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AN AMALGAMATION THEOREM FOR SOLUBLE GROUPS 

BY 

FELIX LEINEN 

ABSTRACT. A theorem of G. Higman about the embeddability of 
amalgams within the class of all finite p-groups is generalized to classes 
of soluble groups. We also give best possible bounds for the solubility 
lengths of the constructed completions. And, as an application, the super-
soluble amalgamation bases in the class of all finite soluble ir-groups are 
determined. 

If two groups G and H intersect in a common subgroup U = G D //, then their union 
(which is in general not a group) is called the amalgam G U H\ U of G and H over U. 
The following necessary and sufficient condition for amalgams of finite /7-groups to be 
contained in a finite p-group is due to G. Higman. 

THEOREM 1. ([5], Theorem) An amalgam G U H\U of finite p-groups is embeddable 
into a finite p-group if and only if there exist chief series G = GQ > G\ > . . . > 
Gn = 1 in G and H = H0 > / / , > . . . > Hm = 1 in H such that {U H G,|0 ^ / ^ n) 
= {U H Hj\0 ^j ^ m}. 

Notice that chief factors of finite p-groups are always cyclic of order p. Thus, in the 
situation of Theorem 1, the subgroups U D Gt resp. U H Hj of U form a chief series 
ofU. 

Now, let us consider how Theorem 1 can be generalized to soluble groups. Suppose 
that an amalgam G U H\U is contained in a soluble group W. Clearly, W has a series 
W = W0 ^ W\ = . . . = Wr = 1 of normal subgroups with abelian factors. Therefore 
G = Gnw0^Gnw]^...^Gnwr= iand// = / / n w 0 ^ / / n w , ^ . . . ^ 
H fi Wr = 1 are series of normal subgroups in G resp. H with 

{ [ / n ( c n wk)\o ^ k ^ r} = {u n wk\o ̂  k ̂  r} = {u n (// n wk)\o ^ k ^ r}. 

But in general, the converse assumption, that there be series G = G0 > G\ > . . . > Gn 

= 1 and H = Ho>H\>...>Hm= 1 of normal subgroups in G resp. H with abelian 
factors satisfying {U H G/|0 ^ i ^ n} = {U 0 Hj\0 ^ j ^ m}, is not sufficient for 
the existence of a soluble group W containing the amalgam G U H | U. This is shown 
by the following example of B.H. Neumann and J. Wiegold. 
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10 F. LEINEN [March 

EXAMPLE. ([7], pp. 59—60) Let U = (u\,u2,u3) be an elementary abelian group of 
order eight. Define a, (3 E Aut(£/) via 

a a a (3 B B 
U\—>U2—> «3 —» « i « 2

 an" U\ —» W2 ~ » W3 - ^ W1W3. 

77îerc r/i^ subgroups G — U(a) and H = U($) of the holomorph of U form an amalgam 
G U H\U of soluble groups. But a and (3 jointly generate Aui(U). Hence, in any 
supergroup W of G U H\U, the factor NW(U)/CW(U) must be isomorphic to the 
non-abelian simple group PSL(3,2) = GL(3,2) = Aut(U), and W cannot be soluble. 

It is obvious from the example that a sufficient condition for the embeddability of 
G U HIU into a soluble group must involve some control of the action of G and H on 
their abelian factors G//G/+i resp. //,-///,-+,. This was redundant in G. Higman's 
theorem, since the chief factors of finite p-groups are central. Our main result is 

THEOREM 2. Let $C be either the class of all soluble groups, or the class of all finite 
soluble u- groups (for some fixed set IT of primes). 

(A) An amalgam G U H\U of ̂ -groups is embeddable into an dC-group if and only 
if there exist series G = G0 = G\ = . . . ̂  Gn = 1 and H — H0 ^ //, ^ . . . ̂  Hn 

= 1 of normal subgroups in G resp. H satisfying the following three conditions: 
(a) The factors GJG.+ X and HjHi + { are abelian for 0 ^ / ^ n — 1. 
(b) U H d = U H Hi for 1 ^ / ^ n - 1. 
(c) For every / E { 1 , . . . , « — 1} there exists an abelian %-supergroup Z, of the 

amalgam 

Gi/Gi+X U HM+MU H G,)Gl+]/Gi+] = (U H Ht)Hl+]/Hi+] 

(where (U f! Gi)Gi+ \/Gi+\ and (U D Hj)Hi+]/Hi+] are identified via uGi+ 1 = uHi+ 1 
/or all u E U C\ Gj = U H //,), and //zere e.m£ homomorphisms 

a, : G/G, -> Aut(Z,) and p ; : / //// , -> Aut(Z,) 

(i) UG^.M^G^a,] = x*Gl+lforallxE Gh g E G; 
(ii) (y//,+ ,)[(/*//,•)£,•] = / / / ,+ , /or a// v E //„ fc E //; 
(iii) A, = (Ima/,ImP/) is an ̂ -subgroup o/Aut(Z,). 

(B) Let G U H\U be an amalgam of %-groups satisfying all the conditions of part 
(A), and assume in addition that 

(iv) (wG/)a/ = (uHi)$ifor all u E U and 1 ^ / ^ n - 1. 
Pw? /1 = 1, and define inductively li+] — 1 + max{/,, ra,} where ra, /s //ie solubility 

length of Ai. Then the amalgam is contained in an %-group of solubility length ^ ln. 

Notice that condition (b) and the choice n = m in Theorem 2 are not restrictive at 
all, since we allow Gt = Gi+] or Ht = Hi+]. Moreover, the formulae (i) and (ii) are 
well-defined, since the factors Gi/Gi+ , and Hj/Hi+ \ are abelian. 
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1987] AN AMALGAMATION THEOREM 11 

Observe also that part (B) yields the lowest possible bound /„ for the solubility length 
which a soluble supergroup of G U H \ U can have with respect to the solubility lengths 
of the groups Az and with respect to the number n. This should make it possible to use 
Theorem 2 for an investigation of the structure of existentially closed groups in classes 
of soluble groups with bounded solubility lengths. 

PROOF OF THEOREM 2. (A) Suppose firstly that G U H\ U is contained in an g£-group 
W. Denote by W{ the /-th term of the derived series of W. Put G,•. = G H Wt and //, = 
H fl Wi and Z, = WjWl+\. Define a, and (3, via 

(wWz+OKgG^a/] = wgWi+l for all w E Wh g E G, and 

(wW/+,)[(/?//,)p,] - w*W/ + ! for all w E W„ A E //. 

Then the conditions (a), (b) and (c) are satisfied, if we identify Gj/Gj+, (via xGi+ \ = 
xWi+ i for all x E G,) with the subgroup G;W/+ i/W/+ i of Z,-, and similarly //,///, + , with 
/W / + 1 /W, + 1 fkZr 

For the proof of the converse, suppose that (a), (b) and (c) hold for the amalgam 
G U H\ U. We will embed the amalgam into an $?-group by induction over n. In the 
case n = 1 the groups G and H are abelian, and the amalgam can be embedded 
canonically into the central product of G and H over U. 

Now let n ^ 2. For convenience write N,M, Z, A, a, (3 instead of Gn-uHn~x,Zn-u 

An-\, a„_i, P„-i (resp.). By our induction, we may assume that the amalgam 

G/N U H/M\UN/N = UM/M 

(where UN/N and UM/M are identified via «N = uM for all M E f/) is contained in 
an â?-group V. Denote by R the subgroup {(8, z)|z Œ Z,b E A} of the holomorph of 
Z (with multiplication (8i,zI)(ô2,z2) = (ôi82,z182"z2)). Furthermore, let W = RWrV 
be the unrestricted regular wreath product of R and V, i.e., let W = {(v,/)|v E V,/ : 
V-> R} with multiplication (v,,/ , )(v2,/2) = (v,v2,/ï2/2), where/p(v) =/i(v2v) 
for all v E V. Clearly, W is an âÇ-group by (iii). We will construct embeddings 
ai :G —» W and CT2:// —> W such that the diagram 

commutes, and such that Gaj fl Ha2 — U(j\. 
Define 6:G U / / - > V via 

g6 = gN E V for all g E G, and 

A6 = /zM E V for all h E H 
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(notice that uN = uM holds in V for all u G U). As in G. Higman [5], p. 303 we can 
choose a map <f>* : V —> U such that 

(w8-v)<|>*8 = w6-v(f)*e for all u G U, v G V. 

Now an embedding cr : £/ —» Wis given by 

WCT = (M0,/M) for all « G £/, where 
/„(v) = (1, [(uQv)<b*]-]'U-v<b*) G /? for all v G V. 

As in the proof of G. Higman [5], Lemma 2.1 it is possible to find a map 6f : V—» G 
with the property 

(ge-v)efe = ge-vefe for ail g G G, V G V, 

and such that o>i : V —» G given by 

v6f = vc()* • vco, for ail v G V 

is constant on each of the cosets (£/8)v, v G V. Then (i) ensures that a.U -^ W can 
be extended to an embedding ai :G —» W via 

go-j = (gQ,fg) for all g G G, where 

/ ,(v) = (f(gev)a)1-(vo)1)-
1]0a, 

([(^0v)ef]"1-g-vef)[(vco1) ,]ea) for all v G V. 

Similarly we can find a map 6* : V —» // with the property 

(/*e-v)8*e = /z9-ve2*e for all h G //, v G V, 

and such that <o2 : V -» / / given by 

v6* = v(j)*-v(o2 for all v G V 

is constant on each of the cosets (UQ)v, v G V. Then (ii) ensures that a: £/ —> W can 
be extended to an embedding v2:H —» W via 

/zcr2 = (hQ,fh) for all /i G //, where 

A(v) = ([(/z6v)co2-(vca2) ']6p, 
([(A8v)e2*]-1-A-ve2*)[(va)2r

,]8p) for all v G V. 

It remains to show that Go~i Pi //cr2
 = U(j\. 

Let g G G and A G / / with (#6,/,) = go-, = hv2 = (hQ,fh). Then g8 = hd G 
G/A H H/M = UN/N = UM/M. Thus, g G <7A and h G (/M. Now straightforward 
calculations yield that 

/,(v) = (1, [(gQv)4>*Vl'g-v4>*) and 

/A(V) = (1, [(hQv)$*]-l-h'\<b*) for all v G V. 

Hence, g = /z G G H // = U and ga, = /*cr2 G C/cr. 
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(B) In the case n = 1 the central product of the groups G and H over U is abelian 
and has solubility length ^ 1 = /,. 

Now, let n ^ 2. We go back into the proof of part (A) and assume by induction that 
V has solubility length ^ /„ -1 . We will show that the l„ _ ,-st term Q of the derived series 
of Q = (Gai , / /a2) is contained in the normal subgroup 

Wo = {(1,/)|/(V) C {(8,z)|8 G i , z e Z}} 

of W (where A denotes the /„_ r th term of the derived series of A). This will prove part 
(B), since W0 has solubility length ^ 1 + max{0,m,7_i — ln-\} - /„ — l„-\. 

For convenience, define a:G U H —> W via 

a TG = CTi and a | H — a2, 

as well as 7 : G U H —» A via 

y\G = Qa and 7 f// - 6(3. 

Because of (iv) the map 7 is well-defined. Put / = /„_,. For 1 ^ / ^ / let W/(xi,. . . , x2) 
be the word given recursively by 

W\(x\,x2) — [x\,x2~\ and 

wAx\ ,x2>) = [Wi-i(xi9. . . ,x2 '- '), Wi-iixy-i + i, • . • ,x2')] for / ^ 2. 

ThenQ is generated by the set S = {w,(q^ . . . ,q2i)\qjE: Q). Fix some wx(qx,, 
E S. Every g7 is a word v7(j;iCT,. . . ,yjv.(j) for some ^ E G U //. 

Now observe that every g €i G has the image 

go~ = (gQ,fg), where 

/g(v) = ([Uev)a)1-(vco1r1]7, zg(v)) 

= ([(^ev)())*]-17-[(^ev)ef0-vefe-1]a-v(()*7, z,(v» 
= ([(^Gv)(|)*]~17-g7'V(|>*7, z^(v)) for some zg(v) E Z. 

, #20 

Similarly, every / Î £ / / has the image 
ACT = (hQ,fh), where 

/A(V) = ([(A6v)(()*] V^7'v4>*7> z/,(v)) for some zh(v) E Z. 

Thus, for all x, y E G U H we obtain 

XCT-JCT = (xd'yd,fxy) where 

/r,y(v) = ([U0-.y8-v)(t)*rVx7-v7-v(l)*7, ^,.v(v)) for some zx,v(v) E Z. 

But then 

W / ( . . .,qj9. . . ) = W / ( . . . , v , - ( . . . , V ^ C T , . . . ) , . . . ) 

= ( w , ( . . . , ^ - ( . . . , ^ 8 , . . . ) , . . . ) , / * ) 
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where 

/*(v) = (l(w,(. . . , v;(. . . ,yjkQ,...),.. .)• v W T V 

•(w/(. . . ,v,(. . . , ^ 7 , . ..)»•• •),v<|>*7, z*(v)) 

= ([v<t>*rV(w/(- . . ,v7(. . . , 3^7 , . . . ) , • • .)*v<|>*7, z*(v)) 

G {(S,z)|ô G Â , z 6 Z } for all v EV. 

Hence w,(g,. . . , q2>) E W0, and we conclude that Q = (S) ^ W0. D 

After writing a first version of this paper the author learned that R.B.J.T. Allenby 
had used in his Ph.D. thesis the same technique as in the proof of Theorem 2(A) to show 
the following two results. 

THEOREM 3. ([ 1], Theorem 7.5) Let G U H\U be an amalgam of finite soluble groups 
in which the amalgamated subgroup U is normal in both constituents G and H. Then 
G U H\ U is embeddable into a finite soluble group if and only if G and H have series 
G = G0 = G] ̂  . . . ^ Gn = 1 and H = //0 = #i = • • • = #« == 1 of normal subgroups 
such that 

(a) Gj/Gi+ i and Hj/Hi + { are elementary abelian groups, 
(b) U H Gi= U H Hi = Uh and 
(c) G/G/+1 and H/Hi+l together generate on Ui/Ui+\ (via conjugation) a soluble 

group of automorphisms. 

THEOREM 4. ([1], Theorem 7.7) Let G U H\U be an amalgam of finite soluble 
groups. Let G and H have series of normal subgroups G = G0 = G\ = . . . = Gn = 1 
and H = H0 î  H} î  . . . i= //„ = \ in which the factors are elementary abelian, and 
suppose that U D G,- = U Pi Hi = U{ for all i, so that Gj/Gi+ , Pi //,•///,•+ i = Ui/Ui+ i 
(identifying UiGi+\/Gi+\ and UiHj+]/Hi+i canonically with Ui/Ui+]). Let Z, be the 
central product ofGjG^x andHjH^ \ over Uj/Ui+ ,. Then, if Gf denotes the group 
of automorphisms generated on Z; by extending to Z, the automorphisms induced on 
Gj/Gi+ i by G/Gi+ \ via conjugation (this can be done by choosing a basis for Z{ which 
extends that of GjGi +1 and forcing G, to act trivially on the basis elements from 
Zj\(Gj/Gi+ \)), and ifH ; is defined similarly, it follows that G U H\ U is embeddable 
into a finite soluble group, if G, and //, together generate a soluble group of auto
morphisms on Z, (i = 0, 1 , . . . , n — 1). 

Theorem 4 is an immediate consequence of Theorem 2(A). Since the chief factors 
of finite soluble groups are elementary abelian, the necessity of the conditions in 
Theorem 3 can be shown as in the proof of Theorem 2(A), while their sufficiency 
follows from an application of Theorem 2(A): Choose a basis for Z, which contains 
bases of £/,/£// + i and GjGi + x and H J Hi + i, and define G * and Hf as in Theorem 4; then 
(G?,H?) is a soluble group of automorphisms of Z,-. 

Results about amalgams of two soluble groups over a normal common subgroup, 
which are related to Theorem 3, can also be found in papers of R.J. Gregorac ([2], 
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Theorem 6.5), K. Hickin ([4], Theorem 5) and J. Wiegold ([9], Theorem 2.3). The 
latter two authors also give bounds for the solubility lengths of their completions. 

It remains open whether the sufficient conditions of Theorem 4 are necessary too, 
and in how far they are influenced by the choices of bases for the Z,. However, in 
applications, it should be easier to continue the automorphisms induced on G//G/+1 and 
Hj/Hi+ i by conjugation with elements from G/Gi+ i resp. H/Hi+ x to automorphisms of 
some elementary abelian supergroup of the amalgam Gi/Gi+X U ////#,- + \\Ui/Ui+] 

rather than to automorphisms of the central product of G//G/+i and //,-///,+ 1 over 
Ui/Ui+\. We will use this idea in the proof of 

THEOREM 5. Let G U H\U be an amalgam of two finite soluble it-groups G and H 
over a supersoluble group U. If there exist chief series G = G0 = Gx ^ . . . i^ Gn = 
1 and H = H0^H^...^Hn = 1 in G resp. H such that U 0 G, = U H Ht = £/,-

for 0 ^ / ^ n and such that U = C/0 = U\ ^ . . .= U„ = I is a chief series in U, then 
the amalgam can be embedded into a finite soluble u-group. 

PROOF. In order to apply Theorem 2(A) we only need to show that condition (c) is 
satisfied. Fix / G {1,. . . , n - 1}, and denote epimorphic images modulo Ui+], Gi+l 

or Hi+\ by bars. 
If Ui = Ui+\, then we choose Z, = G, x //, and define Ui'.G/Gi -» Aut(Z,) and 

P,://///,-» Aut(Z,) via 

Cry) [(gGi)ai] = x*-y for all x G G„ y G Hh g E G, and 

(xy) [(W//)p/] = x-y'h for ail x G G„ y G Hh h G H. 

Clearly a, and P, are homomorphisms satisfying the conditions (i) and (ii) of Theorem 
2(A), and At = Ima,; x Imp, is a finite soluble iT-group. 

Now let Ui j1 Ui+1. As a chief factor of a finite super soluble Tr-group, £/, is cyclic 
of prime order p G TT. Therefore, G, and Hx are elementary abelian /^-groups. Put 

G > W @ f e ) © . . . e f c ) and 

Hi = (y])®(y2)®..-®(ys) where 

xi = yx G Ûi. 

Let Zi be an elementary abelian /?-group with basis 5 = {zu\ \ ^ k ^ r, \ ^ I ^ s}. 
Identify 

Zjki = xk for 1 ^ k ^ r, and zi; = y{ for 1 ^ / ^ s. 

For g G G and /i G //, define endomorphisms (gG/)a, resp. (ft//,)P, of Z, on the basis 
# as follows: 

r r 

— If **o = 2 tu-**, t n e n (^v)[(^G ' )a ' ] = S %**/ for 1 ^ / ^ 5. 
° t = i k=\ 

s s 

— If y?„ = I £;?/, then (zw„)[(W/()p,] = 2 £/zH for 1 =i * =i r. 
/ = i 1=1 
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Then (gG,)a, acts on each of the subspaces 

< z w > 0 . . . © < z r / > deltas) 

of Z, as g acts via conjugation on (ic,) 0 . . . 0 (xr). Similarly, (/*//,-)P, acts on each 

of the subspaces 

(z , 1 )©. . .0<z, , ) (1 ^ t ^ r ) 

as /? acts on (y i) © . . . © (ys) via conjugation. Therefore it is obvious that (gG,)a, and 

(hHj)$j are automorphisms of Z, satisfying the conditions (i) and (ii) of Theorem 2(A), 

and that the maps a,-:G/G,-—» Aut(Z,) and P,://///,—» Aut(Z,) are homomorphisms. 

It remains to show that A, = (Im a,, Im p,) is a finite soluble Ti-group. We will prove 

that Aj is a central product of Ima , and Im p,. (Actually it can also be seen easily that 

Ima , H Imp , contains only power automorphisms of Z,.) 

Fix zkjo E B. Suppose that g E G and h EL H satisfy 

r _ s 

*lo = 2 TU-**
 a n d fi0

 = 2 iiyi-
k=\ 1=1 

Then 

( z M J [ (#G, )a , •(/*//,) p,] 

.v r 

= 2 S Ti^/Zit/ 
/ = 1 ) t = 1 

= (zM ( ))[(/z// /)P,-(gG ;)a /]. 

Hence I m a , and Imp , commute. D 

Let dC be a class of groups. An $f-group £/ is called an amalgamation basis in 3?, if 

every amalgam G U / /1U of two â?-groups G and / / over £/ can be embedded into an 

â?-group. Theorem 5 can be used to determine the supersoluble amalgamation bases in 

the class 3 ^ D ïf of all finite soluble 7T-groups. 

THEOREM 6. (a) IfUis an amalgamation basis in 3 \ D £P, then U has a unique chief 

series. 

(b) A supersoluble group U is an amalgamation basis in 3 ^ Pi £f if and only if U is 

either a cyclic p-group for some p E TT or the split extension of a cyclic p-group P by 

a cyclic q-group Q with CQ(P) = 1 for some p,q E TT with q\p — 1. 

PROOF, (a) Suppose that U does not have a unique chief series. Then there exist 

normal subgroups K, L and M in U such that K/M and L/M are different chief factors 

in U. Choose g E K\M and h E L\M. Because o f ^ D L = M w e have g E AT\L and 

h EL\K. 

From P. Hall [3], Lemma 7 there exists a finite nilpotent 7r-group F such that 

htEF". Since chief factors of 3 ^ Pi ^-groups are elementary abelian, the intersections 

£ T ^ J [(/*//,)p,] 
v * = i 7 

= (È £/ZMWG,)a,] 
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of (h) with the terms of a chief series in any 3^ Pi ^f-supergroup of (h) must form the 
unique chief series in (h). Therefore Theorem 5 ensures that the amalgam U U F\(h) 
is contained in an 3 ^ D SP-group V. Clearly, h E F" ^ V". 

Let CT: £/ —> G = V Wr U/L be a Krasner-Kaloujnine-embedding, i.e., for some fixed 
transversal T = {tuL\u E U} of L in U let 

xv = (xL,fx) for all x E £7 

where / j : C//L —» V is given by 

fx(uL) = tm[-x-tuL for all w E £/. 

Then ACT = (1 ,fh) where/,,(wL) = /*'<"- E V" for all M £ [ / , and gu = (gL,fg) does 
not lie in the base group {(\9f)\f:U/L —» V} of G. Therefore, a combination of 
P.M. Neumann [8], Lemma 5.1 and F. Leinen [6], Lemma 4.3.(b) yields that 
ha E (gvG)'. Identify U via a with Ua ^ G. Then G is an 3 \ Pi ^-supergroup of £/ 
with h E <gG)'. 

Similarly, we can construct an 3 \ D ^f-supergroup H of U with g E (hH)'. 
Since £/ is an amalgamation basis in 3v Pi if, the amalgam G U H\U must be 

contained in an 3^ Pi ^-group W. Let W = W0 > Wx > . . . > Wr = 1 be a series of 
normal subgroups in W with abelian factors. Choose /c E {0,. . . , r — 1} such that 
gEWk\Wk+l. Then (gG) ^ <gw> ^ W*. Since Wk/Wk +, is abelian, we obtain A E <gG)' 
^ W'k ^ Wk+l. But now g E <fc") ^ <ftw) ^ Wk+U in contradiction to the choice 
of it. 

(b) Let U = PQ as described in the theorem. Then, for any h E g \ l , the/?'-group 
(h) acts on the abelian /7-group P. SoP = [P,(h)] x CP((h)). But Pis a cyclic/7-group. 
ThusP - [P,(h)] orP = CP({h)). Since CQ(P) = 1, we know that P =f= CP«A)). Hence 
P = [P,(/z>] ^ (ft") for every h E g \ l . 

Therefore, if U = PQ as described in the theorem, or if U is a cyclic /7-group, then 
U has a unique chief series, and every elementary abelian factor of U is cyclic of 
prime order. Thus, the intersections of U with the terms of a chief series in any 
3 ^ Pi ^-supergroup of U must form the chief series in U. Hence Theorem 5 ensures 
that U is an amalgamation basis in 3^ H if. 

For the converse, let U be a supersoluble amalgamation basis in 3%, Pi iP. If U is a 
/7-group for some/7 E IT, then U/Q>(U) (where 4>(f/) denotes the Frattini subgroup of 
U) is elementary abelian. But U has a unique chief series by (a). Hence U/<i>(U) is 
cyclic, and this forces U to be cyclic. 

Now assume, that U is not a/7-group. Let/7 E TT be the maximal prime dividing \U\. 
As a finite supersoluble group, U has a normal Sylow-/7-subgroup P. So P/<P(P) is an 
elementary abelian factor of £/. Since U has a unique chief series, it is clear that 
CumP)(P/<$>(P)) = P/4>(P). In particular, thep'-group U/P acts faithfully via conju
gation on the abelian /7-group P/<&(P). Moreover, because chief factors of finite 
supersoluble groups are cyclic, P/<&(P) has a cyclic [//P-invariant subgroup. Now 
Maschke's theorem and the uniqueness of the chief series in U imply that P/<$>(P) is 
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cyclic. Thus, P is cyclic. But then U/P is isomorphic to a subgroup of Aut(P/<$>(P)), 
which is in turn cyclic of order p — 1. Again the uniqueness of the chief series in U 
yields that U/P is even a cyclic g-group for some q E IT dividing p — \. Finally, 
Cu(P)/<&(P) ^ CWW){P/^{P)) = P/<D(P), and so Cy(P) = P. • 

It would of course be interesting to find all the amalgamation bases in 3%, Pi f/. The 
first thing to settle might be the 

QUESTION. IS the alternating group A 4 an amalgamation basis in the class of all finite 
soluble {2,3} -groups ? 

Finally it should be noted that all theorems of this paper can be extended to amalgams 
of finitely many groups Gk, 1 ^ k ^ v, over a common subgroup U = Gk. f! C/ (for 
all it,/). 
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