T + ξ))e−βR

	� μ
PS
a− log sx

(BU(T ))e
−βR by Corollary 5.5.
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Observe that use of Corollary 5.5 is justified if T 
�,ε s0 by Remark 5.6. Similarly, by
Proposition 5.7 and the same reasoning as in Remark 5.6, for T 
�,ε s0, we have

μPS
a− log sx

(BU(T + ξ) ∩HR−R0)− μPS
a−sx(BU(T ) ∩HR−R0) 	� e

ωRξαμPS
a− log sx

(BU(T )).

Putting this together with (48), we conclude

μPS
a− log sx

(BU(T + ξ))− μPS
a− log sx

(BU(T ))

	� e
ωRξαμPS

a− log sx
(BU(T ))+ 2e−βRμPS

a− log sx
(BU(T ))

	� (e
ωRξα + 2e−βR)μPS

a− log sx
(BU(T )).

Taking R = −α/(ω + β) log ξ implies the result, provided that ξ is sufficiently small
so that this is larger than R0. Note that since α, ω, β, R0 are all constants depending only
on �, this is equivalent to requiring ξ 	� 1.

6. Proof of Theorem 1.5
In this section, we keep the notation of §3.2. In particular, d denotes the hyperbolic
distance, height is the height of a point in the convex core into the cusps, and C0 is the
fixed compact set in G/� which is defined in §3.2.

We will first prove the following proposition, which is a form of Theorem 1.5 for G.
Theorem 1.5 will follow by a partition of unity argument.

PROPOSITION 6.1. There exist κ = κ(�) and � = �(�) which satisfy the following: let
0 < r < 1, ψ ∈ C∞

c (G) supported on an admissible box, and f ∈ C∞
c (BU(r)).

Then, there exists c = c(�, supp ψ) > 0 such that for any g ∈ supp m̃BMS, and s 
�

height(g�), we have∣∣∣∣ ∑
γ∈�

∫
U

ψ(asutgγ )f (t) dμPS
g (t)− μPS

g (f )m̃
BMS(ψ)

∣∣∣∣
< cS�(ψ)S�(f )e

−κsμPS
g (BU(1)).

Proof. Without loss of generality, assume that f and ψ are non-negative functions.
Step 1: Setup and approximations.

Let κ ′, �′ satisfy the conclusion of Assumption 1.1, and let � > �′ satisfy the conclusion
of Lemma 3.12. Observe that � can be increased if necessary while maintaining this
property.

Because ψ is supported on an admissible box, there exists 0 < η0 < 1/2 (depending on
supp ψ) such that G3η0 supp ψ is still an admissible box. For 0 < η < η0, let ψη,± satisfy
the conclusion of Lemma 3.12 for G, 3η, and ψ . In particular, for all small η > 0,

S�′(ψη,±) 	supp ψ η
−2�S�(ψ). (49)

Since ψ is uniformly continuous and the BMS measure is finite, we may deduce from
Lemma 3.12(2) that

|m̃BMS(ψη,±)− m̃BMS(ψ)| 	supp ψ ,� ηS�(ψ). (50)
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According to Lemma 3.1, for any p ∈ Pη, there exists ρp : BU(1) → BU(1 +O(η))

that is a diffeomorphism onto its image and a constant D = D(η) < 3η such that

utp
−1 ∈ PDuρp(t). (51)

Step 2: Assuming that f is supported on a small ball.
We start by proving that there exists κ > 0 such that if f ∈ C∞

c (BU(r1)), where r1 ≤
inj(g), then for s > 0,∑

γ∈�

∫
U

ψ(asutgγ )f (t) dμPS
g (t)− m̃BMS(ψ)μPS

g (f )

	�,supp ψ S�(ψ)S�(f )e
−2κsμPS

g (BU(1)). (52)

For any s > 0 and γ ∈ �, from (51), we have that∫
BU (r1)

ψ(asutgγ )f (t) dμPS
g (t)

= 1
ν(Pηg)

∫
Pηg

∫
BU (r1)

ψ(asutp
−1pgγ )f (t) dμPS

g (t) dν(pg)

≤ 1
ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ )f (t) dμPS
g (t) dν(pg),

where the last inequality follows since asP3ηa−s ⊂ P3η for any positive s.

Step 2.1: Use the product structure of the BMS measure. For any p ∈ Pη, (utg)
+ =

(uρp(t)pg)
+, the measures dμPS

g (t) and d(ρp∗μPS
pg(t)) = dμPS

pg(ρp(t)) are absolutely
continuous with each other, and the Radon–Nikodym derivative at t is given by

dμPS
g (t)

dμPS
pg(ρp(t))

= e
δ�β(utg)+ (utg(o),uρp(t)pg(o)). (53)

Let 0 < ξ < η. Let χη,ξ satisfy the conclusion of Lemma 3.10 for H = P , ξ1 = η − ξ ,
ξ2 = ξ , and g. Let ϕη,g be the function defined on BU(1)Pηg given by

ϕη,g(uρp(t)pg) := f (t)χη,ξ (pg)

ν(Pηg)e
δ�β(utg)+ (utg(o),uρp(t)pg(o))

.

We will need a bound on S�(ϕη,g). To that end, note that

|β(utg)+(utg(o), uρp(t)pg(o))| ≤ d(utg(o), uρp(t)pg(o))

= d(g(o), u−tuρp(t)pg(o)).

Since u−tuρp(t)p ∈ G5η, the above is bounded by some absolute constant (depending
only on �) for all η < 1

2 . Observe that this bound holds on the support of f (t)χη,ξ (pg).
Moreover, because the Busemann function is Lipschitz, all of its derivatives are bounded.

It then follows immediately from the product rule and the definition of the Sobolev
norm that

S�(f (t)χη,ξ (pg) exp(−δ�β(utg)+(utg(o), uρp(t)pg(o)))) 	�,� S�(f (t)χη,ξ (pg)). (54)
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By [17, Lemma 2.4.7(a)], Lemma 3.10, (54), and Lemma 3.9, we have

S�(ϕη,g) 	�,� ν(Pηg)
−1S�(f )S�(χη,ξ )

	�,� η
−(δ�+1/2(n−1)(n−2)+1)e(δ�−k2(x,η))d(π(C0),π(alog ηg))S�(χη,ξ )S�(f )

	�,� e
δ�(| log η|+height(g�))η−(δ�+1/2(n−1)(n−2)+1)ηn−1ξ−�−(n−1)/2S�(f )

	�,� e
δ� height(g�)η−(2δ�+1/2(n−1)(n−2)+1)ηn−1ξ−�−(n−1)/2S�(f )

	�,� e
δ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2S�(f ). (55)

Note that the dependence on � arises from the exponential of the Busemann function in
the denominator.

Also, using the product structure of m̃BMS in (25), we get

1
ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ )f (t) dμPS
g (t) dν(pg)

= 1
ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ )f (t)
dμPS

g (t)
dμPS

pg(ρp(t))
dμPS

pg(ρp(t)) dν(pg)

≤
∫
G

ψη,+(ashγ )ϕη,g(h) dm̃
BMS(h).

Step 2.2: Use the exponential mixing assumption.
By defining �η,+(h�) = ∑

γ∈� ψη,+(hγ ) and �η,g(h�) := ∑
γ∈� ϕη,g(hγ ), we

obtain

∑
γ∈�

∫
G

ψη,+(ashγ )ϕη,g(h) dm̃
BMS(h) ≤

∫
X

�η,+(asx)�η,g(x) dm
BMS(x)

for any positive s. Note that

S�′(�η,+) = S�′(ψη,+) and S�′(�η,g) = S�′(ϕη,g). (56)

In particular, (49) and (55) imply

S�′(�η,+) 	supp ψ η
−2�S�(ψ) and

S�′(�η,g) 	� e
δ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2S�(f ). (57)

By Assumption 1.1,

∫
�η,+(asx)�η,g(x) dm

BMS(x)−mBMS(�η,+)mBMS(�η,g)

	� S�′(�η,+)S�′(�η,g)e
−κ ′s .
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Then, by (57), there exists c1 = c1(�, supp ψ) such that∑
γ∈�

∫
BU (r1)

ψ(asutgγ )f (t) dμPS
g (t)

< mBMS(�η,+)mBMS(�η,g)

+ c1e
δ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2S�(ψ)S�(f )e

−κ ′s .

Step 2.3: Rewrite in terms of ψ and f.
Using Lemma 3.10 and (53), one can calculate

mBMS(�η,g) =
∫
G

ϕη,g(h) dm̃
BMS(h)

= 1
ν(Pηg)

∫
Pg

∫
U

f (t)χη,ξ (p)

e
δ�β(utg)+ (utg(o),uρp(t)pg(o))

dμPS
pg(ρp(t)) dν(pg)

= 1
ν(Pηg)

∫
Pg

∫
U

f (t)χη,ξ (p) dμ
PS
g (t) dν(pg)

≤ ν(Pη+ξ g)
ν(Pηg)

∫
BU (r1)

f (t) dμPS
g (t).

Thus, by Theorem 5.2, there exist α, θ , ω, c0 > 0 depending only on � such that for any
0 < ξ < η 	� e

− height(g�),

mBMS(�η,g) ≤
(

1 + c2e
ω height(g�) ξ

α

ηθ

) ∫
BU (r1)

f (t) dμPS
g (t)

=
(

1 + c2e
ω height(g�) ξ

α

ηθ

) ∫
BU (r1)

f (t) dμPS
g (t)

=
(

1 + c2e
ω height(g�) ξ

α

ηθ

)
μPS
g (f ).

Using (50), we get that there exists c3 = c3(�, supp ψ) such that

mBMS(�η,+) ≤
∫
G

ψη,+(g) dm̃BMS(g)

< m̃BMS(ψ)+ c3ηS�(ψ).

To summarize, we have∑
γ∈�

∫
BU (r1)

ψ(asutgγ )f (t) dμPS
g (t)

≤ 1
ν(Pηg)

∑
γ∈�

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ )f (t) dμPS
g (t) dν(pg)

≤
∑
γ∈�

∫
G

ψη,+(ashγ )ϕη,g(h) dm̃
BMS(h)
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≤
∫
X

�η,+(asx)�η,g(x) dm
BMS(x)

< mBMS(�η,+)mBMS(�η,g)+ c1η
4n−(1/2)n2−3−δ�−2�ξ−�−(n−1)/2S�(ψ)S�(f )e

−κ ′s

< (m̃BMS(ψ)+ c3ηS�(ψ))

((
1 + c2e

ω height(g�) ξ
α

ηθ

)
μPS
g (f )

)

+ c1e
δ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2S�(ψ)S�(f )e

−κ ′s .

It follows from the proof of Lemma 3.12 that m̃BMS(ψ) 	supp ψ S�(ψ) and μPS
g (f ) 	

S�(f )μ
PS
g (BU(1)). Then, using Proposition 3.4, we arrive at

∑
γ∈�

∫
BU (r1)

ψ(asutgγ )f (t) dμPS
g (t)− μPS

g (f )m̃
BMS(ψ)

	�

(
eω height(g�) ξ

α

ηθ
+ eδ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2e−κ ′s

)
· S�(ψ)S�(f )μPS

g (BU(1)).

Define

κ = 3αθκ ′

2θ(2�+ n− 1)+ 9α(2δ� + 3 + n2/2 − 4n)
,

and note that by making � larger if necessary, we guarantee κ > 0.
Recall from (22) that

e− height(g�) 	� inj(g).

For s ≥ max{θ , ω} height(g�)/κ , choose

η = e−κs/θ , ξ = e−4κs/α . (58)

Note that η < inj(g�) by choice of s, ω height(g�) ≤ κs, and ξ < η since by
Proposition 5.2, α < θ . By Proposition 5.2, we have ω > δ�; therefore, δ�

height(g�) ≤ κs. Note also that max{θ , ω} height(g�)/κ 	� height(g�).
With these choices, we obtain

eω height(g�)
(
ξ

ηθ
′

)α′

+ eδ� height(g�)η4n−(1/2)n2−3−2δ� ξ−�−(n−1)/2e−κ ′s ≤ 2e−2κs . (59)

In a similar way, using ψη,−, one can show a lower bound, proving (52).

Step 3: Covering argument for general f.
We now deduce the claim by decomposing f into a sum of functions, each defined on a

ball of radius r1 in U.
Let u1, . . . , uk and σ1, . . . , σk ∈ C∞

c (BU(r)) satisfy the conclusion of Lemma 3.11
for E = BU(r) and r1. For 1 ≤ i ≤ k, let

fi := f σi .
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Then, f ≤ ∑k
i−1 fi , and by Lemma 3.11 and [17, Lemma 2.4.7(a)],

S�(fi) 	� S�(f )S�(σi) 	� r
−�+n−1
1 S�(f ). (60)

Since each fi is supported on BU(r1)ui for some ui ∈ BU(1), by (52), we have

∑
γ∈�

∫
BU (r1)

ψ(asutgγ )fi(t) dμPS
g (t)− m̃BMS(ψ)μPS

g (fi)

	�,supp ψ μ
PS
g (BU(1))S�(ψ)S�(fi)e

−2κs .

Summing the above expressions for i = 1, . . . , k, we get

∑
γ∈�

∫
BU (r)

ψ(asutgγ )f (t) dμPS
g (t)− m̃BMS(ψ)μPS

g (f )

	 kr−�+n−1
1 S�(ψ)S�(f )e

−2κsμPS
g (BU(1))

	
(
r

r1

)n−1

r−�+n−1
1 S�(ψ)S�(f )e

−2κsμPS
g (BU(1))

	 r−�1 S�(ψ)S�(f )e
−2κsμPS

g (BU(1))

	 S�(ψ)S�(f )e
−κsμPS

g (BU(1)),

where the first inequality is by Lemma 3.11, the second inequality follows from r1 =
inj(g) > e−κs/�, the third is by (58) and because r < 1, and the implied constants depend
on � and supp ψ .

As before, using similar arguments, one can show a lower bound, proving the claim.

We will now use a partition of unity argument to prove Theorem 1.5. For the reader’s
convenience, we restate it in the following.

THEOREM 6.2. There exist κ = κ(�) and � = �(�) which satisfy the following: for any
ψ ∈ C∞

c (X), there exists c = c(�, supp ψ) > 0 such that for any f ∈ C∞
c (BU(r)), 0 <

r < 1, x ∈ supp mBMS, and s 
� height(x), we have∣∣∣∣
∫
U

ψ(asutx)f (t) dμPS
x (t)− μPS

x (f )m
BMS(ψ)

∣∣∣∣ < cS�(ψ)S�(f )e
−κs .

Proof. According to [26, Lemma 2.17], there exists an admissible box By around y for any
y ∈ X. Then, {By : y ∈ supp ψ} is an open cover of the compact set supp ψ . Hence, there
exists a minimal sub-cover By1 , . . . , Byk . Using a similar construction to that in Lemma
3.11, there exist σ1, . . . , σk , a partition of unity for supp ψ , such that for i = 1, . . . , k, we
have σi ∈ C∞

c (Byi ) and for i = 1, . . . , k and m = 1, . . . , �,

|σ (m)i | 	supp ψ ,� 1 (61)

(the implied constant depends on the chosen sub-cover).
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Define ψi = ψσi . Then

ψ =
k∑
i=1

ψi , (62)

and by (61) and the product rule, we have

S�(ψi) 	supp ψ ,� S�(ψ). (63)

According to Proposition 6.1 and Proposition 3.4, there exist c = c(�, supp ψ) > 0,
λ = λ(�) > 1 such that for s 
� height(x),∫

BU (r)

ψ(asutx)f (t)dt

=
k∑
i=1

∫
BU (r)

ψi(asutx)f (t) dt

≤
k∑
i=1

mBMS(ψi)μ
PS
x (f )+ cS�(ψi)S�(f )e

−κsμPS
x (BU(1))

≤
k∑
i=1

mBMS(ψi)μ
PS
x (f )+ cλS�(ψi)S�(f )e

−κs+(n−1−δ�)d(π(C0),π(x))

	�,supp ψ m
BMS(ψ)μPS

x (f )+ cλS�(ψ)S�(f )e
−κs+(n−1−δ�) height(x),

where the last line follows by the definition of height(x), and (62) and (63). Moreover, we
may assume that s ≥ 2(n− 1 − δ�)/κ height(x) without changing the assumption s 
�

height(x). Then,

e−κs+(n−1−δ�) height(x) 	� e
−κs/2,

as desired.

We will now use Theorem 1.5 to prove a similar result for the Haar measure. This will
be necessary for the proof of Theorem 1.4. Note that such a result is proven in [23] under a
spectral gap assumption on �, but we show here how to prove it whenever the frame flow
is exponentially mixing.

THEOREM 6.3. There exists κ = κ(�) < 1 and � = �(�) that satisfy the following: let
0 < r < 1, let f ∈ C∞

c (BU(r)), and let ψ ∈ C∞
c (X) be supported on an admissible

box. Then there exists c = c(�, supp ψ) > 0 such that for every x ∈ supp mBMS and
s 
�,supp ψ height(x),∣∣∣∣e(n−1−δ�)s

∫
BU (r)

ψ(asutx)f (t) dt − μPS
x (f )m

BR(ψ)

∣∣∣∣ < cS�(ψ)S�(f )e
−κs .

Proof
Step 1: Setup and approximations. Assume s 
� height(x), and let κ , �′ satisfy the
conclusion of Theorem 1.5 and � > �′ satisfy the conclusion of Lemma 3.12.
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Since ψ is assumed to be supported on an admissible box, there exist r0, η, ε0, ε1 > 0
(depending only on supp ψ) and z ∈ X such that

supp ψ = BU(r0)Pηz,

and

Gε0 supp ψ ⊂ BU(r0 + ε1)Pη+ε1z,

where BU(r + ε1)Pη+ε1z is also an admissible box. Denote η′ = η + ε1 and r ′0 = r0 + ε1.
Without loss of generality, assume that f is a non-negative function. Continuously

extend ψ to Pη′ by defining ψ = 0 on Pη′ \ Pη.
For 0 < ε < ε0, let ψε,± and fε,± for Lemma 3.12 forG, ε, ψ and U , ε, f respectively.

By Lemma 3.12,

S�′(ψε,±) 	�,supp(ψ) ε
−2�S�(ψ) and S�′(fε,±) 	� ε

−2�S�(f ). (64)

Moreover, by Lemma 3.12(2),

‖fε,± − f ‖∞ ≤ εS�(f ). (65)

For p ∈ Pη′ , define

ϕ(p) := μPS
pz(BU(r

′
0)pz). (66)

Step 1.1: Construct a smooth approximation to 1/ϕ. Since the Busemann function is
smooth and ϕ is bounded below by a positive quantity on Pη′ by Corollary 3.3, the mean
value theorem implies that for any 0 < ε < ε0 and all p, p′ ∈ Pε, there exists a constant
d = d(�, supp ψ) such that ∣∣∣∣ 1

ϕ(p)
− 1
ϕ(p′)

∣∣∣∣ ≤ dε

ϕ(p)
. (67)

By Lemma 3.10, for any ξ > 0, there exists a non-negative smooth function χξ with

1Pε−ξ ≤ χξ ≤ 1Pε (68)

and S�′(χξ ) 	�,n (ε − ξ/2)n−1(ξ/2)−�′−(n−1)/2. Define

σ(p) := 1
ϕ

∗ χξ

m(Pε−ξ )
, (69)

where m denotes the probability Haar measure on P. Then, assuming ε0 < 1/2 and ξ ≤ ε2,
by (67), (68), and (69), we have that

1 − dε

ϕ(p)
≤ 1
m(Pε−ξ )

∫
pPε−ξ

1
ϕ(p′)

dp′ (70)

≤ σ(p)

≤ 1
m(Pε−ξ )

∫
pPε

1 + dε

ϕ(p′)
dp′
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≤
(

ε

ε − ξ

)n 1 + dε

ϕ(p)

≤ 1 + d ′ε
ϕ(p)

, (71)

for some absolute constant d ′ > 0.
For upz ∈ BU(r ′0)Pη′z and 0 < ε < ε0, let

�ε,±(upz) = σ(p)

∫
Upz

ψc1ε,±(utpz) dt.

Then, by (67),

sup
w∈Gε

�ε,±(wupz) = sup
w∈Pε

σ (wp)

∫
Uwpz

ψc1ε,+(utwpz) dt

≤ (1 + d ′ε)�2ε,±. (72)

Step 2: Bounding with PS measure.
Let

P(f , ψ , x; s) = {p ∈ Pη : as supp(f )x ∩ BU(r0)pz �= ∅}.
By [23, Lemma 6.2], there exists an absolute constant c1 > 0 such that

e(n−1)s
∫
BU (r)

ψ(asutx)f (t) dt (73)

≤ (1 + c1ε)
∑

p∈P (f ,ψ ,x;s)

fc1e−sη(a−spz)
∫
Upz

ψc1ε,+(utpz) dt.

It now follows from [23, Lemma 6.5], (70), and (72) that there exists an absolute
constant c2 > 0 such that

e−δ�s
∑

p∈P (f ,ψ ,x;s)

fc1e−sη(a−spz)
∫
Upz

ψc1ε,+(utpz) dt

≤ (1 + c2ε)(1 + d ′ε)
1 − dε

∫
U

�2c2ε,+(asutx)f(c1+c2)e−sε0,+(t) dμPS
x (t).

Note that (70) is needed because our definition of �ε,+ is not identical to � as defined in
[23, Lemma 6.5]. The latter is bounded above by 1/(1 − dε)�ε,+ by (70).

Combining the above with (73), we get that there exist constants c3, c4 =
c4(�, supp ψ) > 0 such that

e(n−1−δ�)s
∫
BU (r)

ψ(asutx)f (t) dt

≤ (1 + c4ε)

∫
U

�c3ε,+(asutx)fc3e−sε0,+(t) dμPS
x (t).
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It follows from Theorem 1.5 that for some constant c5 = c5(�, supp ψ) > 0,

e(n−1−δ�)s
∫
BU (r)

ψ(asutx)f (t) dt

≤ (1 + c4ε)(μ
PS
x (fc3e−sε0,+)mBMS(�c3ε,+)+ c5S�′(�c3ε,+)S�′(fc3e−sε0,+)e−κs).

(74)

Step 3: Bounding the error terms. We now show how to bound the various error terms to
obtain the desired conclusion.

To compute mBMS(�), we use (25), (65), and (71) to deduce that for some c6 =
c6(�, supp ψ), if ξ = ε2,

mBMS(�c3ε,+)

≤ (1 + d ′ε)
∫
Pη′z

∫
BU (r

′
0)

1
μPS
pz(BU(r

′
0)pz)

∫
BU (r

′
0)pz

ψc1ε,±(utpz) dt dμPS
pz(t) dν(pz)

≤ (1 + d ′ε)
∫
Pη′z

∫
BU (r

′
0)pz

ψc1ε,±(utpz) dt dν(pz)

≤ (1 + d ′ε)(mBR(ψ)+ c6εS�(ψ)). (75)

By Proposition 3.4, if s is sufficiently large so that r + c3e
−sε0 ≤ 1 (note that this

requirement on s depends only on � and supp ψ), we have that

μPS
x (BU(r + c3e

−sε0)) ≤ μPS
x (BU(1)) 	� e

(n−1−δ�)d(π(C0),π(x)). (76)

Hence, by (65) and (76), we have

μPS
x (fc3e−sε0,+)− μPS

x (f ) 	� e
−sε0S�(f )μ

PS
x (BU(r + c3e

−sε0))

	� e
−sε0S�(f )e

(n−1−δ�)d(π(C0),π(x)). (77)

According to [17, Lemma 2.4.7(a)] and (64), if ξ = ε2 and

ε = e−κs/2(n+4�), (78)

then

S�′(�c3ε,+) 	� S�′(ψc3ε,+)S�′(σ )

	� (m(Pε−ξ ))−1(ε − ξ/2)n−1ξ−�′−(n−1)/2ε−2�S�(ψ)

	 ε−1−2�ξ−�′−(n−1)/2S�(ψ)

≤ eκs/2S�(ψ). (79)

Using (74), (75), (77), and (79), we obtain

e(n−1−δ�)s
∫
BU (r)

ψ(asutx)f (t) dt − μPS
x (f )m

BR(ψ)

≤ (1 + c4ε)[d ′εμPS
x (f )m

BR(ψ)+ (1 + d ′ε){c6εμ
PS
x (f )S�(ψ)
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+ (e−sε0m
BR(ψ)S�(f )+ c6e

−sε0εS�(f )S�(ψ))e
(n−1−δ�)d(π(C0),π(x))}

+ c8S�(ψ)S�(f )e
−κs/2]. (80)

These remaining error terms can be controlled as follows. Using (76), we can deduce

μPS
x (f ) ≤ ‖f ‖∞μPS

x (BU(r)) 	� S�(f )e
(n−1−δ�)(π(C0),π(x)). (81)

We also have that

mBR(ψ) 	�,supp ψ S�(ψ). (82)

Combining (80), (81), and (82) implies

e(n−1−δ�)s
∫
BU (r)

ψ(asutx)f (t) dt − μPS
x (f )m

BR(ψ)

	�,supp ψ S�(ψ)S�(f ) · [d ′ε + c8e
−κs/2+

(1 + d ′ε)(c6ε(1 + e−sε0)+ e−sε0)e
(n−1−δ�)d(π(C0),π(x))]. (83)

Finally, by the choice of ε in (78) and because we may assume without loss of generality
that κ < 1, we obtain from (83) that there exists κ ′ < 1 such that

e(n−1−δ�)s
∫
BU (r)

ψ(asutx)f (t) dt − μPS
x (f )m

BR(ψ)

	�,supp ψ S�(ψ)S�(f )e
−κ ′s+(n−1−δ�)d(π(C0),π(x)).

Recall that d(π(C0), π(x)) = height(x). Thus, if we assume that s ≥ 2(n− 1 − δ�)/κ
′

height(x) (which means s 
� height(x)), then

e−κ ′s+(n−1−δ�) height(x) 	� e
−κ ′/2s ,

which completes the proof.

7. Proof of Theorem 1.3
In this section, we prove Theorem 1.3, which is restated in the following for the reader’s
convenience. The proof relies on the quantitative non-divergence result in Theorems 4.1
and 1.5.

THEOREM 7.1. For any 0 < ε < 1 and s0 ≥ 1, there exist constants � = �(�) ∈ N and
κ = κ(�, ε) > 0 satisfying: for every ψ ∈ C∞

c (G/�), there exists c = c(�, supp ψ) such
that every x ∈ G/� that is (ε, s0)-Diophantine, and for every T with T 1−ε/2 
� s0,∣∣∣∣ 1

μPS
x (BU(T ))

∫
BU (T )

ψ(utx) dμ
PS
x (t)−mBMS(ψ)

∣∣∣∣ ≤ cS�(ψ)T
−κ ,

where S�(ψ) is the �-Sobolev norm.
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Proof. Let β > 0 satisfy the conclusion of Theorem 4.1 for ε and s0. Let κ ′ > 0, � ∈ N

satisfy the conclusion of Theorem 1.5.
Since x is (ε, s0)-Diophantine, by Theorem 4.1, for T0 
� s0 and R ≥ R0,

μPS
x0
(BU(T0)x0 ∩ X (R)) 	 μPS

x0
(BU(T0)x0)e

−βR , (84)

where

sε := ε

2
log T , T0 := T e−sε = T 1−ε/2, x0 := a−sε x. (85)

By (6) and (14), we have

1
μPS
x (BU(T ))

∫
BU (T )

ψ(utx) dμ
PS
x (t) = 1

μPS
x0
(BU(T0))

∫
BU (T0)

ψ(asεutx0) dμ
PS
x0
(t).

Fix R > R0 and define

Q0 = BU(T0)x0 ∩ C(R).
By the definition of C(R),

Q0 ⊆ supp mBMS.

Let ρ > 0 be smaller than half of the injectivity radius of Q0.
First, by Lemma 3.11, there exist {y : y ∈ I0} ⊆ Q0 and fy ∈ C∞

c (BU(2ρ)y) satisfying

S�(fy) 	 ρ−�+n−1 (86)

and ∑
y

fy = 1 on E1 :=
⋃
y∈I0

BU(ρ)y ⊇ Q0,

which are 0 outside of

E2 =
⋃
y∈I0

BU(2ρ)y.

Observe that

Q0 ⊆ E1 ⊆ E2 ⊆ BU(T0 + 2ρ)x0. (87)

Thus,∫
utx0∈E1

ψ(asεutx0) dμ
PS
x0
(t) ≤

∑
y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dμ
PS
x0
(t).

Because Q0 ⊆ supp mBMS, we may use Proposition 3.4 to deduce that there exists
λ = λ(�) ≥ 1 such that for any y ∈ I0, we have

μPS
y (BU(ρ)) ≥ λ−1ρδ�e(k(y,ρ)−δ�)d(π(C0),π(a− log ρy))

≥ λ−1ρδ�e−δ�d(π(C0),π(a− log ρy))

≥ λ−1ρδ�e−δ�(− log ρ)e−δ� height(y) since ρ < 1
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� λ
−1ρ2δ� e−δ� height(y)

≥ λ−1ρ2δ� e−δ�R ,

where the last line follows by Lemma 3.6.
Since esε = T ε/2, it follows from (86) and the above, that if we choose ρ and R such

that

eδ�Rρn−1−�−2δ� 	� T
εκ ′/4, (88)

then, by the choice of fy , we have

S�(fy) 	 μPS
y (BU(ρ))e

κ ′sε/2 	 μPS
y (fy)e

κ ′sε/2, (89)

where the implied constant is absolute.
If we further assume that

T 
� e
2R/ε (90)

(with the implied constant coming from Theorem 1.5), then sε 
� R, and by (89),
Theorem 1.5, and Lemma 3.6, there exist c1, c2 > 0 which depend only on � and supp ψ
such that ∑

y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dμ
PS
x0
(t)

≤
∑
y∈I0

(mBMS(ψ)μPS
y (fy)+ c1S�(ψ)S�(fy)e

−κ ′sε )

≤
∑
y∈I0

μPS
y (fy)(m

BMS(ψ)+ c2S�(ψ)e
−κ ′sε/2).

By Theorem 5.1, there exists c3 = c3(�) > 0 such that if T0 
 s0, then there exist α =
α(�) > 0, c3 = c3(�) > 0 such that∑

y∈I0
μPS
y (fy) ≤ μPS

x0
(BU(T0 + 2ρ))

	� (1 + c3(2ρ)α)μPS
x0
(BU(T0)).

If mBMS(ψ)+ c2S�(ψ)e
−κ ′sε/2 ≥ 0, we arrive at∑

y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dμ
PS
x0
(t)

≤ μPS
x0
(BU(T0))(1 + c3(2ρ)α)(mBMS(ψ)+ c2S�(ψ)e

−κ ′sε/2). (91)

However, if mBMS(ψ)+ c2S�(ψ)e
−κ ′sε/2 < 0, by (84), there exists c6 = c6(�) > 0 so

that ∑
y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dμ
PS
x0
(t)
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≤ μPS
x0
(Q0)(m

BMS(ψ)+ c2S�(ψ)e
−κ ′sε/2)

≤ μPS
x0
(BU(T0))(1 − c6e

−βR)(mBMS(ψ)+ c2S�(ψ)e
−κ ′sε/2). (92)

Fix

κ := κ ′ε/4, R >
κ

β
log T , ρ < T − κ

α , (93)

such that ρ also satisfies the assumption of Theorem 5.1, and R which satisfies (88) and
(90). Thus, (91) and (93) imply in either case that

1
μPS
x0
(BU(T0))

∫
utx0∈E1

ψ(asεutx0) dμ
PS
x0
(t)−mBMS(ψ)

	�,supp ψ S�(ψ)T
−κ , (94)

where we have used that by [1], ‖ψ‖∞ 	supp ψ S�(ψ), so mBMS(ψ) 	supp ψ S�(ψ).
By (84),∫

BU (T0)x0\E1

ψ(asεutx0) dμ
PS
x0
(t) ≤ ‖ψ‖∞μPS

x0
(BU(T0) \ E1)

	supp ψ S�(ψ)μ
PS
x0
(BU(T0)x0)e

−βR

	supp ψ S�(ψ)μ
PS
x0
(BU(T0)x0)T

−κ ,

where we have again used that by [1], ‖ψ‖∞ 	supp ψ S�(ψ). Combining the above with
(94) implies that

1
μPS
x0
(BU(T0))

∫
BU (T0)

ψ(asεutx0) dμ
PS
x0
(t)−mBMS(ψ)

	�,supp ψ S�(ψ)T
−κ .

For the lower bound, define

Q1 := BU(T0 − 2ρ)x0 ∩ C(R).
As before, according to Lemma 3.11, there exist {y : y ∈ I1} ⊆ Q1 and fy ∈
C∞
c (BU(2ρ)y) satisfying

S�(fy) 	 ρ−�+n−1

and ∑
y∈I1

fy = 1 on E4 :=
⋃
y∈I1

BU(ρ)y ⊇ Q1,

and which are 0 outside of ⋃
y∈I1

BU(2ρ)y ⊆ BU(T0)x0. (95)
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Hence, ∫
utx0∈BU (T0)x0

ψ(asεutx0) dt ≥
∑
y∈I1

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dt.

Moreover, by the same argument as in (89), we deduce that

S�(fy) 	 μPS
y (fy)e

κ ′sε/2. (96)

By Theorem 1.5 and (96), we have that∑
y∈I1

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0) dt

≥
∑
y∈I1

(μPS
x0
(fy)m

BMS(ψ)− c4S�(ψ)S�(fy)e
−κ ′sε )

≥
∑
y∈I1

μPS
x0
(fy)(m

BMS(ψ)− c5S�(ψ)e
−κ ′sε/2),

where c5 arises from c4 and the implied constant in (96).
Note that by replacing ψ with −ψ if necessary, we may assume that mBMS(ψ)−

c5S�(ψ)e
−κ ′sε/2 < 0. Thus, by observing that∑

y∈I1
μPS
y (fy) ≤ μPS

x0
(BU(T0)),

we immediately conclude that

1
μPS
x0
(BU(T0))

∫
utx0∈E1

ψ(asεutx0) dμ
PS
x0
(t)−mBMS(ψ)


�,supp ψ S�(ψ)e
−κ ′sε/2.

Hence, (85) and (93) imply that

1
μPS
x0
(BU(T0))

∫
utx0∈E1

ψ(asεutx0) dμ
PS
x0
(t)−mBMS(ψ) 
�,supp ψ −S�(ψ)T −κ .

8. Proof of Theorem 1.4
In this section, we will prove Theorem 1.4 using Theorem 6.3. We will use a partition of
unity argument for a cover of the intersection of BU(r)x with a fixed compact set by small
balls centered at PS points.

We will need the following lemma.

LEMMA 8.1. There exists an absolute constant c > 0 satisfying the following: for x ∈ X,
y ∈ Ux, ψ ∈ C∞

c (X) supported on an admissible box of diameter smaller than 1, 0 <
ρ < inj(y), f ∈ C∞

c (BU(ρ)y) such that for 0 ≤ f ≤ 1 and s > c, we have

e(n−1−δ�)s
∫
Ux

ψ(asuty)f (uty) dt 	�,supp ψ S�(ψ)μ
PS
y (BU(2ρ)y),

where � ∈ N satisfies the conclusion of Lemma 3.12.
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Proof. Assume that for 0 < ε0, ε1 < 1, ψ is supported on the admissible box BU(ε0)Pε1z

for z ∈ X. Without loss of generality, we may assume that ψ is non-negative. Fix y ∈ Ux.
For small η > 0, h ∈ Gη supp(ψ), and p ∈ P , let

ψη,+(h) := sup
w∈Gη

ψ(wh), �η,+(ph) :=
∫
Uph

ψη,+(utph) dt,

and for upz ∈ BU(ε0)Pε1z, let

�̃η,+(upz) := 1
μPS
pz(BU(ε0)pz)

�η,+(pz).

By the choice of �, for any η > 0 and h ∈ Gη supp(ψ),

|ψη,+(h)− ψ(h)| 	 ηS�(ψ),

and

|ψ(z)| ≤ S∞,0(ψ) 	 S�(ψ),

where the implied constants depend on supp ψ . Since the diameter of supp ψ is smaller
than 1, we may assume that the implied constants in the above are absolute. Then, for any
u ∈ U such that asuy = u′pz ∈ BU(ε0)Pε1z and 0 < η < 1, we have

|�̃η,+(asuy)| =
∣∣∣∣ 1
μPS
pz(BU(ε0)pz)

∫
Upz

ψη,+(utpz) dt
∣∣∣∣

= μLeb
pz (BU(ε0)pz)

μPS
pz(BU(ε0)pz)

S�(ψ)

	 S�(ψ), (97)

where the implied constant depends only on supp ψ .
For small η > 0 and uy ∈ BU(η + ε0)y, let

fη,+(uy) := sup
w∈BU (η)

f (wuy).

Using Lemmas 6.2 and 6.5 in [23], we get that for some absolute constant c′ > 0,

e(n−1−δ�)s
∫
BU (ρ)y

ψ(asuty)f (uty) dt 	
∫
U

�̃c′ρ,+(asuty)fc′e−sρ,+(uty) dμ
PS
y (t)

≤
∫
BU (ρ+c′e−sρ)y

�̃c′ρ,+(asuty) dμ
PS
y (t),

where the implied constant is absolute. Then, by (97), we get

e(n−1−δ�)s
∫
BU (ρ)y

ψ(asuty)f (uty) dt 	supp ψ μ
PS
y (BU(ρ + c′e−sρ))S�(ψ)

≤ μPS
y (BU(2ρ))S�(ψ).

Choosing c := log c′, we may conclude the claim.
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We are now ready to prove Theorem 1.4. For the reader’s convenience, we restate that
theorem in the following.

THEOREM 8.2. For any 0 < ε < 1 and s0 ≥ 1, there exist � = �(�) ∈ N and
κ = κ(�, ε) > 0 satisfying: for every ψ ∈ C∞

c (G/�), there exists c = c(�, supp ψ)
such that for every x ∈ G/� that is (ε, s0)-Diophantine, and for all T such that
T 1−ε/2 
�,supp ψ s0,∣∣∣∣ 1

μPS
x (BU(T ))

∫
BU (T )

ψ(utx) dt −mBR(ψ)

∣∣∣∣ ≤ cS�(ψ)T
−κ ,

where S�(ψ) is the �-Sobolev norm.

Proof. We keep the notation of §4. By an argument similar to the proof of Theorem 1.5, we
may assume that ψ is supported on an admissible box. Because ψ is compactly supported,
we may also assume ψ ≥ 0 by using a translation.

Let β > 0 satisfy the conclusion of Theorem 4.1 for ε and s0. Let κ ′ > 0, � ∈ N satisfy
the conclusion of Theorem 6.3.

Since x is (ε, s0)-Diophantine, by Theorem 4.1, for T0 
� s0 and R ≥ R0, we have

μPS
x0
(BU(T0)x0 ∩ X (R)) 	 μPS

x0
(BU(T0)x0)e

−βR , (98)

where

sε := ε

2
log T , x0 := a−sε x, and T0 = T 1−ε/2. (99)

Observe that by (6), (13), and (14),

1
μPS
x (BU(T ))

∫
BU (T )

ψ(utx) dt = e(n−1−δ)sε
μPS
x0
(BU(T0))

∫
BU (T0)

ψ(asεutx0) dt.

Fix R > R0 and define

Q0 := BU(T0)x0 ∩ C(R).
Since for any R ≥ R0, the set C(R) is in the convex core of Hn/�,

Q0 ⊆ supp mBMS. (100)

Let ρ > 0 be smaller than half of the injectivity radius of Q0.
First, by Lemma 3.11, there exist {y : y ∈ I0} ⊆ Q0 and fy ∈ C∞

c (BU(2ρ)y) satisfying

S�(fy) 	 ρ−�+n−1 (101)

and ∑
y

fy = 1 on E1 :=
⋃
y∈I0

BU(ρ)y ⊇ Q0,

which are 0 outside of

E2 =
⋃
y∈I0

BU(2ρ)y.
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By replacing references to Theorem 1.5 with references to Theorem 6.3, the exact same
argument as in the proof of Theorem 1.3 will establish that for T 
� e

2R/ε and

κ = βε

2
, R = κ log T

β
, ρ ≤ T −κ/α . (102)

We get that if we assume without loss of generality that κ ′ < 2β and also that T 
� 1,

e(n−1−δ�)sε
μPS
x0
(BU(T0)x0)

∫
utx0∈E1

ψ(asεutx0) dt −mBR(ψ) 	�,supp ψ S�(ψ)T
−κ . (103)

We now want to bound the integral over BU(T0)x0 \ E1. Using Lemma 3.11 again,
we may deduce that there exist {y : y ∈ I1} ⊆ BU(T0)x0 \ E1 and fy ∈ C∞

c (BU(ρ/4)y)
satisfying

∑
y∈I1 fy = 1 on

⋃
y∈I1 BU(ρ/8)y and 0 outside of⋃

y∈I1
BU(ρ/4)y.

In particular, by the definition of E1, we have

E3 :=
⋃
y∈I1

BU(ρ/2)y ⊆ (BU(T0)x0 \Q0) ∪ (BU(T0 + ρ/2)x0 \ BU(T0))x0.

Using Lemma 8.1, we arrive at

e(n−1−δ�)sε
∫
BU (T0)\E1

ψ(asεutx0) dt

≤ e(n−1−δ�)sε ∑
y∈I1

∫
BU (ρ/2)y

ψ(asεuty)fy(uty) dt

	
∑
y∈I1

S�(ψ)μ
PS
y (BU(ρ/2)y)

≤ S�(ψ)(μ
PS
x0
(BU(T0)x0 \Q0)+ μPS

x0
((BU(T0 + ρ/2) \ BU(T0))x0)).

Thus, by Theorem 5.1, there exists α = α(�) > 0 such that using (98) and (102), we
arrive at

e(n−1−δ�)sε
∫
BU (T0)\E1

ψ(asεutx0) dt

	�,supp ψ S�(ψ)μ
PS
x0
(BU(T0)x0)(e

−βR + ρα)

	�,supp ψ S�(ψ)μ
PS
x0
(BU(T0)x0)T

−κ .

Using (103), we may now deduce

e(n−1−δ�)sε
μPS
x0
(BU(T0)x0)

∫
BU (T0)

ψ(asεutx0) dt −mBR(ψ) 	�,supp ψ S�(ψ)T
−κ .

The lower bound follows similarly, as in the proof of Theorem 1.3.

Remark 8.3. The dependence of T on supp ψ in the previous proof arises from
Theorem 6.3, through the quantity sε. Upon closer inspection, one can verify that this
means T depends on supp ψ through the maximum height of elements in supp ψ . In
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particular, we may choose a larger compact set containing supp ψ and have T depend on
that compact set, rather than supp ψ specifically.
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A. Appendix. Friendliness of the PS measure
For simplicity, in this section, we work in the Poincaré ball models of hyperbolic
geometry D

n, instead of Hn. Recall that Dn and H
n are isometric via the Cayley transform.

Denote by dE the Euclidean metric on R
m. For a subset S ⊆ R

m and ξ > 0, let

N (S, ξ) = {x ∈ R
m : dE(x, S) ≤ ξ}.

For v ∈ R
m and r > 0, let

B(v, r) = {u ∈ R
m : dE(u, v) ≤ r}

be the Euclidean ball of radius r around v.

Definition A.1. Let μ be a measure defined on R
m.

(1) μ is called Federer (respectively doubling) if for any c > 1, there exists k1 > 0 such
that for all v ∈ supp(μ) and 0 < η ≤ 1 (respectively η > 0),

μ(B(v, cη)) ≤ k1μ(B(v, η)).

(2) μ is called decaying and non-planar if there exist α, c2 > 0 such that for all v ∈
supp μ, ξ > 0, 0 < η ≤ 1, and every affine hyperplane L ⊆ R

n,

μ(N (L, ξ‖dL‖μ,B(v,η)) ∩ B(v, η)) ≤ c2ξ
αμ(B(v, η)),

where

‖dL‖μ,B(v,η) := sup{d(y, L) : y ∈ B(v, η) ∩ supp μ}.
(3) μ is called friendly if it is Federer, decaying, and non-planar.

In the case that all cusps have maximal rank (which vacuously includes the case of
convex cocompact �), a stronger statement holds, see §A.3.

THEOREM A.2. [5, Theorem 1.9] Assume � is geometrically finite and Zariski dense. Then
the PS densities {νx}x∈Dn are friendly. Moreover, in this case, the constants in Definition
A.1 only depend on �.
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Note that, as in [5, Definition 1.1(1.3)], using closed thickenings, one obtains Definition
A.1(2) by combining the separate definitions of decaying and of non-planar from [5]. The
above result for the case � is convex cocompact was proved in [34, Theorem 2].

In this section, we will prove the results in §5. In particular, because of the shadow
lemma, Proposition 3.4, we will see that the leafwise PS measures {μPS

x } satisfy a stronger
condition than that of friendliness. In general, we will begin by proving a statement for νo,
then for μPS

x when x+ ∈ �(�), and then finally a nicer statement for x ∈ supp mBMS.
The next lemma and subsequent corollaries are necessary to move between these

measures.
As in §3.1, we fix o ∈ D

n. For any x ∈ D
n, define the Gromov distance at x of

ξ , η ∈ ∂Dn by

dx(ξ , η) = exp
( − 1

2βξ (x, y)− 1
2βη(x, y)

)
,

where y is on the ray joining ξ and η. For any x ∈ D
n, ξ ∈ ∂Dn, and r > 0, let

Bx(ξ , r) := {η ∈ ∂Dn : dx(ξ , η) ≤ r}.
For v ∈ T1(Dn), denote by Prv− : Uv → ∂Dn \ {v−} the projection w �→ w+.
The next lemma follows from §1.6 in [14], and [33, Lemma 2.5 and Theorem 3.4].

LEMMA A.3. There exist constants α0 > 0, c > 1 such that for all g ∈ G and 0 < η ≤ α0,
we have

Bπ(g)(g
+, c−1η) ⊆ Prg−(BU(η)g) ⊆ Bπ(g)(g

+, cη).

According to [6, Lemma 3.5.1] for any ξ , η ∈ ∂Dn,

do(ξ , η) = 1
2dE(ξ , η). (A.1)

Using the triangle inequality on the hyperbolic distance and the definition of the Busemann
function, one can show that for any x ∈ D

n and ξ , η ∈ ∂Dn,

e−d(o,x) ≤ dx(ξ , η)
do(ξ , η)

≤ ed(o,x). (A.2)

The following is a direct corollary of (A.1), (A.2), and Lemma A.3.

COROLLARY A.4. There exist constants α0 > 0, c > 1 such that for all g ∈ G and
0 < η ≤ α0, we have

B(g+, c−1e−d(o,π(g))η) ⊆ Prg−(BU(η)g) ⊆ B(g+, ced(o,π(g))η).

The next corollary will be necessary to obtain a non-planarity result for μPS
x . It follows

from Corollary A.4 by covering the hyperplane with small balls using the fact that η ≤ 1
to uniformly bound the d(o, π(g′)) terms with d(o, π(g)), where g′ is the center of one of
the balls in this cover.

COROLLARY A.5. Let α0 be as in Corollary A.4. There exists a constant c > 1 so that
for every g ∈ G, every 0 < ξ < η ≤ α0, and every hyperplane L in R

n−1, there exists a
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hyperplane L′ in ∂(Hn) so that

N (L′, c−1e−d(o,π(g))ξ) ∩ B(g+, c−1e−d(o,π(g))η)

⊆ Prg−(N (L, ξ) ∩ BU(η)g)
⊆ N (L′, ced(o,π(g))ξ) ∩ B(g+, ced(o,π(g))η).

Proof. Let {gi}i∈I be chosen so that

N (L, ξ) =
⋃
i∈I

BU(ξ)gi .

By Corollary A.4,

B(g+
i , c−1e−d(o,π(gi ))ξ ) ⊆ Prg−

i
(BU (ξ)gi) ⊆ B(g+

i , ced(o,π(gi ))ξ ).

Let

I2 = {i : BU(ξ)gi ∩ BU(η)g �= ∅}.
Observe that for i ∈ I2, gi ∈ BU(2)g. Then,

d(o, π(gi)) ≤ d(o, π(g))+ d(π(g), π(gi)),

and gi = utg for |t| ≤ 2. Thus,

d(π(g), π(gi)) = d(π(g), π(utg))

= d(g(o), utg(o)).

This implies that there exists a constant ĉ > 1 that is uniform for all g ∈ G so that for all
i ∈ I2,

ĉ−1e−d(o,π(g)) 	� e
−d(o,π(gi )) 	� e

d(o,π(gi )) 	� ĉe
d(o,π(g)).

Thus, for all i ∈ I2, we have

B(g+, ĉ−1c−1e−d(o,π(g))ξ) ⊆ Prg−
i
(BU (ξ)gi) ⊆ B(g+, ĉced(o,π(g))ξ).

Hence, for every i ∈ I2,

B(g+, ĉ−1c−1e−d(o,π(g))ξ) ∩ B(g+, ĉ−1c−1e−d(o,π(g))η)

⊆ Prg−(BU(ξ)gi ∩ BU(η)g)
⊆ B(g+, ĉced(o,π(g))ξ) ∩ B(g+, ĉced(o,π(g))η).

The result then follows by taking the union over all i ∈ I2.

A.1. The PS measure is Federer. In this section, we prove more specific Federer
statements for νo and μPS

x .

LEMMA A.6. There exists a constant σ ≥ δ� depending only on � such that for any
λ ∈ �(�), η > 0 and c ≥ 1, we have that

νo(B(λ, cη)) 	� c
σ νo(B(λ, η)).
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Proof. We will prove this for the balls Bo(λ, cη), and Bo(λ, η) using the Gromov distance.
It then immediately follows for the Euclidean balls B(λ, cη) and B(λ, η) by the Federer
condition and (A.1).

Let {λt }t≥0 be a geodesic ray joining o to λ. By the shadow lemma for νo [35,
Theorem 2] (see also [33, Theorem 3.2]), we have that for any η > 0,

ηδ�e(k(λ− log η)−δ�)d(π(C0),λ− log η) 	� νo(Bo(λ, η))

	� η
δ�e(k(λ− log η)−δ�)d(π(C0),λ− log η). (A.3)

Here, k(λ− log η) denotes the rank of the cusp that λ− log η lies in; if it is in π(C0), it is
defined to be zero. (Recall the definition of C0 from §3.2.) Note also that we have absorbed
a constant depending on diam π(C0) (hence only on �) to write the distance from π(C0)

rather than from the fixed reference point o.
It follows from (A.3) that it is enough to show that for some σ ≥ δ� ,

νo(Bo(λ, cη)) 	� (cη)
δ� e(k(λ− log cη)−δ�)d(π(C0),λ− log cη)

	� c
σ ηδ�e(k(λ− log η)−δ�)d(π(C0),λ− log η)

	� c
σ νo(Bo(λ, η)).

Equivalently, it is enough to show that

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

	� (σ − δ�) log c. (A.4)

Case 1: Assume k(λ− log cη) ≤ k(λ− log η).
Then

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (k(λ− log η)− δ�)(d(π(C0), λ− log cη)− d(π(C0), λ− log η))

≤ (k(λ− log η)− δ�) log c

≤ (n− 1 − δ�) log c.

Case 2: k(λ− log cη) > k(λ− log η) and k(λ− log η) = 0.
Then, d(π(C0), λ− log η) = 0 and

0 < d(π(C0), λ− log cη) ≤ d(π(C0), λ− log η)+ d(λ− log η, λ− log cη) ≤ log c.

Therefore,

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δ�)d((π(C0), λ− log cη)

≤ (k(λ− log cη)− δ�) log c

≤ (n− 1 − δ�) log c.
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Case 3: Assume k(λ− log cη) > k(λ− log η) and k(λ− log η) > 0. In particular, λ− log η and
λ− log cη are in two different cusps, and hence there exists 1 < r < c such that λ− log rη ∈
π(C0). Then,

d(π(C0), λ− log η) ≤ d(λ− log rη, λ− log η) ≤ log r ≤ log c

d(π(C0), λ− log cη) ≤ d(λ− log rη, λ− log cη) ≤ log(c/r) ≤ log c.

Note that since k(λ− log cη) ≥ 2, we have δ� > 1, because δ� > k/2, where k is the
maximal cusp rank. We arrive at

(k(λ− log η)− δ�)d(π(C0), λ− log η) ≥ (1 − δ�)d(π(C0), λ− log η)

≥ (1 − δ�) log c

(k(λ− log cη)− δ�)d(π(C0, λ− log cη) ≤ (n− 1 − δ�)d(π(C0), λ− log cη)

≤ (n− 1 − δ�) log c.

It follows that

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (n− 1 − δ�) log c − (1 − δ�) log c

≤ (n− 2) log c.

Thus, choosing

σ = max{n− 1 − δ� , n− 2} + δ�

completes the proof.

When c < 1, we obtain a similar result, with a slightly more involved argument.

LEMMA A.7. There exists a constant σ > 0 depending only on � such that for any
λ ∈ �(�), η > 0 and 0 < c < 1, we have that

νo(B(λ, cη)) 	� c
σ νo(B(λ, η)).

Proof. The proof is extremely similar to that of Lemma A.6.
By the shadow lemma, as in the proof of Lemma A.6, it is enough to show that for some

σ > 0,

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

	� (δ� − σ)| log c|. (A.5)

Case 1: Assume k(λ− log cη) ≤ k(λ− log η).
Then

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δ�)(d(π(C0), λ− log η)− d(π(C0), λ− log cη))

≤ |k(λ− log η)− δ�|| log c|.
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Let k be the maximal cusp rank. Since |k − δ�| < δ� , we get that

σ := δ� − |k − δ�| > 0

satisfies the claim.
Case 2: k(λ− log cη) > k(λ− log η) and k(λ− log η) = 0.

Then, d(π(C0), λ− log η) = 0 and

0 < d(π(C0), λ− log cη) ≤ d(π(C0), λ− log η)+ d(λ− log η, λ− log cη) ≤ | log c|.
Therefore,

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δ�)d(π(C0), λ− log cη)

≤ |k(λ− log cη)− δ�|| log c|,
and the claim follows as in Case 1.
Case 3: Assume k(λ− log cη) > k(λ− log η) and k(λ− log η) > 0. In particular, λ− log η and
λ− log cη are in two different cusps, and hence there exists c < r < 1 such that λ− log rη ∈
π(C0). Then since r < 1,

d(π(C0), λ− log η) ≤ d(λ− log rη, λ− log η) ≤ | log r| (A.6)

d(π(C0), λ− log cη) ≤ d(λ− log rη, λ− log cη) ≤ log(r/c). (A.7)

Note that since k(λ− log cη) ≥ 2, we have δ� > 1. By (A.6) and (A.7), we arrive at

(k(λ− log η)− δ�)d(π(C0), λ− log η) ≥ (1 − δ�)d(π(C0), λ− log η) (A.8)

≥ (δ� − 1) log c (A.9)

(k(λ− log cη)− δ�)d(π(C0), λ− log cη) ≤ max{0, log(r/c)(k(λ− log cη)− δ�)}. (A.10)

We now have two cases. First, assume that log(r/c)(k(λ− log cη)− δ�) ≤ 0. Then
k(λ− log cη)− δ� ≤ 0, so by (A.8), we have that

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ −(δ� − 1) log c

= (δ� − 1)| log c|.
Now, assume that log(r/c)(k(λ− log cη)− δ�) > 0, that is, that k(λ− log cη)− δ� > 0.

Then it follows from (A.7) that

(k(λ− log cη)− δ�)d(π(C0), λ− log cη)− (k(λ− log η)− δ�)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δ�) log(r/c)− (δ� − 1) log r . (A.11)

Now, consider two further cases: k(λ− log cη)− δ� > δ� − 1 or k(λ− log cη)− δ� ≤
δ� − 1. In the first case, (A.11) is bounded above by

(δ� − 1) log(r/c)− (δ� − 1) log r = −(δ� − 1) log c = (δ� − 1)| log c|.
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In the second case, note that (A.11) is equal to

(k − 2δ� + 1) log r − (k(λ− log cη − δ�) log c,

and our assumption implies that the first term is negative. Thus, an upper bound is

−(k(λ− log cη − δ�) log c = (k(λ− log cη − δ�)| log c| ≤ (k − δ�)| log c|,
where k is the maximal cusp rank, as before. Note that k − δ� < δ� because δ� > 2k
always holds.

Thus, choosing

σ = min{δ� − |k − δ�|, 1}
completes the proof.

Using Lemma A.3, we obtain the following quantitative Federer-like statement for
{μPS
x }x+∈�(�).

COROLLARY A.8. There exists constants σ1 = σ1(�) ≥ δ� , σ2 = σ2(�) > 0 which
satisfy the following: let x ∈ G be such that x+ ∈ �(�). Then for c > 0 and η 	�

c−1e− height(x), we have that

μPS
x (BU(cη)) 	� max{cσ1 , cσ2}e2(δ�+σ1) height(x)μPS

x (BU(η)).

Proof. Fix g ∈ Gwhich satisfies x = g� and height(x) = d(π(C0), π(g)). By (22), inj(x)
and height(x) are related, so that for η 	� c

−1 height(x),

μPS
g (BU(cη)) = μPS

x (BU(cη)).

For any 0 < η ≤ 1 and ut ∈ BU(η), we have that

|β(utg)+(o, utg(o))| ≤ d(u−1
t (o), g(o))

≤ d(u−1
t (o), o)+ d(o, g(o))

≤ 2 diam(BU(1)π(C0))+ height(x).

The above gives a bound on the Busemann function for the following when η ≤ 1:

e−δ� height(x)νo(Prg−(BU(η)))

	� μ
PS
g (BU(η)) =

∫
t∈BU (η)

e
δ�β(utg)+ (o,utg(o)) dνo((utg)

+) (A.12)

	� e
δ� height(x)νo(Prg−(BU(η))). (A.13)

Assume c ≥ 1. By Lemmas A.3 and A.6, we have that

νo(B(g
+, η)) = νo(B(g

+, (c̃eheight(x)c̃−1e− height(x)η))

	� (c̃e
height(x))σ1νo(B(g

+, c̃e− height(x)η)). (A.14)
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Let c̃ > 1 be as in Corollary A.4. Then as long as

η ≤ c̃−1c−1e− height(x),

we have the following:

μPS
g (BU(cη)) 	� e

δ� height(x)νo(Prg−(BU(cη)) by (116)

	� e
δ� height(x)νo(B(g

+, c̃eheight(x)cη)) by Corollary 9.4

	� c
σ e(δ�+σ1) height(x)νo(B(g

+, η)) by Lemma 9.6

	� c
σ1e(δ�+2σ1) height(x)νo(B(g

+, c̃−1e− height(x)η) by (117)

	� c
σ1e(δ�+2σ1) height(x)νo(Prg−(BU(η))) by Corollary 9.4

	� c
σ1e2(δ�+σ1) height(x)μPS

g (BU(η)) by (115),

which completes the proof in this case.
The case 0 < c < 1 can be shown in a similar way using Lemma A.7.

When x ∈ supp mBMS, a flowing argument with {a−s : s ≥ 0} allows us to remove the
restriction that η must be small in a way that depends on height(x). More precisely, we
obtain the corollary.

COROLLARY A.9. If � is geometrically finite and Zariski dense, then for any x ∈
supp mBMS, the measure μPS

x is doubling, and the constants only depend on �. More
precisely, there exist constants σ1 = σ1(�) ≥ δ� , σ2 = σ2(�) > 0 such that for every
c > 0, every x ∈ supp mBMS, and every T > 0,

μPS
x (BU(cT )) 	� max{cσ1 , cσ2}μPS

x (BU(T )).

Proof. On a geometrically finite quotient, there exists a compact set �0 ⊂ X such that for
every x ∈ X with x− ∈ �r(�), there exists a sequence sn → ∞ such that a−snx ∈ �0.

Because �0 depends only on �, the height of any point in �0 is bounded by a constant
depending only on �. Thus, by Corollary A.8, for all x ∈ �0 ∩ supp mBMS with x− ∈
�r(�) and for all η 	� c

−1, we have that

μPS
x (BU(cη)) 	� max{cσ1 , cσ2}μPS

x (BU(η)). (A.15)

Now, fix x ∈ supp mBMS with x− ∈ �r(�). Let T ≥ 0 and let s > 0 be sufficiently
large so that e−sT 	� c

−1 and a−sx ∈ �0. Then,

μPS
x (BU(cT )) = eδ�sμPS

a−sx(BU(ce
−sT ))

	� max{cσ1 , cσ2}eδ�sμPS
a−sx(BU(e

−sT )) by (118)

	� max{cσ1 , cσ2}μPS
a−sx(BU(T )),

so the result holds for x− ∈ �r(�).
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Since x �→ μPS
x is continuous (see Lemma 3.2) and the set of x with x− ∈ �r(�) is

dense in the set of points y ∈ X which satisfy y− ∈ �(�), the result then follows for all
x ∈ supp mBMS.

A.2. Non-planarity of the PS measure. For a subset S ⊆ R
n−1 and ξ > 0, let

NU(S, ξ) = {ut ∈ U : there exists s ∈ S such that ‖t − s‖ < ξ}.
In the following, we use the shadow lemma for νo to obtain a stronger version of

non-planarity than that in Definition A.1. From this, we will see that the PS measures
when � is geometrically finite satisfies a non-planarity-like property. More specifically,
the bound we get is independent of the hyperplane, but the size of η must be restricted in a
way that depends on height(x), and a factor of height(x) will appear.

THEOREM A.10. There exist θ = θ(�) ≥ 1, α = α(�) > 0 which satisfy the following.
For any w ∈ H

n, λ ∈ �(�), 0 < η ≤ 1, and ξ > 0, we have

νw(N (L, ξηθ ) ∩ B(λ, η)) 	� e
2δ�d(o,w)ξανw(B(λ, η)).

Proof. First, we show the result for o.
According to [5, Lemma 3.8], there exists β > 0 such that for any η > 0 and any affine

hyperplane L ⊂ R
n, we have

νo(N (L, η)) 	� η
β . (A.16)

For λ ∈ �(�) and for t ∈ R, let λt be the unit speed geodesic ray from o to λ. It follows
from the shadow lemma for νo (see [35, Theorem 2], also [33, Theorem 3.2]) that for any
η > 0, we have

νo(Bo(λ, η)) 
� η
δ�e(k(λ− log η)−δ�)d(o,λ− log η),

where k(λ− log η) is the rank of the cusp containing λ− log η (see §3.2). It follows from the
fact that k(λ− log η) ≥ 0 and d(o, λ− log η) ≤ − log η, that

νo(Bo(λ, η)) 
� η
2δ� .

Since νo is Federer (by Theorem A.2), using (A.1), we arrive at the same bound for
Euclidean balls (with the implied constant changing):

νo(B(λ, η)) 
� η
2δ� . (A.17)

Note that by the definition of ‖dL‖νo,B(λ,η),

B(λ, η) ∩ supp νo ⊂ N (L, ‖dL‖νo,B(λ,η)).

It then follows from (A.16) and (A.17) that

ηδ� 	� (‖dL‖νo,B(λ,η))
β .

Hence,

‖dL‖νo,B(λ,η) 
� η
2δ�/β . (A.18)

https://doi.org/10.1017/etds.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.47


Effective equidistribution 2837

According to Theorem A.2, the PS density is friendly. In particular, it is decaying and
non-planar, so there exists α > 0 such that for all λ ∈ �(�), 0 < η ≤ 1, ξ > 0, an affine
hyperplane L ⊂ R

n, and B = B(λ, η), we have

νo(N (L, ξ‖dL‖B) ∩ B) 	� ξ
ανo(B). (A.19)

The claim now follows for o from (A.18) and (A.19) by taking θ = 2δ�/β.
Second, we show the result for a general w ∈ H

n. Note that

e−δ�d(o,w) 	� e
−δ�βλ(w,o) 	� e

δ�d(o,w).

Thus, using this and the fact that {νw}w∈Hn is a conformal density satisfying (10), we
arrive at

νw(N (L, ξηθ ) ∩ B(λ, η)) 	� e
δ�d(o,w)νo(N (L, ξηθ ) ∩ B(λ, η))

	� e
δ�d(o,w)ξανo(B(λ, η))

	� e
2δ�d(o,w)ξανw(B(λ, η)).

Last, note that by taking ξ = η1−θ , we conclude that θ ≥ 1.

PROPOSITION A.11. Let � be geometrically finite and Zariski dense. There exist constants
α = α(�) > 0, ω = ω(�) ≥ 0, and θ = θ(�) > α satisfying the following: for any x ∈
G/� with x+ ∈ �(�), and for every ξ > 0 and 0 < η 	� e

− height(x), we have that for
every hyperplane L,

μPS
x (NU(L, ξ) ∩ BU(η)) 	� e

ω height(x) ξ
α

ηθ
μPS
x (BU(η)).

Proof. Let α = α(�), θ = θ(�) > 0 satisfy the conclusion of Theorem A.10, and c′ > 1
satisfy the conclusion of Corollary A.4. Fix g ∈ Gwhich satisfies x = g� and height(x) =
d(π(C0), π(g)).

By the same argument as in the proof of Corollary A.8 to bound the Busemann function
when η ≤ 1, we obtain

e−δ� height(x)νo(Prg−(N (L, ξ)x ∩ BU(η)x))

	� μ
PS
g (N (L, ξ) ∩ BU(η)) =

∫
t∈N (L,ξ)∩BU (η)

e
δ�β(utg)+ (o,utg(o)) dνo((utg)

+)

	� e
δ� height(x)νo(Prg−(N (L, ξ)x ∩ BU(η)x)).

Thus, for η 	� e
− height(x) (so that ced(o,π(x))η ≤ 1 in the following, and we stay within

the injectivity radius at x, using (22)), we have that

μPS
x (NU(L, ξ) ∩ BU(η))
	� e

δ� height(x)νo(Prg−(N (L, ξ) ∩ BU(η)))
	� e

δ� height(x)νo(N (L′, ced(o,π(x))ξ) ∩ B(g+, ced(o,π(x))η)) by Corollary 9.5
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	� e
δ� height(x)

(
ξ(ced(o,π(x)))1−θ

ηθ

)α
νo(B(g

+, ced(o,π(x))η)) by Theorem 9.10

	� e
δ� height(x)

(
ξ(ed(o,π(x)))1−θ

ηθ

)α
ed(o,π(x))σ νo(B(g

+, η)) by Lemma 9.6

	� e
δ� height(x)

(
ξ(ed(o,π(x)))1−θ

ηθ

)α
e2d(o,π(x))σ νo(B(g

+, c−1e−d(o,π(x)η)) by Corollary 9.4

	� e
2δ� height(x)+(σ+(1−θ)α)d(o,π(x))

(
ξ

ηθ

)α
μPS
x (BU(η))

	� e
(2δ�+σ+(1−θ)α) height(x)

(
ξ

ηθ

)α
μPS
x (BU(η))

	� e
ω height(x) ξ

α

ηθ
′ μ

PS
x (BU(η)),

where

ω = max{2δ� + σ + (1 − θ)α, 0}, θ ′ = θα.

A.3. Absolute friendliness of the PS measure. When all cusps are of maximal rank,
the PS measure is absolutely friendly, and stronger results hold. Note that if � is convex
cocompact, then there are no cusps, so this additional assumption is vacuously true.

Definition A.12. Let μ be a measure defined on R
m.

(1) μ is called absolutely decaying (respectively globally absolutely decaying) if
there exist α, c2 > 0 such that for all v ∈ supp μ, all 0 < ξ < η ≤ 1 (respectively
0 < ξ < η), and every affine hyperplane L ⊆ R

n,

μ(N (L, ξ) ∩ B(v, η)) ≤ c2

(
ξ

η

)α
μ(B(v, η)).

(2) μ is called absolutely friendly (respectively globally friendly) if it is Federer
(respectively doubling) and absolutely decaying (respectively globally absolutely
decaying).

It is easy to see that if a measure μ is globally friendly, then it is also absolutely friendly.
According to [34, Theorem 2], if � is convex cocompact or [5, Theorem 1.12], if � is

geometrically finite, νo is absolutely friendly if and only if all cusps have maximal rank.

THEOREM A.13. Assume that � is Zariski dense and either convex cocompact or geomet-
rically finite with all cusps having maximal rank. Then the PS measures {μPS

x }x−∈�(�) are
globally friendly, and the constants in Definition A.12 only depend on � (in particular, they
do not depend on x).

This follows by a flowing argument, similar to the doubling results for x ∈ supp mBMS

proven before. The key difference is observed by contrasting Definition A.12(1) with
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Theorem A.10: when the powers of ξ , η match, a flowing argument may be used for BMS
points. When they do not match, one introduces a power corresponding to how far one
flows with a−s .

COROLLARY A.14. Assume that � is Zariski dense and either convex cocompact or
geometrically finite with all cusps having maximal rank. There exists 0 < α = α(�) < 1
such that for any x ∈ supp mBMS, T > 0, and 0 < ξ ≤ T , we have

μPS
x (BU(T + ξ))

μPS
x (BU(T ))

− 1 	�

(
ξ

T

)α
.

Proof. Let c1 = c1(�), c2 = c2(�) > 0 and α = α(�) > 0 satisfy the conclusion of
Definition A.12 for μPS

x and k = 2.
It follows from the geometry of BU(ξ + η)x − BU(η)x that there exist L1, . . . , Lm,

where m only depends on n, such that

BU(ξ + T )x − BU(T )x ⊆
m⋃
i=1

NU(Li , 2ξ).

Then, by Definition A.12, we have

μPS
x (BU(ξ + T ))

μPS
x (BU(T ))

− 1 = μPS
x (BU(ξ + T )− BU(T ))

μPS
x (BU(T ))

≤ mc2

(
ξ

T

)α
μPS
x (BU(ξ + T ))

μPS
x (BU(T ))

≤ mc1c2

(
ξ

T

)α
.
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