AN AMALGAMATION THEOREM FOR SOLUBLE GROUPS

BY
FELIX LEINEN

Abstract

A theorem of G. Higman about the embeddability of amalgams within the class of all finite p-groups is generalized to classes of soluble groups. We also give best possible bounds for the solubility lengths of the constructed completions. And, as an application, the supersoluble amalgamation bases in the class of all finite soluble π-groups are determined.

If two groups G and H intersect in a common subgroup $U=G \cap H$, then their union (which is in general not a group) is called the amalgam $G \cup H \mid U$ of G and H over U. The following necessary and sufficient condition for amalgams of finite p-groups to be contained in a finite p-group is due to G. Higman.

Theorem 1. ([5], Theorem) An amalgam $G \cup H \mid U$ of finite p-groups is embeddable into a finite p-group if and only if there exist chief series $G=G_{0}>G_{1}>\ldots>$ $G_{n}=1$ in G and $H=H_{0}>H_{1}>\ldots>H_{m}=1$ in H such that $\left\{U \cap G_{i} \mid 0 \leqq i \leqq n\right\}$ $=\left\{U \cap H_{j} \mid 0 \leqq j \leqq m\right\}$.

Notice that chief factors of finite p-groups are always cyclic of order p. Thus, in the situation of Theorem 1, the subgroups $U \cap G_{i}$ resp. $U \cap H_{j}$ of U form a chief series of U.

Now, let us consider how Theorem 1 can be generalized to soluble groups. Suppose that an amalgam $G \cup H \mid U$ is contained in a soluble group W. Clearly, W has a series $W=W_{0} \geqq W_{1} \geqq \ldots \geqq W_{r}=1$ of normal subgroups with abelian factors. Therefore $G=G \cap W_{0} \geqq G \cap W_{1} \geqq \ldots \geqq G \cap W_{r}=1$ and $H=H \cap W_{0} \geqq H \cap W_{1} \geqq \ldots \geqq$ $H \cap W_{r}=1$ are series of normal subgroups in G resp. H with

$$
\left\{U \cap\left(G \cap W_{k}\right) \mid 0 \leqq k \leqq r\right\}=\left\{U \cap W_{k} \mid 0 \leqq k \leqq r\right\}=\left\{U \cap\left(H \cap W_{k}\right) \mid 0 \leqq k \leqq r\right\} .
$$

But in general, the converse assumption, that there be series $G=G_{0}>G_{1}>\ldots>G_{n}$ $=1$ and $H=H_{0}>H_{1}>\ldots>H_{m}=1$ of normal subgroups in G resp. H with abelian factors satisfying $\left\{U \cap G_{i} \mid 0 \leqq i \leqq n\right\}=\left\{U \cap H_{j} \mid 0 \leqq j \leqq m\right\}$, is not sufficient for the existence of a soluble group W containing the amalgam $G \cup H \mid U$. This is shown by the following example of B.H. Neumann and J. Wiegold.

Received by the editors November 13, 1984 and, in revised form, August 13, 1985.
AMS Subject Classification (1980): 20F16 20E22.
(C) Canadian Mathematical Society 1986.

ExAmple. ([7], pp. 59-60) Let $U=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ be an elementary abelian group of order eight. Define $\alpha, \beta \in \operatorname{Aut}(U)$ via

$$
u_{1} \xrightarrow{\alpha} u_{2} \xrightarrow{\alpha} u_{3} \xrightarrow{\alpha} u_{1} u_{2} \quad \text { and } \quad u_{1} \xrightarrow{\beta} u_{2} \xrightarrow{\beta} u_{3} \xrightarrow{\beta} u_{1} u_{3} .
$$

Then the subgroups $G=U\langle\alpha\rangle$ and $H=U\langle\beta\rangle$ of the holomorph of U form an amalgam $G \cup H \mid U$ of soluble groups. But α and β jointly generate $\operatorname{Aut}(U)$. Hence, in any supergroup W of $G \cup H \mid U$, the factor $N_{W}(U) / C_{W}(U)$ must be isomorphic to the non-abelian simple group $\operatorname{PSL}(3,2) \cong \mathrm{GL}(3,2) \cong \operatorname{Aut}(U)$, and W cannot be soluble.

It is obvious from the example that a sufficient condition for the embeddability of $G \cup H \mid U$ into a soluble group must involve some control of the action of G and H on their abelian factors G_{i} / G_{i+1} resp. H_{j} / H_{j+1}. This was redundant in G. Higman's theorem, since the chief factors of finite p-groups are central. Our main result is

THEOREM 2. Let \mathscr{X} be either the class of all soluble groups, or the class of all finite soluble π-groups (for some fixed set π of primes).
(A) An amalgam $G \cup H \mid U$ of \mathscr{X}-groups is embeddable into an \mathscr{X}-group if and only if there exist series $G=G_{0} \geqq G_{1} \geqq \ldots \geqslant G_{n}=1$ and $H=H_{0} \geqq H_{1} \geqq \ldots \geqq H_{n}$ $=1$ of normal subgroups in G resp. H satisfying the following three conditions:
(a) The factors G_{i} / G_{i+1} and H_{i} / H_{i+1} are abelian for $0 \leqq i \leqq n-1$.
(b) $U \cap G_{i}=U \cap H_{i}$ for $1 \leqq i \leqq n-1$.
(c) For every $i \in\{1, \ldots, n-1\}$ there exists an abelian \mathscr{X}-supergroup Z_{i} of the amalgam

$$
G_{i} / G_{i+1} \cup H_{i} / H_{i+1} \mid\left(U \cap G_{i}\right) G_{i+1} / G_{i+1}=\left(U \cap H_{i}\right) H_{i+1} / H_{i+1}
$$

(where $\left(U \cap G_{i}\right) G_{i+1} / G_{i+1}$ and $\left(U \cap H_{i}\right) H_{i+1} / H_{i+1}$ are identified via $u G_{i+1}=u H_{i+1}$ for all $u \in U \cap G_{i}=U \cap H_{i}$), and there exist homomorphisms

$$
\alpha_{i}: G / G_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right) \quad \text { and } \quad \beta_{i}: H / H_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right)
$$

such that
(i) $\left(x G_{i+1}\right)\left[\left(g G_{i}\right) \alpha_{i}\right]=x^{g} G_{i+1}$ for all $x \in G_{i}, g \in G$;
(ii) $\left(y H_{i+1}\right)\left[\left(h H_{i}\right) \beta_{i}\right]=y^{h} H_{i+1}$ for all $y \in H_{i}, h \in H$;
(iii) $A_{i}=\left\langle\operatorname{Im} \alpha_{i}, \operatorname{Im} \beta_{i}\right\rangle$ is an \mathscr{X}-subgroup of $\operatorname{Aut}\left(Z_{i}\right)$.
(B) Let $G \cup H \mid U$ be an amalgam of \mathscr{X}-groups satisfying all the conditions of part (A), and assume in addition that
(iv) $\left(u G_{i}\right) \alpha_{i}=\left(u H_{i}\right) \beta_{i}$ for all $u \in U$ and $1 \leqq i \leqq n-1$.

Put $l_{1}=1$, and define inductively $l_{i+1}=1+\max \left\{l_{i}, m_{i}\right\}$ where m_{i} is the solubility length of A_{i}. Then the amalgam is contained in an \mathscr{X}-group of solubility length $\leqq l_{n}$.

Notice that condition (b) and the choice $n=m$ in Theorem 2 are not restrictive at all, since we allow $G_{i}=G_{i+1}$ or $H_{i}=H_{i+1}$. Moreover, the formulae (i) and (ii) are well-defined, since the factors G_{i} / G_{i+1} and H_{i} / H_{i+1} are abelian.

Observe also that part (B) yields the lowest possible bound l_{n} for the solubility length which a soluble supergroup of $G \cup H \mid U$ can have with respect to the solubility lengths of the groups A_{i} and with respect to the number n. This should make it possible to use Theorem 2 for an investigation of the structure of existentially closed groups in classes of soluble groups with bounded solubility lengths.

Proof of Theorem 2. (A) Suppose firstly that $G \cup H \mid U$ is contained in an \mathscr{X}-group W. Denote by W_{i} the i-th term of the derived series of W. Put $G_{i}=G \cap W_{i}$ and $H_{i}=$ $H \cap W_{i}$ and $Z_{i}=W_{i} / W_{i+1}$. Define α_{i} and β_{i} via

$$
\begin{array}{ll}
\left(w W_{i+1}\right)\left[\left(g G_{i}\right) \alpha_{i}\right]=w^{g} W_{i+1} & \text { for all } w \in W_{i}, g \in G, \text { and } \\
\left(w W_{i+1}\right)\left[\left(h H_{i}\right) \beta_{i}\right]=w^{h} W_{i+1} & \text { for all } w \in W_{i}, h \in H .
\end{array}
$$

Then the conditions (a), (b) and (c) are satisfied, if we identify G_{i} / G_{i+1} (via $x G_{i+1}=$ $x W_{i+1}$ for all $x \in G_{i}$) with the subgroup $G_{i} W_{i+1} / W_{i+1}$ of Z_{i}, and similarly H_{i} / H_{i+1} with $H_{i} W_{i+1} / W_{i+1} \leqq Z_{i}$.

For the proof of the converse, suppose that (a), (b) and (c) hold for the amalgam $G \cup H \mid U$. We will embed the amalgam into an \mathscr{X}-group by induction over n. In the case $n=1$ the groups G and H are abelian, and the amalgam can be embedded canonically into the central product of G and H over U.
Now let $n \geqq 2$. For convenience write $N, M, Z, A, \alpha, \beta$ instead of $G_{n-1}, H_{n-1}, Z_{n-1}$, $A_{n-1}, \alpha_{n-1}, \beta_{n-1}$ (resp.). By our induction, we may assume that the amalgam

$$
G / N \cup H / M \mid U N / N=U M / M
$$

(where $U N / N$ and $U M / M$ are identified via $u N=u M$ for all $u \in U$) is contained in an \mathscr{X}-group V. Denote by R the subgroup $\{(\delta, z) \mid z \in Z, \delta \in A\}$ of the holomorph of Z (with multiplication $\left.\left(\delta_{1}, z_{1}\right)\left(\delta_{2}, z_{2}\right)=\left(\delta_{1} \delta_{2}, z_{1} \delta_{2} \cdot z_{2}\right)\right)$. Furthermore, let $W=R W r V$ be the unrestricted regular wreath product of R and V, i.e., let $W=\{(v, f) \mid v \in V, f$: $V \rightarrow R\}$ with multiplication $\left(v_{1}, f_{1}\right)\left(v_{2}, f_{2}\right)=\left(v_{1} v_{2}, f_{1}^{v_{2}} f_{2}\right)$, where $f_{1}^{v_{2}}(v)=f_{1}\left(v_{2} v\right)$ for all $v \in V$. Clearly, W is an \mathscr{X}-group by (iii). We will construct embeddings $\sigma_{1}: G \rightarrow W$ and $\sigma_{2}: H \rightarrow W$ such that the diagram

commutes, and such that $G \sigma_{1} \cap H \sigma_{2}=U \sigma_{1}$.
Define $\theta: G \cup H \rightarrow V$ via

$$
\begin{array}{ll}
g \theta=g N \in V & \text { for all } g \in G, \text { and } \\
h \theta=h M \in V & \text { for all } h \in H
\end{array}
$$

(notice that $u N=u M$ holds in V for all $u \in U$). As in G. Higman [5], p. 303 we can choose a map $\phi^{*}: V \rightarrow U$ such that

$$
(u \theta \cdot v) \phi^{*} \theta=u \theta \cdot v \phi^{*} \theta \quad \text { for all } u \in U, v \in V
$$

Now an embedding $\sigma: U \rightarrow W$ is given by

$$
\begin{array}{ll}
u \sigma=\left(u \theta, f_{u}\right) & \text { for all } u \in U, \text { where } \\
f_{u}(v)=\left(1,\left[(u \theta v) \phi^{*}\right]^{-1} \cdot u \cdot v \phi^{*}\right) \in R & \text { for all } v \in V
\end{array}
$$

As in the proof of G. Higman [5], Lemma 2.1 it is possible to find a map $\theta_{1}^{*}: V \rightarrow G$ with the property

$$
(g \theta \cdot v) \theta_{1}^{*} \theta=g \theta \cdot v \theta_{1}^{*} \theta \quad \text { for all } g \in G, v \in V
$$

and such that $\omega_{1}: V \rightarrow G$ given by

$$
v \theta_{1}^{*}=v \phi^{*} \cdot v \omega_{1} \quad \text { for all } v \in V
$$

is constant on each of the cosets $(U \theta) v, v \in V$. Then (i) ensures that $\sigma: U \rightarrow W$ can be extended to an embedding $\sigma_{1}: G \rightarrow W$ via

$$
\begin{array}{rlrl}
g \sigma_{1}= & \left(g \theta, f_{g}\right) & \text { for all } g \in G, \text { where } \\
f_{g}(v)= & \left(\left[(g \theta v) \omega_{1} \cdot\left(v \omega_{1}\right)^{-1}\right] \theta \alpha,\right. & & \\
& \left.\left(\left[(g \theta v) \theta_{1}^{*}\right]^{-1} \cdot g \cdot v \theta_{1}^{*}\right)\left[\left(v \omega_{1}\right)^{-1}\right] \theta \alpha\right) & \text { for all } v \in V .
\end{array}
$$

Similarly we can find a map $\theta_{2}^{*}: V \rightarrow H$ with the property

$$
(h \theta \cdot v) \theta_{2}^{*} \theta=h \theta \cdot v \theta_{2}^{*} \theta \quad \text { for all } h \in H, v \in V
$$

and such that $\omega_{2}: V \rightarrow H$ given by

$$
v \theta_{2}^{*}=v \phi^{*} \cdot v \omega_{2} \quad \text { for all } v \in V
$$

is constant on each of the cosets $(U \theta) v, v \in V$. Then (ii) ensures that $\sigma: U \rightarrow W$ can be extended to an embedding $\sigma_{2}: H \rightarrow W$ via

$$
\begin{array}{rlrl}
h \sigma_{2}= & \left(h \theta, f_{h}\right) & & \text { for all } h \in H, \text { where } \\
f_{h}(v)= & \left(\left[(h \theta v) \omega_{2} \cdot\left(v \omega_{2}\right)^{-1}\right] \theta \beta,\right. & & \\
& \left.\left(\left[(h \theta v) \theta_{2}^{*}\right]^{-1} \cdot h \cdot v \theta_{2}^{*}\right)\left[\left(v \omega_{2}\right)^{-1}\right] \theta \beta\right) & \text { for all } v \in V .
\end{array}
$$

It remains to show that $G \sigma_{1} \cap H \sigma_{2}=U \sigma_{1}$.
Let $g \in G$ and $h \in H$ with $\left(g \theta, f_{g}\right)=g \sigma_{1}=h \sigma_{2}=\left(h \theta, f_{h}\right)$. Then $g \theta=h \theta \in$ $G / N \cap H / M=U N / N=U M / M$. Thus, $g \in U N$ and $h \in U M$. Now straightforward calculations yield that

$$
\begin{array}{ll}
f_{g}(v)=\left(1,\left[(g \theta v) \phi^{*}\right]^{-1} \cdot g \cdot v \phi^{*}\right) & \text { and } \\
f_{h}(v)=\left(1,\left[(h \theta v) \phi^{*}\right]^{-1} \cdot h \cdot v \phi^{*}\right) & \text { for all } v \in V
\end{array}
$$

Hence, $g=h \in G \cap H=U$ and $g \sigma_{1}=h \sigma_{2} \in U \sigma$.
(B) In the case $n=1$ the central product of the groups G and H over U is abelian and has solubility length $\leqq 1=l_{1}$.

Now, let $n \geqq 2$. We go back into the proof of part (A) and assume by induction that V has solubility length $\leqq l_{n-1}$. We will show that the l_{n-1}-st term \tilde{Q} of the derived series of $Q=\left\langle G \sigma_{1}, H \sigma_{2}\right\rangle$ is contained in the normal subgroup

$$
W_{0}=\{(1, f) \mid f(V) \subseteq\{(\delta, z) \mid \delta \in \tilde{A}, z \in Z\}\}
$$

of W (where \tilde{A} denotes the l_{n-1}-th term of the derived series of A). This will prove part (B), since W_{0} has solubility length $\leqq 1+\max \left\{0, m_{n-1}-l_{n-1}\right\}=l_{n}-l_{n-1}$.

For convenience, define $\sigma: G \cup H \rightarrow W$ via

$$
\sigma\left\lceilG = \sigma _ { 1 } \quad \text { and } \quad \sigma \left\lceil H=\sigma_{2}\right.\right.
$$

as well as $\gamma: G \cup H \rightarrow A$ via

$$
\gamma \upharpoonright G=\theta \alpha \quad \text { and } \gamma \upharpoonright H=\theta \beta
$$

Because of (iv) the map γ is well-defined. Put $l=l_{n-1}$. For $1 \leqq i \leqq l$ let $w_{i}\left(x_{1}, \ldots, x_{2}\right)$ be the word given recursively by

$$
\begin{aligned}
w_{1}\left(x_{1}, x_{2}\right) & =\left[x_{1}, x_{2}\right] & & \text { and } \\
w_{1}\left(x_{1}, \ldots, x_{2 i}\right) & =\left[w_{i-1}\left(x_{1}, \ldots, x_{2^{i-1}}\right), w_{i-1}\left(x_{2^{i-1}+1}, \ldots, x_{2 i}\right)\right] & & \text { for } i \geqq 2 .
\end{aligned}
$$

Then \tilde{Q} is generated by the set $S=\left\{w_{l}\left(q_{1}, \ldots, q_{2^{\prime}}\right) \mid q_{j} \in Q\right\}$. Fix some $w_{1}\left(q_{1}, \ldots, q_{2^{\prime}}\right)$ $\in S$. Every q_{j} is a word $v_{j}\left(y_{j 1} \sigma, \ldots, y_{j v_{j}} \sigma\right)$ for some $y_{j k} \in G \cup H$.

Now observe that every $g \in G$ has the image

$$
\begin{aligned}
g \sigma & =\left(g \theta, f_{g}\right), \\
f_{\mathrm{g}}(v) & =\left(\left[(g \theta v) \omega_{1} \cdot\left(v \omega_{1}\right)^{-1}\right] \gamma, z_{g}(v)\right) \\
& =\left(\left[(g \theta v) \phi^{*}\right]^{-1} \gamma \cdot\left[(g \theta v) \theta_{1}^{*} \theta \cdot v \theta_{1}^{*} \theta^{-1}\right] \alpha \cdot v \phi^{*} \gamma, z_{g}(v)\right) \\
& =\left(\left[(g \theta v) \phi^{*}\right]^{-1} \gamma \cdot g \gamma \cdot v \phi^{*} \gamma, z_{g}(v)\right) \quad \text { for some } z_{g}(v) \in Z
\end{aligned}
$$

Similarly, every $h \in H$ has the image

$$
\begin{aligned}
h \sigma & =\left(h \theta, f_{h}\right), & & \text { where } \\
f_{h}(v) & =\left(\left[(h \theta v) \phi^{*}\right]^{-1} \gamma \cdot h \gamma \cdot v \phi^{*} \gamma, z_{h}(v)\right) & & \text { for some } z_{h}(v) \in Z .
\end{aligned}
$$

Thus, for all $x, y \in G \cup H$ we obtain

$$
\begin{aligned}
x \sigma \cdot y \sigma & =\left(x \theta \cdot y \theta, f_{x, y}\right) & & \text { where } \\
f_{x, y}(v) & =\left(\left[(x \theta \cdot y \theta \cdot v) \phi^{*}\right]^{-1} \gamma \cdot x \gamma \cdot y \gamma \cdot v \phi^{*} \gamma, z_{x, y}(v)\right) & & \text { for some } z_{x, y}(v) \in Z .
\end{aligned}
$$

But then

$$
\begin{aligned}
w_{l}\left(\ldots, q_{j}, \ldots\right) & =w_{l}\left(\ldots, v_{j}\left(\ldots, y_{j k} \sigma, \ldots\right), \ldots\right) \\
& =\left(w_{l}\left(\ldots, v_{j}\left(\ldots, y_{j k} \theta, \ldots\right), \ldots\right), f^{*}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
f^{*}(v)= & \left(\left[\left(w_{l}\left(\ldots, v_{j}\left(\ldots, y_{j k} \theta, \ldots\right), \ldots\right) \cdot v\right) \phi^{*}\right]^{-1} \gamma .\right. \\
& \cdot\left(w_{l}\left(\ldots, v_{j}\left(\ldots, y_{j k} \gamma, \ldots\right), \ldots\right) \cdot v \phi^{*} \gamma, z^{*}(v)\right) \\
= & \left(\left[v \phi^{*}\right]^{-1} \gamma \cdot\left(w_{l}\left(\ldots, v_{j}\left(\ldots, y_{j k} \gamma, \ldots\right), \ldots\right) \cdot v \phi^{*} \gamma, z^{*}(v)\right)\right. \\
\in & \{(\delta, z) \mid \delta \in \tilde{A}, z \in Z\} \quad \text { for all } v \in V .
\end{aligned}
$$

Hence $w_{l}\left(q, \ldots, q_{2^{\prime}}\right) \in W_{0}$, and we conclude that $\tilde{Q}=\langle S\rangle \leqq W_{0}$.
After writing a first version of this paper the author learned that R.B.J.T. Allenby had used in his Ph.D. thesis the same technique as in the proof of Theorem 2(A) to show the following two results.

Theorem 3. ([1], Theorem 7.5) Let $G \cup H \mid U$ be an amalgam of finite soluble groups in which the amalgamated subgroup U is normal in both constituents G and H. Then $G \cup H \mid U$ is embeddable into a finite soluble group if and only if G and H have series $G=G_{0} \geqq G_{1} \geqq \ldots \geqq G_{n}=1$ and $H=H_{0} \geqq H_{1} \geqq \ldots \geqq H_{n}=1$ of normal subgroups such that
(a) G_{i} / G_{i+1} and H_{i} / H_{i+1} are elementary abelian groups,
(b) $U \cap G_{i}=U \cap H_{i}=U_{i}$, and
(c) G / G_{i+1} and H / H_{i+1} together generate on U_{i} / U_{i+1} (via conjugation) a soluble group of automorphisms.

Theorem 4. ([1], Theorem 7.7) Let $G \cup H \mid U$ be an amalgam of finite soluble groups. Let G and H have series of normal subgroups $G=G_{0} \geqq G_{1} \geqq \ldots \geqq G_{n}=1$ and $H=H_{0} \geqq H_{1} \geqq \ldots \geqq H_{n}=1$ in which the factors are elementary abelian, and suppose that $U \cap G_{i}=U \cap H_{i}=U_{i}$ for all i, so that $G_{i} / G_{i+1} \cap H_{i} / H_{i+1}=U_{i} / U_{i+1}$ (identifying $U_{i} G_{i+1} / G_{i+1}$ and $U_{i} H_{i+1} / H_{i+1}$ canonically with U_{i} / U_{i+1}). Let Z_{i} be the central product of G_{i} / G_{i+1} and H_{i} / H_{i+1} over U_{i} / U_{i+1}. Then, if G_{i}^{*} denotes the group of automorphisms generated on Z_{i} by extending to Z_{i} the automorphisms induced on G_{i} / G_{i+1} by G / G_{i+1} via conjugation (this can be done by choosing a basis for Z_{i} which extends that of G_{i} / G_{i+1} and forcing G_{i}^{*} to act trivially on the basis elements from $\left.Z_{i} \backslash\left(G_{i} / G_{i+1}\right)\right)$, and if H_{i}^{*} is defined similarly, it follows that $G \cup H \mid U$ is embeddable into a finite soluble group, if G_{i}^{*} and H_{i}^{*} together generate a soluble group of automorphisms on $Z_{i}(i=0,1, \ldots, n-1)$.

Theorem 4 is an immediate consequence of Theorem 2(A). Since the chief factors of finite soluble groups are elementary abelian, the necessity of the conditions in Theorem 3 can be shown as in the proof of Theorem 2(A), while their sufficiency follows from an application of Theorem 2(A): Choose a basis for Z_{i} which contains bases of U_{i} / U_{i+1} and G_{i} / G_{i+1} and H_{i} / H_{i+1}, and define G_{i}^{*} and H_{i}^{*} as in Theorem 4; then $\left\langle G_{i}^{*}, H_{i}^{*}\right\rangle$ is a soluble group of automorphisms of Z_{i}.

Results about amalgams of two soluble groups over a normal common subgroup, which are related to Theorem 3, can also be found in papers of R.J. Gregorac ([2],

Theorem 6.5), K. Hickin ([4], Theorem 5) and J. Wiegold ([9], Theorem 2.3). The latter two authors also give bounds for the solubility lengths of their completions.

It remains open whether the sufficient conditions of Theorem 4 are necessary too, and in how far they are influenced by the choices of bases for the Z_{i}. However, in applications, it should be easier to continue the automorphisms induced on G_{i} / G_{i+1} and H_{i} / H_{i+1} by conjugation with elements from G / G_{i+1} resp. H / H_{i+1} to automorphisms of some elementary abelian supergroup of the amalgam $G_{i} / G_{i+1} \cup H_{i} / H_{i+1} \mid U_{i} / U_{i+1}$ rather than to automorphisms of the central product of G_{i} / G_{i+1} and H_{i} / H_{i+1} over U_{i} / U_{i+1}. We will use this idea in the proof of

Theorem 5. Let $G \cup H \mid U$ be an amalgam of two finite soluble π-groups G and H over a supersoluble group U. If there exist chief series $G=G_{0} \geqq G_{1} \geqq \ldots \geqq G_{n}=$ 1 and $H=H_{0} \geqq H_{1} \geqq \ldots \geqq H_{n}=1$ in G resp. H such that $U \cap G_{i}=U \cap H_{i}=U_{i}$ for $0 \leqq i \leqq n$ and such that $U=U_{0} \geqq U_{1} \geqq \ldots \geqq U_{n}=1$ is a chief series in U, then the amalgam can be embedded into a finite soluble π-group.

Proof. In order to apply Theorem 2(A) we only need to show that condition (c) is satisfied. Fix $i \in\{1, \ldots, n-1\}$, and denote epimorphic images modulo U_{i+1}, G_{i+1} or H_{i+1} by bars.

If $U_{i}=U_{i+1}$, then we choose $Z_{i}=\bar{G}_{i} \times \bar{H}_{i}$ and define $\sigma_{i}: G / G_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right)$ and $\beta_{i}: H / H_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right)$ via

$$
\begin{aligned}
& (\overline{x y})\left[\left(g G_{i}\right) \alpha_{i}\right]=\bar{x}^{\bar{x}} \cdot \bar{y} \quad \text { for all } x \in G_{i}, y \in H_{i}, g \in G, \text { and } \\
& (\overline{x y})\left[\left(h H_{i}\right) \beta_{i}\right]=\bar{x} \cdot \bar{y}^{\bar{h}} \quad \text { for all } x \in G_{i}, y \in H_{i}, h \in H .
\end{aligned}
$$

Clearly α_{i} and β_{i} are homomorphisms satisfying the conditions (i) and (ii) of Theorem 2(A), and $A_{i}=\operatorname{Im} \alpha_{i} \times \operatorname{Im} \beta_{i}$ is a finite soluble π-group.
Now let $U_{i} \neq U_{i+1}$. As a chief factor of a finite super soluble π-group, \bar{U}_{i} is cyclic of prime order $p \in \pi$. Therefore, \bar{G}_{i} and \bar{H}_{i} are elementary abelian p-groups. Put

$$
\begin{array}{ll}
\bar{G}_{i}=\left\langle\bar{x}_{1}\right\rangle \oplus\left\langle\bar{x}_{2}\right\rangle \oplus \ldots \oplus\left\langle\bar{x}_{r}\right\rangle & \text { and } \\
\bar{H}_{i}=\left\langle\bar{y}_{1}\right\rangle \oplus\left\langle\bar{y}_{2}\right\rangle \oplus \ldots \oplus\left\langle\bar{y}_{s}\right\rangle & \text { where } \\
\bar{x}_{1}=\bar{y}_{1} \in \bar{U}_{i} . &
\end{array}
$$

Let Z_{i} be an elementary abelian p-group with basis $B=\left\{z_{k} \mid 1 \leqq k \leqq r, 1 \leqq l \leqq s\right\}$. Identify

$$
z_{k 1}=\bar{x}_{k} \quad \text { for } \quad 1 \leqq k \leqq r, \quad \text { and } \quad z_{1 l}=\bar{y}_{l} \quad \text { for } \quad 1 \leqq l \leqq s .
$$

For $g \in G$ and $h \in H$, define endomorphisms $\left(g G_{i}\right) \alpha_{i}$ resp. $\left(h H_{i}\right) \beta_{i}$ of Z_{i} on the basis B as follows:
$\begin{array}{llll}\text {-If } & \bar{x}_{k_{o}}^{\bar{g}}=\sum_{k=1}^{r} \eta_{k} \bar{x}_{k}, \quad \text { then } \quad\left(z_{k_{o}}\right)\left[\left(g G_{i}\right) \alpha_{i}\right]=\sum_{k=1}^{r} \eta_{k} z_{k l} & \text { for } 1 \leqq l \leqq s . \\ \text {-If } \quad \bar{y}_{l_{o}}^{\bar{h}}=\sum_{l=1}^{s} \zeta_{l} \bar{y}_{l}, & \text { then } \quad\left(z_{k l_{o}}\right)\left[\left(h H_{i}\right) \beta_{i}\right]=\sum_{l=1}^{s} \zeta_{l z_{k l}} \quad \text { for } 1 \leqq k \leqq r .\end{array}$

Then $\left(g G_{i}\right) \alpha_{i}$ acts on each of the subspaces

$$
\left\langle z_{1 \prime}\right\rangle \oplus \ldots \oplus\left\langle z_{r l}\right\rangle \quad(1 \leqq l \leqq s)
$$

of Z_{i} as \bar{g} acts via conjugation on $\left\langle\bar{x}_{1}\right\rangle \oplus \ldots \oplus\left\langle\bar{x}_{r}\right\rangle$. Similarly, $\left(h H_{i}\right) \beta_{i}$ acts on each of the subspaces

$$
\left\langle z_{k 1}\right\rangle \oplus \ldots \oplus\left\langle z_{k s}\right\rangle \quad(1 \leqq k \leqq r)
$$

as h acts on $\left\langle\bar{y}_{1}\right\rangle \oplus \ldots \oplus\left\langle\bar{y}_{s}\right\rangle$ via conjugation. Therefore it is obvious that $\left(g G_{i}\right) \alpha_{i}$ and $\left(h H_{i}\right) \beta_{i}$ are automorphisms of Z_{i} satisfying the conditions (i) and (ii) of Theorem 2(A), and that the maps $\alpha_{i}: G / G_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right)$ and $\beta_{i}: H / H_{i} \rightarrow \operatorname{Aut}\left(Z_{i}\right)$ are homomorphisms.

It remains to show that $A_{i}=\left\langle\operatorname{Im} \alpha_{i}, \operatorname{Im} \beta_{i}\right\rangle$ is a finite soluble π-group. We will prove that A_{i} is a central product of $\operatorname{Im} \alpha_{i}$ and $\operatorname{Im} \beta_{i}$. (Actually it can also be seen easily that $\operatorname{Im} \alpha_{i} \cap \operatorname{Im} \beta_{i}$ contains only power automorphisms of Z_{i}.)

Fix $z_{k_{o} l_{o}} \in B$. Suppose that $g \in G$ and $h \in H$ satisfy

$$
\bar{x}_{k_{o}}^{\bar{g}}=\sum_{k=1}^{r} \eta_{k} \bar{x}_{k} \quad \text { and } \quad \bar{y}_{l_{o}}^{\bar{h}}=\sum_{l=1}^{s} \zeta_{l} \bar{y}_{l} .
$$

Then

$$
\begin{gathered}
\left(z_{k_{0} l_{o}}\right)\left[\left(g G_{i}\right) \alpha_{i} \cdot\left(h H_{i}\right) \beta_{i}\right]=\left(\sum_{k=1}^{r} \eta_{k} z_{k_{o}}\right)\left[\left(h H_{i}\right) \beta_{i}\right] \\
=\sum_{l=1}^{s} \sum_{k=1}^{r} \eta_{k} \zeta_{l} z_{k l}=\left(\sum_{l=1}^{s} \zeta_{l} z_{k_{k_{0}}}\right)\left[\left(g G_{i}\right) \alpha_{i}\right] \\
=\left(z_{k_{o_{l}} l_{o}}\right)\left[\left(h H_{i}\right) \beta_{i} \cdot\left(g G_{i}\right) \alpha_{i}\right] .
\end{gathered}
$$

Hence $\operatorname{Im} \alpha_{i}$ and $\operatorname{Im} \beta_{i}$ commute.
Let \mathscr{X} be a class of groups. An \mathscr{X}-group U is called an amalgamation basis in \mathscr{X}, if every amalgam $G \cup H \mid U$ of two \mathscr{X}-groups G and H over U can be embedded into an \mathscr{X}-group. Theorem 5 can be used to determine the supersoluble amalgamation bases in the class $\mathscr{F}_{\pi} \cap \mathscr{S}$ of all finite soluble π-groups.

Theorem 6. (a) If U is an amalgamation basis in $\mathscr{F}_{\pi} \cap \mathscr{S}$, then U has a unique chief series.
(b) A supersoluble group U is an amalgamation basis in $\mathscr{F}_{\pi} \cap \mathscr{G}$ if and only if U is either a cyclic p-group for some $p \in \pi$ or the split extension of a cyclic p-group P by a cyclic q-group Q with $\boldsymbol{C}_{Q}(P)=1$ for some $p, q \in \pi$ with $q \mid p-1$.

Proof. (a) Suppose that U does not have a unique chief series. Then there exist normal subgroups K, L and M in U such that K / M and L / M are different chief factors in U. Choose $g \in K \backslash M$ and $h \in L \backslash M$. Because of $K \cap L=M$ we have $g \in K \backslash L$ and $h \in L \backslash K$.

From P. Hall [3], Lemma 7 there exists a finite nilpotent π-group F such that $h \in F^{\prime \prime}$. Since chief factors of $\mathscr{F}_{\pi} \cap \mathscr{S}$-groups are elementary abelian, the intersections
of $\langle h\rangle$ with the terms of a chief series in any $\mathscr{F} \pi \cap \mathscr{C}$-supergroup of $\langle h\rangle$ must form the unique chief series in $\langle h\rangle$. Therefore Theorem 5 ensures that the amalgam $U \cup F \mid\langle h\rangle$ is contained in an $\mathscr{F}_{\pi} \cap \mathscr{\mathscr { G }}$-group V. Clearly, $h \in F^{\prime \prime} \leqq V^{\prime \prime}$.

Let $\sigma: U \rightarrow G=V W r U / L$ be a Krasner-Kaloujnine-embedding, i.e., for some fixed transversal $T=\left\{t_{u L} \mid u \in U\right\}$ of L in U let

$$
x \sigma=\left(x L, f_{x}\right) \quad \text { for all } x \in U
$$

where $f_{x}: U / L \rightarrow V$ is given by

$$
f_{x}(u L)=t_{x u L}^{-1} \cdot x \cdot t_{u L} \quad \text { for all } u \in U
$$

Then $h \sigma=\left(1, f_{h}\right)$ where $f_{h}(u L)=h^{t_{u L}} \in V^{\prime \prime}$ for all $u \in U$, and $g \sigma=\left(g L, f_{g}\right)$ does not lie in the base group $\{(1, f) \mid f: U / L \rightarrow V\}$ of G. Therefore, a combination of P.M. Neumann [8], Lemma 5.1 and F. Leinen [6], Lemma 4.3.(b) yields that $h \sigma \in\left\langle g \sigma^{G}\right\rangle^{\prime}$. Identify U via σ with $U \sigma \leqq G$. Then G is an $\mathscr{F}_{\pi} \cap \mathscr{S}$-supergroup of U with $h \in\left\langle g^{G}\right\rangle^{\prime}$.

Similarly, we can construct an $\mathscr{F}_{\pi} \cap \mathscr{S}$-supergroup H of U with $g \in\left\langle h^{H}\right\rangle^{\prime}$.
Since U is an amalgamation basis in $\mathscr{F}_{\pi} \cap \mathscr{S}$, the amalgam $G \cup H \mid U$ must be contained in an $\mathscr{F}_{\pi} \cap \mathscr{G}$-group W. Let $W=W_{0}>W_{1}>\ldots>W_{r}=1$ be a series of normal subgroups in W with abelian factors. Choose $k \in\{0, \ldots, r-1\}$ such that $g \in W_{k} \backslash W_{k+1}$. Then $\left\langle g^{G}\right\rangle \leqq\left\langle g^{W}\right\rangle \leqq W_{k}$. Since W_{k} / W_{k+1} is abelian, we obtain $h \in\left\langle g^{G}\right\rangle^{\prime}$ $\leqq W_{k}^{\prime} \leqq W_{k+1}$. But now $g \in\left\langle h^{H}\right\rangle \leqq\left\langle h^{W}\right\rangle \leqq W_{k+1}$, in contradiction to the choice of k.
(b) Let $U=P Q$ as described in the theorem. Then, for any $h \in Q \backslash 1$, the p^{\prime}-group $\langle h\rangle$ acts on the abelian p-group P. So $P=[P,\langle h\rangle] \times \boldsymbol{C}_{P}(\langle h\rangle)$. But P is a cyclic p-group. Thus $P=[P,\langle h\rangle]$ or $P=\boldsymbol{C}_{P}(\langle h\rangle)$. Since $\boldsymbol{C}_{Q}(P)=1$, we know that $P \neq \boldsymbol{C}_{P}(\langle h\rangle)$. Hence $P=[P,\langle h\rangle] \leqq\left\langle h^{U}\right\rangle$ for every $h \in Q \backslash 1$.

Therefore, if $U=P Q$ as described in the theorem, or if U is a cyclic p-group, then U has a unique chief series, and every elementary abelian factor of U is cyclic of prime order. Thus, the intersections of U with the terms of a chief series in any $\mathscr{F}_{\pi} \cap \mathscr{S}$-supergroup of U must form the chief series in U. Hence Theorem 5 ensures that U is an amalgamation basis in $\mathscr{F}_{\pi} \cap \mathscr{S}$.

For the converse, let U be a supersoluble amalgamation basis in $\mathscr{F}_{\pi} \cap \mathscr{S}$. If U is a p-group for some $p \in \pi$, then $U / \Phi(U)$ (where $\Phi(U)$ denotes the Frattini subgroup of U) is elementary abelian. But U has a unique chief series by (a). Hence $U / \Phi(U)$ is cyclic, and this forces U to be cyclic.

Now assume, that U is not a p-group. Let $p \in \pi$ be the maximal prime dividing $|U|$. As a finite supersoluble group, U has a normal Sylow- p-subgroup P. So $P / \Phi(P)$ is an elementary abelian factor of U. Since U has a unique chief series, it is clear that $\boldsymbol{C}_{U / \Phi(P)}(P / \Phi(P))=P / \Phi(P)$. In particular, the p^{\prime}-group U / P acts faithfully via conjugation on the abelian p-group $P / \Phi(P)$. Moreover, because chief factors of finite supersoluble groups are cyclic, $P / \Phi(P)$ has a cyclic U / P-invariant subgroup. Now Maschke's theorem and the uniqueness of the chief series in U imply that $P / \Phi(P)$ is
cyclic. Thus, P is cyclic. But then U / P is isomorphic to a subgroup of Aut $(P / \Phi(P))$, which is in turn cyclic of order $p-1$. Again the uniqueness of the chief series in U yields that U / P is even a cyclic q-group for some $q \in \pi$ dividing $p-1$. Finally, $\boldsymbol{C}_{U}(P) / \Phi(P) \leqq \boldsymbol{C}_{U / \Phi(P)}(P / \Phi(P))=P / \Phi(P)$, and so $\boldsymbol{C}_{U}(P)=P$.

It would of course be interesting to find all the amalgamation bases in $\mathscr{F} \pi \cap \mathscr{H}$. The first thing to settle might be the

Question. Is the alternating group A_{4} an amalgamation basis in the class of all finite soluble $\{2,3\}$-groups?

Finally it should be noted that all theorems of this paper can be extended to amalgams of finitely many groups $G_{k}, 1 \leqq k \leqq v$, over a common subgroup $U=G_{k} \cap G_{l}$ (for all $k, l)$.

References

1. R.B.J.T. Allenby, Generalized regular products of groups, Ph.D. thesis, Wales, 1966 (unpublished).
2. R.J. Gregorac, On permutational products of groups, J. Austral. Math. Soc., 10 (1969), pp. 111-135.
3. P. Hall, Some constructions for locally finite groups, J. London Math. Soc., 34 (1959), pp. 305-319.
4. K. Hickin, An amalgamation theorem for group extensions, Arch. Math., 45 (1985), pp. 485-491.
5. G. Higman, Amalgams of p-groups, J. Algebra, 1 (1964), pp. 301-305.
6. F. Leinen, Existentially closed LXX-groups, Rend. Sem. Mat. Univ. Padova, 75 (1986), pp. 191-226.
7. B.H. Neumann and J. Wiegold, On certain embeddability criteria for group amalgams, Publ. Math. Debrecen, 9 (1962), pp. 57-64.
8. P.M. Neumann, On the structure of standard wreath products of groups, Math. Z., 84 (1964), pp. 343-373.
9. J. Wiegold, Soluble embeddings of group amalgams, Publ. Math. Debrecen, 12 (1965), pp. 227-230.

Fachbereich 17 - Mathematik
Johannes-Gutenberg-Universitàt
SaARSTR. 21
6500 Mainz
West-Germany

