Partial *-Automorphisms, Normalizers, and Submodules in Monotone Complete C^{*}-Algebras

Masamichi Hamana

Abstract

For monotone complete C^{*}-algebras $A \subset B$ with A contained in B as a monotone closed C^{*}-subalgebra, the relation $X=A s A$ gives a bijection between the set of all monotone closed linear subspaces X of B such that $A X+X A \subset X$ and $X X^{*}+X^{*} X \subset A$ and a set of certain partial isometries s in the "normalizer" of A in B, and similarly for the map $s \mapsto$ Ad s between the latter set and a set of certain "partial $*$-automorphisms" of A. We introduce natural inverse semigroup structures in the set of such X 's and the set of partial $*$-automorphisms of A, modulo a certain relation, so that the composition of these maps induces an inverse semigroup homomorphism between them. For a large enough B the homomorphism becomes surjective and all the partial $*$-automorphisms of A are realized via partial isometries in B. In particular, the inverse semigroup associated with a type I_{1} von Neumann factor, modulo the outer automorphism group, can be viewed as the fundamental group of the factor. We also consider the C^{*}-algebra version of these results.

1 Introduction

The notion of (Murray-von Neumann) equivalence of projections and that of Rieffel's (strong) Morita equivalence in the theory of operator algebras have a certain similarity, and the latter may be regarded as an immediate generalization of the former in the following sense. Two C^{*}-algebras A_{1} and A_{2} are strongly Morita equivalent if and only if there exist a C^{*}-algebra B containing A_{1} and A_{2} as C^{*}-subalgebras and a norm closed linear subspace X of B such that

$$
X X^{*} X \subset X, \quad K_{l}(X):=\overline{\operatorname{lin}} X X^{*}=A_{1}, \quad K_{r}(X):=\overline{\operatorname{lin}} X^{*} X=A_{2}
$$

where we write $X^{*}:=\left\{x^{*}: x \in X\right\}, X Y:=\{x y: x \in X, y \in Y\}$ for $X, Y \subset B$, and $\overline{\text { lin }}$ denotes the norm closed linear span. Similarly two von Neumann algebras A_{1} and A_{2} are Morita equivalent if and only if there exist a von Neumann algebra B containing A_{1} and A_{2} as von Neumann subalgebras and a σ-weakly closed linear subspace X of B such that

$$
X X^{*} X \subset X, \quad M_{l}(X):=\varlimsup^{\sigma} X X^{*}=A_{1}, \quad M_{r}(X):=\overline{\operatorname{lin}}^{\sigma} X^{*} X=A_{2}
$$

where $\overline{\operatorname{lin}}^{\sigma}$ denotes the σ-weakly closed linear span. We call a norm closed linear subspace X satisfying $X X^{*} X \subset X$ as above a triple subsystem of B following Youngson [35], and note that the condition $X X^{*} X \subset X$ implies necessarily $K_{l}(X)$ and $K_{r}(X)$

[^0](resp., $M_{l}(X)$ and $M_{r}(X)$) being C^{*}-subalgebras (resp., von Neumann subalgebras) of B. (Although these descriptions of (strong) Morita equivalences seem to be slightly nonstandard, the equivalences to the usual ones follow from the well-known linking C^{*}-algebra technique [3]. Some authors call our "triple system" a "ternary ring of operators" following Zettl [36].) If A_{1} and A_{2} are both 1-dimensional, then $A_{j}=$ $\mathbb{C} p_{j}, j=1,2$, and $X=\mathbb{C} x$ for some projections p_{j} and partial isometry x such that $p_{1}=x x^{*}$ and $p_{2}=x^{*} x$. This precisely means that the projections p_{1} and p_{2} are equivalent in the C^{*}-algebra B.

Moreover, one notes a rather formal resemblance of "projection" and " C^{*}-subalgebra" with that of "partial isometry" and "triple subsystem". That is, for a norm closed linear subspace X of some C^{*}-algebra B, the condition of X being a C^{*}-subalgebra is written as $X^{2} \subset X$ (X is closed under multiplication) and $X^{*}=X(X$ is self-adjoint), which resembles the defining property $p^{2}=p=p^{*}$ of a projection p. The condition of X being a triple subsystem, i.e., $X X^{*} X \subset X$ resembles the defining property $x x^{*} x=x$ of a partial isometry $x[1, \mathrm{p} .5]$.

The main results of this paper show that these resemblances are not superficial, but reflect a much more down-to-earth relationship in a certain situation. Let A and B be von Neumann algebras with A contained in B as a von Neumann subalgebra, and consider a σ-weakly closed linear subspace X of B such that

$$
\begin{equation*}
A X+X A \subset X, \quad X X^{*}+X^{*} X \subset A \tag{*}
\end{equation*}
$$

This condition for X means precisely that $\varlimsup^{\sigma} X X^{*}$ and $\varlimsup^{\sigma} X^{*} X$ are σ-weakly closed two-sided ideals (direct summands) of A and X is a σ-weakly closed triple subsystem of B which implements the Morita equivalence of them. Then such an X is written in the form $X=A s A$ for some partial isometry s in B. We characterize such partial isometries s as elements of the "normalizer" of A in B and relate them to "partial *-automorphisms" of A by sending s to $\operatorname{Ad} s: s^{*} s A s^{*} s \rightarrow s s^{*} A s s^{*}, x \mapsto(\operatorname{Ad} s)(x):=$ $s x s^{*}$. Here we mean by the normalizer of A in B, the set $N_{B}(A):=\left\{x \in B: x A x^{*} \subset\right.$ $\left.A, x^{*} A x \subset A\right\}$, and by a partial $*$-automorphism of A, we mean a $*$-isomorphism between two reduced subalgebras $e A e$ and $f A f$ for some projections e and f of A. We write PAut A for the set of all partial $*$-automorphisms of A.

These X arise naturally in relation to a coaction of a discrete group on a von Neumann algebra. Our original motivation of this work was the analysis of such a coaction, rather than Morita equivalence. The actual study of coactions will be done in a subsequent paper [14]. But we briefly mention it to see how the results in the present paper are useful in such a study. Let A be a von Neumann algebra and G a discrete group. Our objective is to describe the von Neumann algebra B with a coaction β of G with fixed-point subalgebra $A=B^{\beta}:=\{x \in B: \beta(x)=x \otimes 1\}$ as a sort of a "twisted crossed product" of A by G. Here a coaction of G on B, see [11,22], is a unital normal *-monomorphism β of B into the von Neumann tensor product $B \bar{\otimes} R(G)$ such that $\left(\beta \bar{\otimes} \operatorname{id}_{R(G)}\right) \circ \beta=\left(\operatorname{id}_{B} \bar{\otimes} \delta_{G}\right) \circ \beta, R(G)$ is the von Neumann algebra on $l^{2}(G)$ generated by the image of the right regular representation ρ of $G, \delta_{G}: R(G) \rightarrow R(G) \otimes R(G)$ is the normal $*$-monomorphism defined by $\delta_{G}(\rho(g))=\rho(g) \otimes \rho(g)$, and id's denote the identity maps. Then B is the σ-weak closure of its $*$-subalgebra $\sum_{g \in G} X_{g}$, where $X_{g}:=\{x \in B: \beta(x)=x \otimes \rho(g)\}$, which is a direct sum of the X_{g} 's and is G-graded
in the sense that for all $g_{1}, g_{2}, g \in G$,

$$
X_{g_{1}} X_{g_{2}} \subset X_{g_{1} g_{2}}, \quad X_{g}^{*}=X_{g^{-1}} ;
$$

and each X_{g} is a σ-weakly closed linear subspace of B satisfying $(*)$ above, since β is normal, $X_{e}=A$ (e is the unit element of G), $X_{g} X_{g}^{*}=X_{g} X_{g-1} \subset X_{e}$, etc. It follows from the foregoing that $X_{g}=A s_{g} A$ for some $s_{g} \in N_{B}(A)$ and $\theta_{g}:=\operatorname{Ad} s_{g} \in \operatorname{PAut} A$. Under a technical assumption on A and a special choice of the s_{g}, it turns out that B is recovered as a sort of the "twisted crossed product" $A \rtimes_{\theta, u} G$ from the pair (θ, u), a "twisted action" of G on A, where $\theta: G \rightarrow$ PAut $A, g \mapsto \theta_{g}, u: G \times G \rightarrow \mathrm{PI} A$, $\left(g_{1}, g_{2}\right) \mapsto u\left(g_{1}, g_{2}\right):=s_{g_{1}} s_{g_{2}} s_{g_{1} g_{2}}^{*}$, and PI A denotes the set of all partial isometries of A. This description is very natural, since the usual crossed product $B=A \rtimes_{\theta} G$ of A by G with respect to an action θ has a coaction of G with the decomposition as above given by $X_{g}=A s_{g}=s_{g} A$, where the s_{g} are unitaries in B implementing the $*$-automorphisms θ_{g}.

In what follows and in [14], we work with monotone complete C^{*}-algebras, rather than von Neumann algebras in terms of which the results were stated so far. The readers who are interested only in von Neumann algebras may regard monotone complete C^{*}-algebras in the text as von Neumann algebras (though such a restriction does not simplify the arguments that follow). Indeed, suppose a monotone complete C^{*}-algebra under the consideration below happens to be a von Neumann algebra. Then, by [17], its $*$-subalgebra is monotone closed (i.e., closed under the order-convergence, $[10,18])$ if and only if the $*$-subalgebra is σ-weakly closed, and the same is true for a linear subspace X such that $X X^{*} X \subset X$, a triple subsystem (see the remark before Theorem 6.6). Since all linear subspaces we consider here are triple subsystems, we may replace, in such a situation, "monotone closed", "generated as a monotone complete C^{*}-algebra", by " σ-weakly closed", "generated as a von Neumann algebra", respectively.

There now follows the definition of a monotone complete C^{*}-algebra and related comments. We call a C^{*}-algebra monotone complete if every bounded increasing net in the self-adjoint part has a supremum with respect to the partial order. Hence, it is an $A W^{*}$-algebra in the sense of Kaplansky (see $[1,19]$), and we can speak of its type as an $A W^{*}$-algebra. The difference between monotone completeness and $A W^{*}$-ness is not known, though concrete $A W^{*}$-algebras known so far are all monotone complete. Moreover, every von Neumann algebra is monotone complete, but not vice versa, and Tomiyama showed that every injective C^{*}-algebra is monotone complete [33, Theorem 7.1]. The examples of Dixmier [5] provide commutative non- W^{*} (not von Neumann), $A W^{*}$-algebras. Takenouchi and Dyer independently showed the existence of non- $W^{*}, A W^{*}$-factors ($A W^{*}$-algebras with trivial center). Moreover, monotone complete non- $W^{*}, A W^{*}$-factors outnumber von Neumann factors. Indeed, for an \aleph_{0}-dimensional Hilbert space H (the $*$-isomorphism classes of) von Neumann factors on H have cardinality $c=2^{\aleph_{0}}$. However, simple, monotone complete, non- W^{*}, $A W^{*}$-factors which are completely isometrically embedded in $B(H)$ have cardinality $2^{c}\left(c<2^{c}!\right)$. (See [13]; the completely isometric embeddings cannot be replaced by $*$-homomorphisms, since a $*$-homomorphism of a simple $A W^{*}$-factor into $B(H)$ is injective and by [34] an $A W^{*}$-factor which acts faithfully on H as a C^{*}-algebra is necessarily a von Neumann algebra.)

Now let A and B be monotone complete C^{*}-algebras with A contained in B as a monotone closed C^{*}-subalgebra. Then, as stated above, the set of monotone closed linear subspaces X of B satisfying $(*)$ corresponds to a subset of $N_{B}(A)$, the normalizer of A in B, and $N_{B}(A)$ corresponds to a subset of PAut A, the partial $*$-automorphisms of A. The composition of these correspondences, up to some equivalences, induces an inverse semigroup homomophism when we introduce inverse semigroup structures in these sets. Moreover, if we fix A and take B to be large enough, then the homomorphism becomes surjective.

The key observation for establishing these assertions is that X as above, when A is fixed and B varies, has an intrinsic characterization as a "self-dual invertible A-module" or the A-bimodule associated with a "regular" partial $*$-automorphism of A (see Theorem 6.6, Proposition 9.1).

If we consider C^{*}-algebras $A \subset B$ instead of monotone complete C^{*}-algebras as above, then a similar reasoning proceeds, to some extent, and the notion of an invertible A-module (see Definition 5.1) gives, in turn, an intrinsic characterization of a subspace $X \subset B$ as above in the C^{*}-situation (see the last two sentences of Section 9). Here the adjective "invertible" is attached to mean that an invertible A-module for a C^{*}-algebra A or a self-dual invertible A-module for a monotone complete C^{*}-algebra A is embedded as an element of a certain inverse semigroup associated with A, called the Picard semigroup of A (see Theorems 5.2, 6.5, 6.17).

The paper is arranged as follows. Sections 2-4 are devoted to purely algebraic preliminaries for later use. In Sections 3-4, we consider $A W^{*}$-algebras; however, the proofs there use the properties (WSB), (ELCP), together with the existence of central covers of projections, rather than the full strength of $A W^{*}$-ness. In Section 5, we define the Picard semigroup of a C^{*}-algebra A as a direct generalization of the Picard group of A in [3]. In Sections 6-8, we consider a fixed monotone complete C^{*}-algebra A. In Section 6, we study the Picard semigroup of A, i.e., the set of all the isomorphism classes of self-dual invertible A-modules or the set $\{$ PAut $A\}$ of certain equivalence classes in PAut A; the main purpose is to describe it in terms of the composition in PAut A (see Theorem 6.17). In Section 7, we investigate the reduction, by a direct sum decomposition of A, of the study of PAut A and hence that of the coaction of a discrete group on a monotone complete C^{*}-algebra with fixed-point subalgebra A. We point out here that if A is σ-finite, then the rather involved arguments in Sections 3, 4, and 6 can be much simplified. Indeed, see the last but one paragraph of Section 9; one can prove Corollary 6.19 and Proposition 7.4(i) cited there independently of other results in Sections 6-7. The reader may notice the resemblance between our inverse semigroup $\{$ PAut $A\}$ and the fundamental group of a von Neumann factor of type II_{1} (see [21]). In Section 8, we confirm it by defining, for any finite A, a homomorphism from $\{$ PAut $A\}$ into another inverse semigroup, whose image may be thought of as a generalization of the fundamental group. In Section 9, for any monotone complete A, we realize PAut A via $N_{B}(A)$ for large enough monotone complete B with $A \subset B$, and we also consider the C^{*}-version. Note that our main technical tool in the arguments of Sections 6-8 is the comparability theorem for projections in an $A W^{*}$-algebra (see Theorem 6.6) and that the reason we consider monotone complete C^{*}-algebras rather than $A W^{*}$-algebras there is the validity of the structure theorem of self-dual Hilbert modules over monotone complete
C^{*}-algebras (see Remark 6.1(ii)).
We refer to the literature related to the present work, with only very selective citation. The following result in Takesaki [31] may be viewed as giving a decomposition of a von Neumann algebra associated with a coaction of \mathbb{Z} as stated above: A von Neumann algebra B with a certain periodic action of \mathbb{R} (so essentially an action of the 1-dimensional torus \mathbb{T}) is a sort of a crossed product of the fixed-point subalgebra A by $\mathbb{Z}=\widehat{\mathbb{T}}$, i.e., B is generated by a \mathbb{Z}-graded $*$-subalgebra $\sum_{n \in \mathbb{Z}} X_{n}$, where $X_{n}=A u^{n}, n \geq 0, X_{n}=\left(u^{*}\right)^{-n} A, n<0$, and u is an isometry in $N_{B}(A)$. The Cuntz algebra [4] may be viewed as a C^{*}-version of B in Takesaki's situation in which A is a UHF C ${ }^{*}$-algebra (see also [24]). The notion of "normalizer" in operator algebras has appeared in many papers, and the origin perhaps dates back to Dixmier [6]. We cite only Power [26]; the term "partial isometry normalizer" (see Definition 4.1) is his. However, its relation to submodules and partial $*$-automorphisms shown here seems to have been overlooked. The interplay between inverse semigroups and C^{*}-algebras is treated in the monograph [24], a series of papers by Exel [7-9], and others (see the bibliography of [24]), which seem to be related to, but, not to overlap with the present paper (see Sections 5, 9). At this point we explain the difference in the terminology and the viewpoint between these authors and ours, since our main interest here is in the monotone complete C^{*}-case, and we will not touch on it in the text below. The term "partial automorphism" in [7] is used in the C^{*}-context to mean a triple (θ, I, J) of closed two-sided ideals I, J of A and a $*$-isomorphism $\theta: I \rightarrow J$ for a fixed C^{*}-algebra A, and our "partial $*$-automorphism" is used only in the monotone complete C^{*}-context. Hence the former may be viewed as our invertible A-module for the C^{*}-algebra A, which is essentially the same as an I - J-imprimitivity bimodule for some closed two-sided ideals I, J of A in the sense of Rieffel (see Proposition 5.5). ${ }^{1}$

2 Algebraic Invertible Modules Over a *-Algebra

In this section we consider certain A-bimodules over a $*$-algebra A. Here A satisfies the following properties (ND is short for "Non-Degenerate"):
\forall two-sided $*$-ideal I of $A: a \in I, a I=0 \Longrightarrow a=0$,
(ND^{\prime})
\forall two-sided $*$-ideal I of $A: a \in I, I a=0 \Longrightarrow a=0$;
and a $*$-algebra is an associative algebra A over the complex number field \mathbb{C}, together with a map $A \rightarrow A, x \mapsto x^{*}$, called an involution, such that $(\lambda x+\mu y)^{*}=\bar{\lambda} x^{*}+\bar{\mu} y^{*}$, $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for $\lambda, \mu \in \mathbb{C}$ and $x, y \in A$.

These properties are equivalent, since $a \in I$ and $I a=0$ imply $a^{*} \in I$ and $a^{*} I=0$. Note further that for every two-sided $*$-ideal I of A,

$$
\{a \in A: a I=0\}=\{a \in A: I a=0\}=: I^{\perp}
$$

that this is also a two-sided $*$-ideal of A, and that

$$
\begin{equation*}
I \cap I^{\perp}=\{0\} \tag{2.1}
\end{equation*}
$$

[^1]Indeed, it suffices to show that $I a=0$ implies $a I=0$. But, if $I a=0$, then $I a^{*} \subset I$, $\left(I a^{*}\right) I=I(I a)^{*}=0$, and so $a I=\left(I a^{*}\right)^{*}=0$ by (ND).

Note also that (ND) is true if the involution in A is proper [1, p. 10], i.e., if $x^{*} x=0$ implies $x=0$ for all $x \in A$.

An inner product A-module is a left A-module X equipped with a non-degenerate sesquilinear map $\langle\cdot, \cdot\rangle: X \times X \rightarrow A$, called the inner product of X, i.e., a map satisfying

$$
\begin{gather*}
\langle x, y\rangle=0, \forall y \in X \Longrightarrow x=0 \tag{2.2}\\
\left\langle a_{1} \cdot x_{1}+a_{2} \cdot x_{2}, y\right\rangle=a_{1}\left\langle x_{1}, y\right\rangle+a_{2}\left\langle x_{2}, y\right\rangle, \forall a_{j} \in A, \forall x_{j}, y \in X ; \tag{2.3}\\
\langle x, y\rangle^{*}=\langle y, x\rangle, \forall x, y \in X . \tag{2.4}
\end{gather*}
$$

A possibly degenerate sesquilinear map is called a pre-inner product.
For an inner product A-module X denote by $\operatorname{End}_{A}(X)$ the $*$-algebra of all module endomorphisms T of X with adjoint T^{*} (i.e., $\left\langle x T^{*}, y\right\rangle=\langle x, y T\rangle$ for all $x, y \in X$), and by $F(X)$, its two-sided $*$-ideal of all finite-rank operators, i.e., the linear span of rank1 operators $\langle\cdot, x\rangle \cdot y: z \mapsto\langle z, x\rangle \cdot y, x, y \in X$. Note here that we apply a module map on the right of elements, since we are treating left modules, that the uniqueness of the adjoint, if it exists, is assured by (2.2), and that $(\langle\cdot, x\rangle \cdot y)^{*}=\langle\cdot, y\rangle \cdot x$.

Definition 2.1 An algebraic invertible A-module is a pair (X, θ) of an inner product A-module X and a $*$-homomorphism $\theta: A \rightarrow \operatorname{End}_{A}(X)$ such that

$$
\begin{equation*}
F(X) \subset \theta\left((\operatorname{Ker} \theta)^{\perp}\right) \tag{2.5}
\end{equation*}
$$

Denote by $\mathrm{INV}^{\prime}(A)$ the set of all algebraic invertible A-modules. Here the adjective "algebraic" is attached to distinguish the setting here and the C^{*}-algebraic setting later.

We regard X as an A-bimodule by setting $a \cdot x \cdot b=a \cdot x \theta(b)$, and abbreviate (X, θ) to X when there is no fear of confusion. Since $\theta \mid(\operatorname{Ker} \theta)^{\perp}:(\operatorname{Ker} \theta)^{\perp} \rightarrow \theta\left((\operatorname{Ker} \theta)^{\perp}\right)$ is injective by (2.1), its inverse $\theta^{-1}: \theta\left((\operatorname{Ker} \theta)^{\perp}\right) \rightarrow(\operatorname{Ker} \theta)^{\perp}$ makes sense, and twosided $*$-ideals $F_{r}(X), F_{l}(X)$ of A are defined as follows:

$$
\begin{equation*}
F_{r}(X)=\theta^{-1}(F(X)), \quad F_{l}(X)=\langle X, X\rangle, \tag{2.6}
\end{equation*}
$$

where $\langle X, X\rangle$ is the linear span of $\{\langle x, y\rangle: x, y \in X\}$.
A monomorphism between algebraic invertible A-modules is an A-bimodule homomorphism which preserves the inner products, and the term isomorphism and automorphism have the obvious meaning. A monomorphism is injective by (2.2), and the monomorphic image of an algebraic invertible A-module is also an algebraic invertible A-module.

If (X, θ) is an algebraic invertible A-module and Y is a sub- A-bimodule of X, the restriction to which of the inner product of X is non-degenerate, then $\left(Y, \theta_{1}\right)$, with $\theta_{1}: A \rightarrow \operatorname{End}_{A}(Y)$ defined by $\theta_{1}(a):=Y \mid \theta(a)$ (the restriction of $\theta(a)$ to Y), is also an
algebraic invertible A-module, which we call a submodule of (X, θ) and write (Y, θ) or Y. Indeed, it suffices to show that $Y \mid\left\langle\cdot, y_{1}\right\rangle \cdot y_{2} \in \theta_{1}\left(\left(\operatorname{Ker} \theta_{1}\right)^{\perp}\right)$ for $y_{j} \in Y$. But $a:=\theta^{-1}\left(\left\langle\cdot, y_{1}\right\rangle \cdot y_{2}\right) \in(\operatorname{Ker} \theta)^{\perp}$, and if $b \in \operatorname{Ker} \theta_{1}$, i.e., $y \theta(b)=0$ for all $y \in Y$, then $x \theta(a b)=\left\langle x, y_{1}\right\rangle \cdot y_{2} \theta(b)=0$ for all $x \in X, \theta(a b)=0$, and by (2.1), $a b=0$. Hence $a \in\left(\operatorname{Ker} \theta_{1}\right)^{\perp}$ and $Y\left|\left\langle\cdot, y_{1}\right\rangle \cdot y_{2}=Y\right| \theta(a)=\theta_{1}(a)$.

We introduce two operations in the set $\operatorname{INV}^{\prime}(A)$. First, for $(X, \theta) \in \operatorname{INV}^{\prime}(A)$ define its inverse $(X, \theta)^{-1}$ as follows. Let $X^{*}:=\left\{x^{*}: x \in X\right\}$ be the linear space equipped with the scalar multiplication, A-bimodule operation and inner product given by

$$
\begin{gather*}
\lambda x^{*}=(\bar{\lambda} x)^{*}, \quad a \cdot x^{*} \cdot b=\left(b^{*} \cdot x \cdot a^{*}\right)^{*} \\
\left\langle x^{*}, y^{*}\right\rangle=\theta^{-1}(\langle\cdot, x\rangle \cdot y) \in(\operatorname{Ker} \theta)^{\perp} \subset A \tag{2.7}
\end{gather*}
$$

Indeed, it follows from (ND) for $I=F_{l}(X)$ and (2.2) that $\langle\cdot, \cdot\rangle$ in X^{*} is nondegenerate. To see (2.3) it suffices to show that

$$
\left\langle a \cdot x^{*}, y^{*}\right\rangle=a\left\langle x^{*}, y^{*}\right\rangle, \forall a \in A, \forall x, y \in X
$$

But
$\left\langle a \cdot x^{*}, y^{*}\right\rangle=\theta^{-1}\left(\left\langle\cdot, x \theta\left(a^{*}\right)\right\rangle \cdot y\right)=\theta^{-1}(\langle\cdot \theta(a), x\rangle \cdot y)=\theta^{-1}(\theta(a)(\langle\cdot, x\rangle \cdot y))$.
The substitution of $b a$, with $a \in A$ and $b \in(\operatorname{Ker} \theta)^{\perp}$, into a shows, in view of $b a \in(\operatorname{Ker} \theta)^{\perp}$ and so $\theta^{-1}(\theta(b a))=b a$, that

$$
b\left\langle a \cdot x^{*}, y^{*}\right\rangle=\left\langle b \cdot\left(a \cdot x^{*}\right), y^{*}\right\rangle=\left\langle(b a) \cdot x^{*}, y^{*}\right\rangle=b a\left\langle x^{*}, y^{*}\right\rangle
$$

and the desired equality follows from (ND^{\prime}). Then a $*$-homomorphism $\theta_{-1}: A \rightarrow$ $\operatorname{End}_{A}\left(X^{*}\right)$ is defined by $x^{*} \theta_{-1}(a)=x^{*} \cdot a=\left(a^{*} \cdot x\right)^{*}$, and it follows that

$$
\operatorname{Ker} \theta_{-1}=\left(F_{l}(X)\right)^{\perp},
$$

since $x^{*} \theta_{-1}(a)=0$, i.e., $a^{*} \cdot x=0$ for all $x \in X$ if and only if

$$
\langle y, x\rangle a=\left(a^{*}\langle x, y\rangle\right)^{*}=\left\langle y, a^{*} \cdot x\right\rangle=0, \forall x, y \in X
$$

and that

$$
F\left(X^{*}\right)=\theta_{-1}\left(F_{l}(X)\right) \subset \theta_{-1}\left(\left(F_{l}(X)\right)^{\perp \perp}\right)=\theta_{-1}\left(\left(\operatorname{Ker} \theta_{-1}\right)^{\perp}\right)
$$

since

$$
\begin{aligned}
z^{*} \theta_{-1}(\langle x, y\rangle) & =(\langle y, x\rangle \cdot z)^{*}=\left[y \theta\left(\theta^{-1}(\langle\cdot, x\rangle \cdot z)\right)\right]^{*} \\
& =\left(y \theta\left(\left\langle x^{*}, z^{*}\right\rangle\right)\right)^{*}=\left\langle z^{*}, x^{*}\right\rangle \cdot y^{*}
\end{aligned}
$$

and so

$$
\begin{equation*}
\theta_{-1}(\langle x, y\rangle)=\left\langle\cdot, x^{*}\right\rangle \cdot y^{*}, \forall x, y \in X . \tag{2.8}
\end{equation*}
$$

Thus $X^{-1}=(X, \theta)^{-1}:=\left(X^{*}, \theta_{-1}\right)$ is an invertible A-module, and we call the map $(X, \theta) \rightarrow(X, \theta)^{-1}, x \mapsto x^{*}$, the involution of (X, θ).

It follows from (2) and (2.8) that

$$
\begin{gather*}
F_{l}\left(X^{-1}\right)=\left\langle X^{*}, X^{*}\right\rangle=\theta^{-1}(F(X))=F_{r}(X), \tag{2.9}\\
F_{r}\left(X^{-1}\right)=\left(\theta_{-1}\right)^{-1}\left(F\left(X^{*}\right)\right)=F_{l}(X) . \tag{2.10}
\end{gather*}
$$

So $F_{l}\left(\left(X^{-1}\right)^{-1}\right)=F_{l}(X)$, and we have

$$
\begin{equation*}
\left((X, \theta)^{-1}\right)^{-1}=(X, \theta) . \tag{2.11}
\end{equation*}
$$

Indeed, for $x, y \in X$,

$$
\left\langle\left(x^{*}\right)^{*},\left(y^{*}\right)^{*}\right\rangle=\left(\theta_{-1}\right)^{-1}\left(\left\langle\cdot, x^{*}\right\rangle \cdot y^{*}\right)=: a \in F_{l}\left(\left(X^{-1}\right)^{-1}\right)=F_{l}(X)
$$

if and only if

$$
\begin{aligned}
\left(a^{*} \cdot z\right)^{*} & =z^{*} \theta_{-1}(a)=\left\langle z^{*}, x^{*}\right\rangle \cdot y^{*}=\theta^{-1}(\langle\cdot, z\rangle \cdot x) \cdot y^{*} \\
& =\left[y \theta\left(\theta^{-1}(\langle\cdot, x\rangle \cdot z)\right)\right]^{*}=(\langle y, x\rangle \cdot z)^{*}
\end{aligned}
$$

for all $z \in X$, and so $a=\langle x, y\rangle$ by (ND).

Remark 2.2

(i) If $\tau:(X, \theta) \rightarrow(Y, \psi)$ is a monomorphism between algebraic invertible A-modules, then a monomorphism $\tau^{*}:(X, \theta)^{-1} \rightarrow(Y, \psi)^{-1}$, called the adjoint of τ, is defined by $\tau^{*}\left(x^{*}\right)=\tau(x)^{*}$ for $x \in X$, so that $\left(\tau^{*}\right)^{*}=\tau$. Indeed, since the image of τ is an algebraic invertible A-module, we may assume τ to be surjective. Then for $x, y, z \in X$,

$$
\begin{aligned}
\tau(z) \psi\left(\left\langle x^{*}, y^{*}\right\rangle\right) & =\tau\left(z \theta\left(\left\langle x^{*}, y^{*}\right\rangle\right)\right)=\tau(\langle z, x\rangle \cdot y) \\
& =\langle z, x\rangle \cdot \tau(y)=\langle\tau(z), \tau(x)\rangle \cdot \tau(y)
\end{aligned}
$$

and so

$$
\begin{gathered}
\psi\left(\left\langle x^{*}, y^{*}\right\rangle\right)=\langle\cdot, \tau(x)\rangle \cdot \tau(y), \\
\left\langle x^{*}, y^{*}\right\rangle=\psi^{-1}(\langle\cdot, \tau(x)\rangle \cdot \tau(y))=\left\langle\tau(x)^{*}, \tau(y)^{*}\right\rangle=\left\langle\tau^{*}\left(x^{*}\right), \tau^{*}\left(y^{*}\right)\right\rangle,
\end{gathered}
$$

since $\left\langle x^{*}, y^{*}\right\rangle \in(\operatorname{Ker} \theta)^{\perp}=(\operatorname{Ker} \psi)^{\perp}$.
(ii) Let B be a $*$-algebra containing A as a $*$-subalgebra, regard it as an A-bimodule, and let $X \subset B$ be a sub- A-bimodule satisfying

$$
\begin{equation*}
X X^{*}+X^{*} X \subset A \tag{2.12}
\end{equation*}
$$

the A-valued pre-inner products of X and X^{*} defined by $\langle x, y\rangle=x y^{*}$ and $\left\langle x^{*}, y^{*}\right\rangle=x^{*} y, x, y \in X$, are non-degenerate,
where $X X^{*}$, denote the linear spans of $\left\{x y^{*}: x, y \in X\right\}$, Then, regarding the left multiplication by elements of A as a module operation and the right one as a *representation of A, we obtain algebraic invertible A-modules X and X^{*}, so that $X^{-1}=X^{*}$ and the involution of X is the restricton to X of the involution of B. Indeed, (2.12) and (2.13) show that X and X^{*} are inner product A-modules and that $*$-homomorphisms $\theta: A \rightarrow \operatorname{End}_{A}(X)$ and $\theta_{-1}: A \rightarrow \operatorname{End}_{A}\left(X^{*}\right)$ are defined by $x \theta(a)=x a$ and $x^{*} \theta_{-1}(a)=x^{*} a$. If $a \in \operatorname{Ker} \theta$, then $\left(x^{*} y\right) a=x^{*}(y a)=0$ for all $x, y \in X$. Hence $X^{*} X \subset(\operatorname{Ker} \theta)^{\perp}$. But

$$
\langle\cdot, x\rangle \cdot y=\theta\left(x^{*} y\right), \quad F(X)=\theta\left(X^{*} X\right) \subset \theta\left((\operatorname{Ker} \theta)^{\perp}\right)
$$

and, by symmetry, $F\left(X^{*}\right) \subset \theta_{-1}\left(\left(\operatorname{Ker} \theta_{-1}\right)^{\perp}\right)$.
(iii) In the situation (ii) above take $B=A$. Then each two-sided $*$-ideal of A is an algebraic invertible A-module, since the property (ND) means precisely that its pre-inner product, as above, is non-degenerate.

We define another operation \odot_{A}, called product, in $\operatorname{INV}^{\prime}(A)$ as follows. For $\left(X_{j}, \theta_{j}\right) \in \operatorname{INV}^{\prime}(A), j=1,2$, denote by $X_{1} \odot_{\theta_{1}} X_{2}$ the algebraic tensor product, $X_{1} \odot_{\mathbb{C}} X_{2}$, with the module operation and pre-inner product

$$
\begin{gather*}
a \cdot\left(x_{1} \otimes x_{2}\right)=\left(a \cdot x_{1}\right) \otimes x_{2}, \tag{2.14}\\
\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle=\left\langle x_{1} \theta_{1}\left(\left\langle x_{2}, y_{2}\right\rangle\right), y_{1}\right\rangle, \tag{2.15}
\end{gather*}
$$

divided by the submodule $\{u:\langle u, v\rangle=0, \forall v\}$. For simplicity we use the same notation $x_{1} \otimes x_{2}$ and $\langle\cdot, \cdot\rangle$ to denote also the image in $X_{1} \odot_{\theta_{1}} X_{2}$ of $x_{1} \otimes x_{2} \in X_{1} \odot_{\mathbb{C}} X_{2}$ and the inner product in $X_{1} \odot_{\theta_{1}} X_{2}$ induced from the pre-inner product, so that

$$
\begin{equation*}
x_{1} \otimes a \cdot x_{2}=x_{1} \theta_{1}(a) \otimes x_{2}=x_{1} \cdot a \otimes x_{2} \text { in } X_{1} \odot_{\theta_{1}} X_{2} \tag{2.16}
\end{equation*}
$$

Then $\left(X_{1} \odot_{\theta_{1}} X_{2}, \tilde{\theta_{2}}\right)$ with $\tilde{\theta_{2}}: A \rightarrow \operatorname{End}_{A}\left(X \odot_{\theta_{1}} X_{2}\right)$ defined by

$$
\left(x_{1} \otimes x_{2}\right) \tilde{\theta}_{2}(a)=x_{1} \otimes\left(x_{2} \theta_{2}(a)\right)
$$

is an algebraic invertible A-module, written $\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)$ or $X_{1} \odot_{A} X_{2}$ and called the product of $\left(X_{j}, \theta_{j}\right), j=1,2$. Indeed, for $x_{j}, y_{j}, z_{j} \in X_{j}$ it follows from (2.14)-(2.16) that

$$
\begin{aligned}
\left\langle z_{1} \otimes z_{2}, x_{2} \otimes x_{2}\right\rangle \cdot y_{1} & =\left\langle z_{1} \theta_{1}\left(\left\langle z_{2}, x_{2}\right\rangle\right), x_{1}\right\rangle \cdot y_{1} \\
& =z_{1} \theta_{1}\left[\left\langle z_{2}, x_{2}\right\rangle \theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right]
\end{aligned}
$$

and

$$
\begin{align*}
\left\langle z_{1} \otimes z_{2}, x_{1} \otimes\right. & \left.x_{2}\right\rangle \cdot\left(y_{1} \otimes y_{2}\right) \tag{2.17}\\
& =z_{1} \theta_{1}\left[\left\langle z_{2}, x_{2}\right\rangle \theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right] \otimes y_{2} \\
& =z_{1} \otimes\left[\left\langle z_{2}, x_{2}\right\rangle \theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right] \cdot y_{2} \\
& =z_{1} \otimes z_{2} \theta_{2}\left(\theta_{2}^{-1}\left[\left\langle\cdot, x_{2}\right\rangle \cdot\left(\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right) \cdot y_{2}\right]\right) \\
& =\left(z_{1} \otimes z_{2}\right) \widetilde{\theta}_{2}\left(\theta_{2}^{-1}\left[\left\langle\cdot, x_{2}\right\rangle \cdot\left(\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right) \cdot y_{2}\right]\right)
\end{align*}
$$

Hence it suffices to show that

$$
\begin{equation*}
a:=\theta_{2}^{-1}\left[\left\langle\cdot, x_{2}\right\rangle \cdot\left(\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)\right) \cdot y_{2}\right] \in\left(\operatorname{Ker} \widetilde{\theta_{2}}\right)^{\perp} \tag{2.18}
\end{equation*}
$$

We have $a \in \theta_{2}^{-1}\left(F\left(X_{2}\right)\right) \subset\left(\operatorname{Ker} \theta_{2}\right)^{\perp}$, and $b \in \operatorname{Ker} \widetilde{\theta}_{2}$ if and only if

$$
0=\left\langle\left(z_{1} \otimes z_{2}\right) \widetilde{\theta_{2}}(b), w_{1} \otimes w_{2}\right\rangle=\left\langle z_{1} \theta_{1}\left(\left\langle z_{2} \theta_{2}(b), w_{2}\right\rangle\right), w_{1}\right\rangle
$$

for all z_{j}, w_{j}, i.e., $\left\langle z_{2} \theta_{2}(b), w_{2}\right\rangle \in \operatorname{Ker} \theta_{1}$ for all z_{2}, w_{2}. Set $c:=\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right) \in$ $\left(\operatorname{Ker} \theta_{1}\right)^{\perp}$ and so $a=\theta_{2}^{-1}\left[\left\langle\cdot, x_{2}\right\rangle \cdot\left(c \cdot y_{2}\right)\right]$. Then $c \cdot y_{2} \theta_{2}(b)=0$, since $\left\langle c \cdot y_{2} \theta_{2}(b), z_{2}\right\rangle=c\left\langle y_{2} \theta_{2}(b), z_{2}\right\rangle=0$ for all z_{2}, and so

$$
\theta_{2}(a b)=\left\langle\cdot, x_{2}\right\rangle \cdot\left(c \cdot y_{2} \theta_{2}(b)\right)=0, \quad a b \in \operatorname{Ker} \theta_{2}
$$

But, since $a \in\left(\operatorname{Ker} \theta_{2}\right)^{\perp}$ and so $a b \in\left(\operatorname{Ker} \theta_{2}\right)^{\perp}$, it follows from (2.1) that $a b=0$. Thus $a \in\left(\operatorname{Ker} \widetilde{\theta_{2}}\right)^{\perp}$.

In what follows, we regard each two-sided *-ideal of A as an algebraic invertible A-module as in Remark 2.2(iii).

Proposition 2.3 Let $(X, \theta),\left(X_{j}, \theta_{j}\right)$ be in $\operatorname{INV}^{\prime}(A)$.
(i) The maps $x \otimes y^{*} \mapsto\langle x, y\rangle$ and $x^{*} \otimes y \mapsto \theta^{-1}(\langle\cdot, x\rangle \cdot y)$ induce isomorphisms

$$
(X, \theta) \odot_{A}(X, \theta)^{-1} \cong F_{l}(X), \quad(X, \theta)^{-1} \odot_{A}(X, \theta) \cong F_{r}(X)
$$

and for two-sided *-ideals I, J of A we have

$$
I \odot_{A}(X, \theta) \cong(I \cdot X, \theta), \quad(X, \theta) \odot_{A} J \cong(X \theta(J), \theta), \quad I \odot_{A} J \cong I J
$$

where $I \cdot X$, etc., denote the linear span of $\{a \cdot x: a \in I, x \in X\}$, etc.
(ii) The map $\left(x_{1} \otimes x_{2}\right)^{*} \mapsto x_{2}^{*} \otimes x_{1}^{*}, x_{j} \in X_{j}$, induces an isomorphism

$$
\left(\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)\right)^{-1} \cong\left(X_{2}, \theta_{2}\right)^{-1} \odot_{A}\left(X_{1}, \theta_{1}\right)^{-1}
$$

(iii) We have

$$
\begin{gathered}
F_{r}\left(\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)\right) \supset F_{r}\left(F_{r}\left(X_{1}, \theta_{1}\right) \cdot X_{2}, \theta_{2}\right) \\
F_{l}\left(\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)\right) \supset F_{l}\left(X_{1} \theta_{1}\left(F_{l}\left(X_{2}, \theta_{2}\right)\right), \theta_{1}\right)
\end{gathered}
$$

and if further $F_{r}\left(X_{1}, \theta_{1}\right)=F_{r}\left(X_{1}, \theta_{1}\right)^{2}$ and $F_{l}\left(X_{2}, \theta_{2}\right)=F_{l}\left(X_{2}, \theta_{2}\right)^{2}$, then these inclusions become equalities.
(iv) If $\tau_{j}:\left(X_{j}, \theta_{j}\right) \rightarrow\left(Y_{j}, \psi_{j}\right), j=1,2$, are monomorphisms, then a monomorphism $\tau_{1} \otimes \tau_{2}:\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right) \rightarrow\left(Y_{1}, \psi_{1}\right) \odot_{A}\left(Y_{2}, \psi_{2}\right)$ is defined by

$$
\left(\tau_{1} \otimes \tau_{2}\right)\left(x_{1} \otimes x_{2}\right)=y_{1} \otimes y_{2}
$$

(v) The operation \odot_{A} is associative in the sense that if $\tau_{j}:\left(X_{j}, \theta_{j}\right) \rightarrow\left(Y_{j}, \psi_{j}\right), j=$ $1,2,3$, are isomorphisms, then we have a natural isomorphism

$$
\begin{aligned}
\left(\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)\right) \odot_{A}\left(X_{3}, \theta_{3}\right) & =\left(\left(X_{1} \odot_{\theta_{1}} X_{2}\right) \odot_{\tilde{\theta}_{2}} X_{3}, \widetilde{\theta_{3}}\right) \\
& \left.\cong\left(X_{1} \odot_{\theta_{1}}\left(X_{2} \odot_{\theta_{2}} X_{3}\right), \widetilde{\left(\widetilde{\theta_{3}}\right.}\right)\right) \\
& =\left(X_{1}, \theta_{1}\right) \odot_{A}\left(\left(X_{2}, \theta_{2}\right) \odot_{A}\left(X_{3}, \theta_{3}\right)\right)
\end{aligned}
$$

and a similar one for $\left(Y_{j}, \psi_{j}\right)$, and with these identifications we have

$$
\left(\tau_{1} \otimes \tau_{2}\right) \otimes \tau_{3}=\tau_{1} \otimes\left(\tau_{2} \otimes \tau_{3}\right)
$$

Proof Most of the proofs follow from direct computation, and we give only some of them.
(i) We have

$$
(X, \theta) \odot_{A}(X, \theta)^{-1}=(X, \theta) \odot_{A}\left(X^{*}, \theta_{-1}\right)=\left(X \odot_{\theta} X^{*}, \widetilde{\theta_{-1}}\right)
$$

Then the map $\tau: X \odot_{\theta} X^{*} \rightarrow F_{l}(X)$ defined as above is an isomorphism, since for $x, x_{j}, y, y_{j} \in X$ and $a, b \in A$,

$$
\begin{aligned}
\left\langle x_{1} \otimes y_{1}^{*}, x_{2} \otimes y_{2}^{*}\right\rangle & =\left\langle x_{1} \theta\left(\left\langle y_{1}^{*}, y_{2}^{*}\right\rangle\right), x_{2}\right\rangle \\
& =\left\langle x_{1}\left(\left\langle\cdot, y_{1}\right\rangle \cdot y_{2}\right), x_{2}\right\rangle \\
& =\left\langle x_{1}, y_{1}\right\rangle\left\langle x_{2}, y_{2}\right\rangle^{*} \\
& =\left\langle\tau\left(x_{1} \otimes y_{1}\right), \tau\left(x_{2} \otimes y_{2}\right)\right\rangle \\
\tau\left(a \cdot\left(x \otimes y^{*}\right) \cdot b\right) & =\tau\left(a \cdot x \otimes\left(b^{*} \cdot y\right)^{*}\right)=\left\langle a \cdot x, b^{*} \cdot y\right\rangle \\
& =a\langle x, y\rangle b=a \tau\left(x \otimes y^{*}\right) b .
\end{aligned}
$$

Note that $I \cdot X$ is a submodule of X and similarly for $X \theta(J)=\left(J \cdot X^{*}\right)^{*}$, since the pre-inner product in $I \cdot X$, i.e., the restriction to $I \cdot X$ of that in X, is non-degenerate
by (ND). In $I \odot_{A} X$ we have for $x, x_{j} \in I, y, y_{j} \in X$ and $a, b \in A$,

$$
\begin{aligned}
\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle & =\left\langle x_{1} \cdot\left\langle y_{1}, y_{2}\right\rangle, x_{2}\right\rangle=x_{1}\left\langle y_{1}, y_{2}\right\rangle x_{2}^{*} \\
& =\left\langle x_{1} \cdot y_{1}, x_{2} \cdot y_{2}\right\rangle \\
a \cdot(x \otimes y) \cdot b & =a x \otimes y \theta(b) .
\end{aligned}
$$

Thus the map $x \otimes y \mapsto x \cdot y, x \in I, y \in X$, defines an isomorphism $I \odot_{A}(X, \theta) \cong$ $(I \cdot X, \theta)$.
(iii) By (2.17) and (2.18) we have for $x_{j}, y_{j} \in X_{j},\left\langle\cdot, x_{1} \otimes x_{2}\right\rangle \cdot\left(y_{1} \otimes y_{2}\right)=\widetilde{\theta_{2}}(a)$,

$$
\begin{equation*}
a:=\theta_{2}^{-1}\left(\left\langle\cdot, x_{2}\right\rangle \cdot\left[\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right) \cdot y_{2}\right]\right) \in\left(\operatorname{Ker} \tilde{\theta_{2}}\right)^{\perp} \tag{2.19}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\widetilde{\theta_{2}}\right)^{-1}\left(\left\langle\cdot, x_{1} \otimes x_{2}\right\rangle \cdot\left(y_{1} \otimes y_{2}\right)\right)=\theta_{2}^{-1}\left(\left\langle\cdot, x_{2}\right\rangle \cdot\left[\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right) \cdot y_{2}\right]\right) \tag{2.20}
\end{equation*}
$$

The right-hand side of the first inclusion in (iii) is a linear combination of elements of the form (2.19), where $x_{2} \in F_{r}\left(X_{1}\right) \cdot X_{2}, x_{1}, y_{1} \in X_{1}$, and $y_{2} \in X_{2}$, and so (2.20) shows the inclusion. Suppose $F_{r}\left(X_{1}\right)=F_{r}\left(X_{1}\right)^{2}$. Then $\theta_{1}^{-1}\left(\left\langle\cdot, x_{1}\right\rangle \cdot y_{1}\right)$ in (2.19) is a finite sum of the products $b c, b, c \in F_{r}\left(X_{1}\right)$, and since $\left\langle\cdot, x_{2}\right\rangle \cdot\left((b c) \cdot y_{2}\right)=\left\langle\cdot, b^{*} \cdot x_{2}\right\rangle \cdot\left(c \cdot y_{2}\right)$, the inclusion becomes equality. Similarly for the second inclusion.

Remark 2.4 Let $A \subset B$ be as in Remark 2.2(ii) and take sub- A-bimodules X_{j} of $B, j=1,2$, satisfying (2.12) and (2.13), so that $X_{j} \in \operatorname{INV}^{\prime}(A)$. Then $X_{1} X_{2}$ is also a sub- A-bimodule of B and satisfies (2.12). If, further, it satisfies (2.13) and so $X_{1} X_{2} \in \operatorname{INV}^{\prime}(A)$, then, as follows immediately from the definition, the map $x_{1} \otimes x_{2} \mapsto x_{1} x_{2}, x_{j} \in X_{j}$, induces an isomorphism $X_{1} \odot_{A} X_{2} \cong X_{1} X_{2}$ as algebraic invertible A-modules.

Proposition 2.5 If $\left(X_{j}, \theta_{j}\right) \in \operatorname{INV}^{\prime}(A), j=1,2$, satisfy the following conditions

$$
\begin{gathered}
F_{r}\left(X_{j}\right) F_{r}\left(X_{k}\right)=\{0\}=F_{l}\left(X_{j}\right) F_{l}\left(X_{k}\right), \quad j \neq k, \\
\left(\operatorname{Ker} \theta_{j}\right)^{\perp \perp}=\operatorname{Ker} \theta_{j}, \quad j=1,2,
\end{gathered}
$$

then a direct sum $\left(X_{1} \oplus X_{2}, \theta\right)=\left(X_{1}, \theta_{1}\right) \oplus\left(X_{2}, \theta_{2}\right)$ in $\mathrm{INV}^{\prime}(A)$ is defined by

$$
\begin{gathered}
a \cdot\left(x_{1} \oplus x_{2}\right) \cdot b=a \cdot\left(x_{1} \oplus x_{2}\right) \cdot b=a \cdot x_{1} \theta_{1}(b) \oplus a \cdot x_{2} \theta_{2}(b) \\
\left\langle x_{1} \oplus x_{2}, y_{1} \oplus y_{2}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle
\end{gathered}
$$

Proof It suffices to check the condition (2.5) for $\left(X_{1} \oplus X_{2}, \theta\right)$. Since $F_{l}\left(X_{j}\right) F_{l}\left(X_{k}\right)=$ $\{0\}, j \neq k$,

$$
\begin{aligned}
\left\langle z_{1} \oplus z_{2}, x_{1} \oplus x_{2}\right\rangle \cdot\left(y_{1} \oplus y_{2}\right)= & \left\langle z_{1}, x_{1}\right\rangle \cdot y_{1} \oplus\left\langle z_{2}, x_{2}\right\rangle \cdot y_{2} \\
= & \left\langle z_{1} \oplus z_{2}, x_{1} \oplus 0\right\rangle \cdot\left(y_{1} \oplus 0\right) \\
& +\left\langle z_{1} \oplus z_{2}, 0 \oplus x_{2}\right\rangle \cdot\left(0 \oplus y_{2}\right)
\end{aligned}
$$

and so

$$
F\left(X_{1} \oplus X_{2}\right)=F\left(X_{1} \oplus 0\right)+F\left(0 \oplus X_{2}\right)
$$

For any $(Y, \psi) \in \operatorname{INV}^{\prime}(A)$ we have $F_{r}(Y)^{\perp \perp}=\left[\psi^{-1}(F(Y))\right]^{\perp \perp}=(\operatorname{Ker} \psi)^{\perp}$. Indeed, $\left[\psi^{-1}(F(Y))\right]^{\perp \perp} \subset(\operatorname{Ker} \psi)^{\perp}$ by (2.5), and

$$
\begin{aligned}
{\left[\psi^{-1}(F(Y))\right]^{\perp}(\operatorname{Ker} \psi)^{\perp}+(\operatorname{Ker} \psi)^{\perp}\left[\psi^{-1}(\right.} & F(Y))]^{\perp} \\
& \subset\left[\psi^{-1}(F(Y))\right]^{\perp} \cap(\operatorname{Ker} \psi)^{\perp}=\{0\}
\end{aligned}
$$

since $a \in\left[\psi^{-1}(F(Y))\right]^{\perp} \cap(\operatorname{Ker} \psi)^{\perp}$ implies $\psi(a) T=0$ for all $T \in F(Y)$,

$$
0=\langle x(\psi(a)(\langle\cdot, y\rangle \cdot z\rangle)), w\rangle=\langle x \psi(a), y\rangle\langle z, w\rangle
$$

for all $x, y, z, w \in Y$ and $a=0$ by (2.1) and (2.2). Thus, $F_{r}\left(X_{j}\right) F_{r}\left(X_{k}\right)=\{0\}, j \neq k$, implies that $\left(\operatorname{Ker} \theta_{j}\right)^{\perp}\left(\operatorname{Ker} \theta_{k}\right)^{\perp}=F_{r}\left(X_{j}\right)^{\perp \perp} F_{r}\left(X_{k}\right)^{\perp \perp}=\{0\}$ and that

$$
\left(\operatorname{Ker} \theta_{j}\right)^{\perp} \subset\left(\operatorname{Ker} \theta_{k}\right)^{\perp \perp}=\operatorname{Ker} \theta_{k}, \quad j \neq k
$$

by assumption. Hence

$$
\theta(a)=\theta_{1}(a) \oplus 0, \quad a \in\left(\operatorname{Ker} \theta_{1}\right)^{\perp}, \quad \theta(a)=0 \oplus \theta_{2}(a), \quad a \in\left(\operatorname{Ker} \theta_{2}\right)^{\perp}
$$

and since $\operatorname{Ker} \theta=\left(\operatorname{Ker} \theta_{1}\right) \cap\left(\operatorname{Ker} \theta_{2}\right)$ and so $\left(\operatorname{Ker} \theta_{1}\right)^{\perp}+\left(\operatorname{Ker} \theta_{2}\right)^{\perp} \subset(\operatorname{Ker} \theta)^{\perp}$, it follows that

$$
F\left(X_{1} \oplus X_{2}\right)=F\left(X_{1} \oplus 0\right)+F\left(0 \oplus X_{2}\right) \subset \theta\left(\left(\operatorname{Ker} \theta_{1}\right)^{\perp}+\left(\operatorname{Ker} \theta_{2}\right)^{\perp}\right) \subset \theta\left((\operatorname{Ker} \theta)^{\perp}\right)
$$

Remark 2.6 If A and $X \in \operatorname{INV}^{\prime}(A)$ are unital (i.e., A has a unit 1 and $1 \cdot x=x=x \cdot 1$ for all $x \in X$) and if h, k are central projections of A, then $X \cdot h, k \cdot X \in \operatorname{INV}^{\prime}(A)$ and $X \cong X \cdot h \oplus X \cdot(1-h) \cong k \cdot X \oplus(1-k) \cdot X$. (Note that the restriction to $X \cdot h$ of the inner product in X is non-degenerate, since $\langle x \cdot h, y \cdot h\rangle=\langle x \cdot h, y\rangle$ for $x, y \in X$.) Hence, for unital $X, Y \in \operatorname{INV}^{\prime}(A), X \cong Y$ if and only if $X \cdot h \cong Y \cdot h, X \cdot(1-h) \cong Y \cdot(1-h)$ or $k \cdot X \cong k \cdot Y,(1-k) \cdot X \cong(1-k) \cdot Y$.

3 Partial *-Automorphisms

Throughout this section A denotes a fixed $A W^{*}$-algebra. For the rest of the paper, the set of all projections (resp., partial isometries, central elements) of A is written as $\operatorname{Proj} A$ (resp., PI $A, Z(A)$), so that $\operatorname{Proj} Z(A)$ denotes the set of central projections of A. For $e \in \operatorname{Proj} A$ denote by $C(e)$ the central cover of e, i.e., the smallest central projection majorizing e.

Definition 3.1 A reduced subalgebra of A is a $*$-subalgebra of the form $e A e$ for some $e \in \operatorname{Proj} A$. A partial $*$-automorphism of A is a $*$-isomorphism θ between reduced subalgebras $e A e$ and $f A f$. Write then $r(\theta):=e, l(\theta):=f$, so θ is a $*$-isomorphism $r(\theta) \operatorname{Ar}(\theta) \rightarrow l(\theta) A l(\theta)$, and call these the right projection and the left projection of θ, respectively. (The adjectives right and left come from the fact that when θ is realized by some partial isometry s of an $A W^{*}$-algebra containing A as an $A W^{*}$-subalgebra, see Proposition 4.2(iii), the right and left projections of θ are precisely the right and left projections of s.) Denote by PAut A the set of all partial $*$-automorphisms of A. Call $\theta_{1}, \theta_{2} \in$ PAut A orthogonal if $C\left(r\left(\theta_{1}\right)\right) C\left(r\left(\theta_{2}\right)\right)=0=C\left(l\left(\theta_{1}\right)\right) C\left(l\left(\theta_{2}\right)\right)$ and so $\left(r\left(\theta_{1}\right)+r\left(\theta_{2}\right)\right) A\left(r\left(\theta_{1}\right)+r\left(\theta_{2}\right)\right)=r\left(\theta_{1}\right) \operatorname{Ar}\left(\theta_{1}\right)+r\left(\theta_{2}\right) \operatorname{Ar}\left(\theta_{2}\right)$ and similarly for $l\left(\theta_{j}\right)$; define their direct sum, $\theta_{1} \oplus \theta_{2}$, in PAut A by

$$
\begin{gathered}
r\left(\theta_{1} \oplus \theta_{2}\right)=r\left(\theta_{1}\right)+r\left(\theta_{2}\right), \quad l\left(\theta_{1} \oplus \theta_{2}\right)=l\left(\theta_{1}\right)+l\left(\theta_{2}\right) \\
\left(\theta_{1} \oplus \theta_{2}\right)\left(a_{1}+a_{2}\right)=\theta_{1}\left(a_{1}\right)+\theta_{2}\left(a_{2}\right), \quad a_{j} \in r\left(\theta_{j}\right) \operatorname{Ar}\left(\theta_{j}\right)
\end{gathered}
$$

and so call θ_{j} 's direct summands of $\theta_{1} \oplus \theta_{2}$.
For each $e \in \operatorname{Proj} A$ we have [1, p. 37, Proposition 4]

$$
\operatorname{Proj} Z(e A e)=e \operatorname{Proj} Z(A)
$$

and so the map $\operatorname{Proj} C(e) Z(A) \rightarrow e \operatorname{Proj} Z(A)=\operatorname{Proj} Z(e A e), h \mapsto h e$, is an isomorphism as lattices with inverse $f \mapsto C(f)$. Hence for $\theta \in$ PAut A an isomorphism $\bar{\theta}: \operatorname{Proj} C(r(\theta)) Z(A) \rightarrow \operatorname{Proj} C(l(\theta)) Z(A)$ as lattices is defined by

$$
\begin{equation*}
\bar{\theta}(h)=C(\theta(h r(\theta))), \quad h \in \operatorname{ProjC}(r(\theta)) Z(A), \tag{3.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\theta(h r(\theta))=\bar{\theta}(h) l(\theta), \quad h \in \operatorname{Proj} C(r(\theta)) Z(A) \tag{3.2}
\end{equation*}
$$

Indeed, $\bar{\theta}$ is a composition of the restriction

$$
\theta \mid \operatorname{Proj} Z(r(\theta) A r(\theta)): \operatorname{Proj} Z(r(\theta) A r(\theta)) \rightarrow \operatorname{Proj} Z(l(\theta) A l(\theta))
$$

and the isomorphisms $\operatorname{Proj} C(r(\theta)) Z(A) \rightarrow \operatorname{Proj} Z(r(\theta) A r(\theta)), h \mapsto h r(\theta)$, and $\operatorname{Proj} Z(l(\theta) A l(\theta)) \rightarrow \operatorname{Proj} C(l(\theta)) Z(A), f \mapsto C(f)$. The isomorphism $\bar{\theta}$ extends canonically to a $*$-isomorphism $C(r(\theta)) Z(A) \rightarrow C(l(\theta)) Z(A)$ as $*$-algebras, which we denote by the same letter $\bar{\theta}$.

For $\theta \in \operatorname{PAut} A$ and $h, k \in \operatorname{Proj} Z(A)$ define $k \cdot \theta \cdot h \in \operatorname{PAut} A$ by

$$
\begin{gathered}
r(k \cdot \theta \cdot h)=h \theta^{-1}(k l(\theta)), \quad l(k \cdot \theta \cdot h)=\theta(r(k \cdot \theta \cdot h))=\theta(h r(\theta)) k \\
k \cdot \theta \cdot h=\theta \mid r(k \cdot \theta \cdot h) \operatorname{Ar}(k \cdot \theta \cdot h)
\end{gathered}
$$

and write $\theta \cdot h=1 \cdot \theta \cdot h, k \cdot \theta=k \cdot \theta \cdot 1$. Then

$$
\begin{equation*}
\theta \cdot h=\theta \cdot(h C(r(\theta)))=\bar{\theta}(h C(r(\theta))) \cdot \theta, \quad k \cdot \theta=\theta \cdot(\bar{\theta})^{-1}(k C(l(\theta))) \tag{3.3}
\end{equation*}
$$

by (3.2), so $k \cdot \theta \cdot h$ is a direct summand of θ, and we have

$$
\begin{gathered}
\theta=\theta \cdot h \oplus \theta \cdot(1-h)=k \cdot \theta \oplus(1-k) \cdot \theta, \\
(k \cdot \theta \cdot h)^{-1}=h \cdot\left(\theta^{-1}\right) \cdot k \in \operatorname{PAut} A .
\end{gathered}
$$

Hence the map $h \mapsto \theta \cdot h$ gives a bijection between $\operatorname{Proj} C(r(\theta)) Z(A)$ and the set of all direct summands of θ.

Definition 3.2 We say that $\theta \in \operatorname{PAut} A$ is positive (resp., negative, central) if $r(\theta)$ (resp., $l(\theta)$, both $r(\theta), l(\theta)) \in \operatorname{Proj} Z(A)$, that it is regular if $\theta=\theta_{1} \oplus \theta_{2}$ for some positive θ_{1} and negative θ_{2}, and that it is inner if $\theta=\operatorname{Ad} u$ for some $u \in \operatorname{PI} A$ with $r(\theta)=u^{*} u$ and $l(\theta)=u u^{*}$, where $\operatorname{Ad} u: u^{*} u A u^{*} u \rightarrow u u^{*} A u u^{*}, x \mapsto u x u^{*}$. Denote by (PAut $A)^{+}\left(\right.$resp., $(\text {PAut } A)^{0}$, RPAut $\left.A, \operatorname{PInt} A\right)$ the set of all positive (resp., central, regular, inner) elements of PAut A.

Clearly, the map $\theta \mapsto \theta^{-1}$ interchanges positivity and negativity, and positivity, centrality, etc. are preserved by passage to the direct sums or the direct summands.

We associate with each $\theta \in$ RPAut A an algebraic invertible A-module, written $\langle\theta\rangle$, as follows. (Note that A, being an $A W^{*}$-algebra, satisfies (ND). This algebraic invertible A-module turns out to be also an invertible A-module in the sense of Definition 5.1.)

If $\theta \in(\text { PAut } A)^{+}$, then identify θ with the surjective $*$-homomorphism $A \rightarrow$ $l(\theta) A l(\theta), x \mapsto r(\theta) x \mapsto \theta(r(\theta) x)=: \theta(x)$, and write $\langle\theta\rangle=(A l(\theta), \theta)=A l(\theta)$, where $A l(\theta)$ is an inner product A-module defined by

$$
a \cdot x \cdot b=a x \theta(b), \quad\langle x, y\rangle=x y^{*}, \quad a, b \in A, x, y \in A l(\theta)
$$

Now $\operatorname{End}_{A}(A l(\theta))$ is naturally identified with $l(\theta) A l(\theta)$ (so (2.5) follows), and (2.2) holds, since $x \in A l(\theta)$ and $\langle x, y\rangle=0$ for all $y \in A l(\theta)$ imply $x=x l(\theta)=\langle x, l(\theta)\rangle=$ 0 . Hence $\langle\theta\rangle \in \operatorname{INV}^{\prime}(A)$. Further, as in Section 2, the inverse $\langle\theta\rangle^{-1} \in \operatorname{INV}^{\prime}(A)$ is defined as $l(\theta) A$ with the operations

$$
a \cdot x \cdot b=\theta(a) x b, \quad\langle x, y\rangle=\theta^{-1}\left(x y^{*}\right)
$$

Indeed, $x \in l(\theta) A$ and $x A l(\theta)=0$ imply $x A l(\theta) A=0, x C(l(\theta)) A=0$ and $x=0$. The kernel of the $*$-homomorphism $A \rightarrow \operatorname{End}_{A}(l(\theta) A), a \mapsto[x \mapsto x a]$, is $(1-C(l(\theta))) A$ and so $\operatorname{End}_{A}(l(\theta) A) \cong C(l(\theta)) A$.

If $\theta=\theta_{1} \oplus \theta_{2} \in$ RPAut A with $\theta_{1}, \theta_{2}^{-1} \in(\text { PAut } A)^{+}$, then define $\langle\theta\rangle$ to be $\left\langle\theta_{1}\right\rangle \oplus$ $\left\langle\theta_{2}^{-1}\right\rangle^{-1}$, i.e., $A l\left(\theta_{1}\right) \oplus r\left(\theta_{2}\right) A$ with the module operation and inner product

$$
\begin{gathered}
a \cdot\left(x_{1} \oplus x_{2}\right) \cdot b=a x_{1} \theta_{1}(b) \oplus \theta_{2}^{-1}(a) x_{2} b, \\
\left\langle x_{1} \oplus x_{2}, y_{1} \oplus y_{2}\right\rangle=x_{1} y_{1}^{*}+\theta_{2}\left(x_{2} y_{2}^{*}\right)
\end{gathered}
$$

for $a, b \in A, x_{1}, y_{1} \in A l\left(\theta_{1}\right)$ and $x_{2}, y_{2} \in r\left(\theta_{2}\right) A$, which is an algebraic invertible A-module by Proposition 2.5.

To be precise, the definition of $\langle\theta\rangle$ above depends on the decomposition $\theta=$ $\theta_{1} \oplus \theta_{2}$, and it is determined up to isomorphism. Indeed, observe first that if θ is central and so regarded as both positive and negative, then the map $x \mapsto \theta^{-1}(x)$ gives an isomorphism between $\langle\theta\rangle=A l(\theta)$ and $\left\langle\theta^{-1}\right\rangle^{-1}=r(\theta) A$. If $\theta=\theta_{1} \oplus \theta_{2}=\theta_{1}^{\prime} \oplus \theta_{2}^{\prime}$ for $\theta_{1}, \theta_{2}^{-1}, \theta_{1}^{\prime},\left(\theta_{2}^{\prime}\right)^{-1} \in(\text { PAut } A)^{+}$, then

$$
\theta_{1}=\theta_{11} \oplus \theta_{12}, \quad \theta_{2}=\theta_{21} \oplus \theta_{22}, \quad \theta_{1}^{\prime}=\theta_{11} \oplus \theta_{21}, \quad \theta_{2}^{\prime}=\theta_{12} \oplus \theta_{22}
$$

for θ_{11} positive, θ_{22} negative, and $\theta_{i j}, i \neq j$, central, and so

$$
\begin{aligned}
\left\langle\theta_{1}\right\rangle \oplus\left\langle\theta_{2}^{-1}\right\rangle^{-1} & =\left\langle\theta_{11}\right\rangle \oplus\left\langle\theta_{12}\right\rangle \oplus\left\langle\theta_{21}^{-1}\right\rangle^{-1} \oplus\left\langle\theta_{22}^{-1}\right\rangle^{-1} \\
& \cong\left\langle\theta_{11}\right\rangle \oplus\left\langle\theta_{12}^{-1}\right\rangle^{-1} \oplus\left\langle\theta_{21}\right\rangle \oplus\left\langle\theta_{22}^{-1}\right\rangle^{-1}=\left\langle\theta_{1}^{\prime}\right\rangle \oplus\left\langle\left(\theta_{2}^{\prime}\right)^{-1}\right\rangle^{-1}
\end{aligned}
$$

For $\theta \in \operatorname{RPAut} A$ and $h, k \in \operatorname{Proj} Z(A)$ we have

$$
\begin{equation*}
\langle k \cdot \theta \cdot h\rangle=k \cdot\langle\theta\rangle \cdot h, \quad\langle k \cdot \theta \cdot h\rangle^{-1}=h \cdot\left\langle\theta^{-1}\right\rangle \cdot k \tag{3.4}
\end{equation*}
$$

Definition 3.3 Call an algebraic invertible A-module isomorphic to $\langle\theta\rangle$ for some $\theta \in \operatorname{RPAut} A$ (resp., $(\text { PAut } A)^{+}$, (PAut $\left.A\right)^{0}$) regular (resp., positive, central), and denote by $\operatorname{RINV}(A)$ (resp., $\operatorname{INV}(A)^{+}, \operatorname{INV}(A)^{0}$) the set of all such modules. (The positivity and centrality for $\langle\theta\rangle$ are weaker than the corresponding notions for θ. See Proposition 7.7.)

The following result together with (3.4) tells us when $\langle\theta\rangle \cong\langle\psi\rangle$ for $\theta, \psi \in$ RPAut A.

Proposition 3.4 Let $\theta \in(\operatorname{PAut} A)^{+}$.
(i) We have a monomorphism $\tau:\langle\theta\rangle \rightarrow\langle\psi\rangle$ for some $\psi \in(\operatorname{PAut} A)^{+}$if and only if $r(\theta) \leq r(\psi)$ and $\psi \cdot r(\theta)=(\operatorname{Ad} u) \circ \theta$ for some $u \in \operatorname{PI} A$ with $u^{*} u=l(\theta)$. In this case $\tau(x)=x u^{*}$ for $x \in \operatorname{Al}(\theta), \tau:\langle\theta\rangle \rightarrow\langle\psi\rangle \cdot r(\theta)=\langle\psi \cdot r(\theta)\rangle$ is an isomorphism, and so τ is surjective if and only if $r(\theta)=r(\psi)$.
(ii) We have a monomorphism $\tau:\langle\theta\rangle \rightarrow\langle\psi\rangle^{-1}$ for some $\psi \in(\operatorname{PAut} A)^{+}$if and only if $l(\theta) \leq r(\psi)$ and $\psi \mid l(\theta) A l(\theta)=(\operatorname{Ad} u) \circ \theta^{-1}$ for some $u \in \operatorname{PI} A$ with $u^{*} u=r(\theta)$. In this case, $\tau(x)=\psi(x) u$ for $x \in \operatorname{Al}(\theta), \tau:\langle\theta\rangle \rightarrow\langle\psi \cdot h\rangle^{-1}=h \cdot\langle\psi\rangle^{-1}$ is an isomorphism, where $h:=\psi^{-1}(r(\theta) l(\psi)) \in \operatorname{Proj} Z(A)$, and τ is surjective if and only if $l(\psi) \leq r(\theta)$.

Proof (i) If τ as above exists, then with $u:=\tau(l(\theta))^{*} \in l(\psi) A$, we have $\tau(A l(\theta))=$ $A u^{*}=A u u^{*}, u \in \operatorname{PI} A$, and

$$
\begin{equation*}
u^{*} u=l(\theta), \quad \theta(a) u^{*}=u^{*} \psi(a), \forall a \in A, \tag{3.5}
\end{equation*}
$$

since for $a, b \in A$,

$$
\begin{gathered}
a \theta(b) u^{*}=(a \theta(b)) \cdot \tau(l(\theta))=\tau(a \theta(b))=\tau(a \cdot l(\theta) \cdot b)=a u^{*} \psi(b) \\
a l(\theta) b^{*}=\langle a l(\theta), b l(\theta)\rangle=\langle\tau(a l(\theta)), \tau(b l(\theta))\rangle=\left\langle a u^{*}, b u^{*}\right\rangle=a u^{*} u b^{*}, \\
u^{*}=\tau(l(\theta) \cdot l(\theta))=l(\theta) \tau(l(\theta))=u^{*} u u^{*}
\end{gathered}
$$

Conversely, any $u \in l(\psi) A$ and $\psi \in(\text { PAut } A)^{+}$satisfying (3.5) induce a monomorphism $\langle\theta\rangle \rightarrow\langle\psi\rangle, x \mapsto x u^{*}$. Hence it remains only to show that (3.5) implies that $r(\theta) \leq r(\psi), u u^{*}=\psi(r(\theta))$, and $u \in \mathrm{PI} A$. But

$$
\theta(r(\theta)(1-r(\psi)))=\theta(r(\theta)(1-r(\psi))) u^{*} u=u^{*} \psi(r(\theta)(1-r(\psi))) u=0
$$

implies $r(\theta) \leq r(\psi)$. Further $u^{*}=\theta(r(\theta)) u^{*}=u^{*} \psi(r(\theta))$ implies

$$
\begin{gathered}
u u^{*}=u u^{*} \psi(r(\theta))=\psi(r(\theta)) u u^{*} \in \psi(r(\theta)) A \psi(r(\theta)) \\
=\psi(r(\theta) A), \quad \psi^{-1}\left(u u^{*}\right) \in r(\theta) A ; \\
\theta\left(r(\theta)-\psi^{-1}\left(u u^{*}\right)\right)=u^{*} \psi\left(r(\theta)-\psi^{-1}\left(u u^{*}\right)\right) u=u^{*} u-u^{*} u=0
\end{gathered}
$$

implies $u u^{*}=\psi(r(\theta))$; and $u^{*}=u^{*} \psi(r(\theta))=u^{*} u u^{*}$.
(ii) If τ as above exists, then with $u:=\tau(l(\theta)) \in l(\psi) A, \tau(a l(\theta))=\psi(a) u$ for $a \in A, \tau(A l(\theta))=l(\psi) A u=l(\psi) A u^{*} u, u \in \operatorname{PI} A$, and

$$
\begin{equation*}
l(\theta) \leq r(\theta), \quad \psi(l(\theta))=u u^{*}, \quad \psi(\theta(a)) u=u a, \quad \forall a \in A, \tag{3.6}
\end{equation*}
$$

since for $a, b \in A$,

$$
\begin{gathered}
a l(\theta) b^{*}=\langle a l(\theta), b l(\theta)\rangle=\langle\tau(a l(\theta)), \tau(b l(\theta))\rangle \\
=\psi^{-1}\left(\psi(a) u u^{*} \psi\left(b^{*}\right)\right)=a \psi^{-1}\left(u u^{*}\right) b^{*} \\
\psi(a \theta(b)) u=\tau(a \cdot l(\theta) \cdot b)=\psi(a) u b \\
u= \\
u(l(\theta) \cdot l(\theta))=\psi(l(\theta)) \tau(l(\theta))=u u^{*} u
\end{gathered}
$$

Conversely, any $u \in l(\theta) A$ and $\psi \in(\text { PAut } A)^{+}$satisfying (3.6) induce a monomorphism $\langle\theta\rangle \rightarrow\langle\psi\rangle^{-1}, x \mapsto \psi(x) u$. Hence it suffices to show that (3.6) implies that $u^{*} u=r(\theta)$ and $u \in \operatorname{PI} A$. Indeed, then

$$
\tau(A l(\theta))=l(\psi) A u^{*} u=l(\psi) r(\theta) A=\psi(h) A=\langle\psi \cdot h\rangle^{-1}
$$

with h as above. But, taking $a=r(\theta)$ and then $a=1$ in (3.6) shows $u r(\theta)=u$, $u^{*} u \in r(\theta) A$. And taking $a=r(\theta)-u^{*} u$ in (3.6) shows $\psi\left(\theta\left(r(\theta)-u^{*} u\right)\right)=u(r(\theta)-$ $\left.u^{*} u\right)=0$ and $r(\theta)=u^{*} u$, since $l(\theta) \leq r(\psi)$, and $u u^{*} u=u r(\theta)=u$.

The following properties of A hold, since A is an $A W^{*}$-algebra (see [1]; WSB and ELCP are short for Weak Schröder-Bernstein and Existence of the Largest Central Projection, respectively):

$$
\left\{\begin{array}{c}
e \in \operatorname{Proj} A, f \in \operatorname{Proj} Z(A), u \in \operatorname{PI} A, u^{*} u \leq e \leq f=u u^{*} \tag{WSB}\\
\Longrightarrow \exists v \in \operatorname{PI} A: \quad e=v^{*} v, \quad v v^{*}=f
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\forall e \in \operatorname{Proj} A, \exists \text { largest } h \in \operatorname{Proj} Z(A) \text { with the property } \tag{ELCP}\\
\quad \exists u \in \operatorname{PI} A: h e=u^{*} u, u u^{*}=h
\end{array}\right.
$$

Proposition 3.5

(i) An $X \in \operatorname{RINV}(A)$ is both positive and negative in the sense of Definition 3.3 if and only if X is central.
(ii) Each $X \in \operatorname{RINV}(A)$ has a unique direct sum decomposition $X=X^{++} \oplus X^{0} \oplus X^{--}$, where X^{0} is the largest central summand of $X, X^{+}:=X^{++} \oplus X^{0}$ is the largest positive summand of X, and $X^{-}:=X^{0} \oplus X^{--}$is the largest negative summand of X.

Proof (i) It suffices to show the necessity. Suppose $X \cong\langle\theta\rangle \cong\langle\psi\rangle^{-1}$ for some $\theta, \psi \in(\operatorname{PAut} A)^{+}$. Then, for $u \in \operatorname{PI} A$ as in Proposition 3.4(ii),

$$
u u^{*}=(\operatorname{Ad} u) \circ \theta^{-1}(l(\theta))=\psi(l(\theta)) \leq l(\psi) \leq r(\theta)=u^{*} u
$$

and by (WSB), $v^{*} v=l(\psi), v v^{*}=r(\theta)$ for some $v \in \operatorname{PI} A$. Hence $(\operatorname{Ad} v) \circ \psi \in$ (PAut $A)^{0}, X \cong\left\langle((\operatorname{Ad} v) \circ \psi)^{-1}\right\rangle$ by Proposition 3.4(i), and X is central.
(ii) Observe first that if $\theta \in(\text { PAut } A)^{+}$and if we take, by (ELCP), the largest $h \in$ $\operatorname{Proj} Z(A)$ such that $h l(\theta)=u^{*} u$ and $u u^{*}=h$ for some $u \in \operatorname{PI} A$, then $\langle h \cdot \theta\rangle$ is the largest central summand of $\langle\theta\rangle$. Indeed, $\langle h \cdot \theta\rangle \cong\langle(\operatorname{Ad} u) \circ \theta\rangle$ with $l((\operatorname{Ad} u) \circ \theta)=u u^{*}$, $r((\operatorname{Ad} u) \circ \theta)=\theta^{-1}(h l(\theta)) \in Z(A)$, and $\langle h \cdot \theta\rangle$ is central. Further, if $\langle\psi\rangle \cong\langle k \cdot \theta\rangle$ for some $\psi \in(\operatorname{PAut} A)^{0}$ and $k \in \operatorname{Proj} Z(A)$ with $k \leq C(l(\theta))$, then, by Proposition 3.4(i), $\psi=(\operatorname{Ad} v) \circ(k \cdot \theta)$ for some $v \in \operatorname{PI} A$ with $v^{*} v=l(k \cdot \theta)=k l(\theta)$. But $v v^{*}=l(\psi) \in \operatorname{Proj} Z(A)$, so $v v^{*}=C\left(v v^{*}\right)=C\left(v^{*} v\right)=C(k l(\theta))=k C(l(\theta))=k$, and by the definition of $h, k \leq h$, as desired.

For each $X \in \operatorname{RINV}(A), X=X_{1} \oplus X_{2}$ for X_{1} positive and X_{2} negative. Then application of the above argument to X_{j} shows the existence of the decomposition, and the uniqueness follows from (i).

Definition 3.6 For $X \in \operatorname{RINV}(A)$ we call $X^{+}, X^{++}, X^{0}, X^{-}, X^{--}$as above the positive, purely positive, central, negative, purely negative parts of X, respectively.

The following property (GC) (Generalized Comparability) of A holds [1, Corollary $1, \mathrm{p} .80$], and it implies the property $\left(\mathrm{GC}^{\prime}\right)$:

$$
\begin{align*}
& \forall e, f \in \operatorname{Proj} A, \exists h \in \operatorname{Proj} Z(A), \exists u, v \in \operatorname{PI} A: \tag{GC}\\
& \quad h e=u^{*} u, u u^{*} \leq h f,(1-h) e \geq v^{*} v, v v^{*}=(1-h) f .
\end{align*}
$$

(GC^{\prime})

$$
\forall e, f \in \operatorname{Proj} A, \exists w \in \operatorname{PI} A:
$$

$$
w^{*} w \leq e, w w^{*} \leq f, C\left(w^{*} w\right)=C(e) C(f)
$$

Indeed, it suffices to take $w=u+v$ for u, v as in (GC), since

$$
\begin{gathered}
h C(e)=C(h e)=C\left(u^{*} u\right)=C\left(u u^{*}\right) \leq h C(f), \\
(1-h) C(f)=C\left(v v^{*}\right)=C\left(v^{*} v\right) \leq(1-h) C(e), \\
C\left(w^{*} w\right)=C\left(u^{*} u\right)+C\left(v^{*} v\right)=h C(e)+(1-h) C(f) \\
=h C(e) C(f)+(1-h) C(e) C(f)=C(e) C(f)
\end{gathered}
$$

If $\theta, \psi \in$ PAut A and if $r(\theta) l(\psi)=l(\psi) r(\theta)$ and so this is a projection, then denote by $\theta \circ \psi \in \operatorname{PAut} A$ the composition

$$
r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi) \rightarrow l(\theta \circ \psi) A l(\theta \circ \psi), \quad x \mapsto \theta(\psi(x)),
$$

where $r(\theta \circ \psi)=\psi^{-1}(r(\theta) l(\psi))$ and $l(\theta \circ \psi)=\theta(r(\theta) l(\psi))$. If θ and ψ are both positive (resp., negative, central), then so is $\theta \circ \psi$.

Proposition 3.7 Let $\theta, \psi \in$ PAut A.
(i) If θ and ψ are both positive (resp., negative), then an isomorphism $\langle\theta\rangle \odot_{A}\langle\psi\rangle \cong$ $\langle\theta \circ \psi\rangle$ is defined by $x \otimes y \mapsto x \theta(y), x \in \operatorname{Al}(\theta), y \in \operatorname{Al}(\psi)\left(\right.$ resp., $x \otimes y \mapsto \psi^{-1}(x) y$, $x \in r(\theta) A, y \in r(\psi) A)$.
(ii) If θ is positive and ψ is negative, then we have a monomorphism $\tau:\langle\theta\rangle \odot_{A}\langle\psi\rangle \rightarrow$ $\left\langle\omega_{1}\right\rangle \oplus\left\langle\omega_{2}\right\rangle=\left\langle\omega_{1} \oplus \omega_{2}\right\rangle$ for some positive ω_{1} and negative ω_{2} if and only if there are an $h \in \operatorname{Proj} Z(A)$ and $u_{1}, u_{2} \in \operatorname{PI} A$ such that

$$
\begin{gathered}
\left(\operatorname{Ad} u_{1}\right) \circ \omega_{1}|h r(\psi) \operatorname{Ar}(\psi)=\theta \circ \psi| h r(\psi) \operatorname{Ar}(\psi), \\
u_{1} u_{1}^{*}=(\theta \circ \psi)(h r(\theta \circ \psi)), \quad u_{1}^{*} u_{1}=\omega_{1}(h r(\theta \circ \psi)), \\
\omega_{2} \circ\left(\operatorname{Ad} u_{2}\right)|(1-h) r(\psi) \operatorname{Ar}(\psi)=\theta \circ \psi|(1-h) r(\psi) \operatorname{Ar}(\psi), \\
u_{2} u_{2}^{*}=\left(\omega_{2}^{-1} \circ \theta \circ \psi\right)((1-h) r(\theta \circ \psi)), \quad u_{2}^{*} u_{2}=(1-h) r(\theta \circ \psi)
\end{gathered}
$$

In this case, monomorphisms $\tau_{1}:\left(\langle\theta\rangle \odot_{A}\langle\psi\rangle\right) \cdot h \rightarrow\left\langle\omega_{1}\right\rangle$ and $\tau_{2}:\left(\langle\theta\rangle \odot_{A}\langle\psi\rangle\right)$ $\cdot(1-h) \rightarrow\left\langle\omega_{2}\right\rangle$ are defined by

$$
\begin{aligned}
& \tau_{1}(x \otimes y)=x u_{1} \omega_{1}(y), \quad x \in A l(\theta), y \in h r(\psi) A \\
& \tau_{2}(x \otimes y)=\omega_{2}^{-1}(x) u_{2} y, \quad x \in A l(\theta), y \in(1-h) r(\psi) A
\end{aligned}
$$

for h, u_{1}, u_{2} as above, so that $\tau=\tau_{1} \oplus \tau_{2}$.
(iii) Let θ be negative and ψ positive. Take h, u, v as in (GC) for $e=l(\psi)$ and $f=r(\theta)$. Then isomorphisms $\tau_{1}:\langle\theta\rangle \odot_{A} h \cdot\langle\psi\rangle \rightarrow\left\langle\omega_{1}\right\rangle$ and $\tau_{2}:\langle\theta\rangle \odot_{A}(1-h) \cdot\langle\psi\rangle \rightarrow\left\langle\omega_{2}\right\rangle$ are defined by

$$
\begin{aligned}
& \tau_{1}(x \otimes y)=\theta\left(x y u^{*}\right), \quad x \in r(\theta) A, y \in \operatorname{Ahl}(\psi) \\
& \tau_{2}(x \otimes y)=\psi^{-1}\left(v^{*} x y\right), \quad x \in r(\theta) A, y \in A(1-h) l(\psi)
\end{aligned}
$$

where $\omega_{1}=\theta \circ(\operatorname{Ad} u) \circ \psi \mid \psi^{-1}(h l(\psi)) A$ is positive and $\omega_{2}=\theta \circ(\operatorname{Ad} v) \circ$ $\psi \mid \psi^{-1}\left(v^{*} v\right) A \psi^{-1}\left(v^{*} v\right)$ is negative, so that we have $\langle\theta\rangle \odot_{A}\langle\psi\rangle \cong\left\langle\omega_{1} \oplus \omega_{2}\right\rangle$.

Proof Part (i) follows, in view of the definitions of $\odot_{A},\langle\theta\rangle$, and Proposition 3.4, from direct computation.
(ii) We show only the necessity, since the sufficiency follows immediately. If τ as above exists and if $h \in \operatorname{Proj} Z(A)$ is such that $\left\langle\omega_{1}\right\rangle=\left(\left\langle\omega_{1}\right\rangle \oplus\left\langle\omega_{2}\right\rangle\right) \cdot h$ and
$\left\langle\omega_{2}\right\rangle=\left(\left\langle\omega_{1}\right\rangle \oplus\left\langle\omega_{2}\right\rangle\right) \cdot(1-h)$, then τ is restricted to monomorphisms $\tau_{1}:\langle\theta\rangle \odot_{A}$ $\langle\psi \cdot h\rangle=\left(\langle\theta\rangle \odot_{A}\langle\psi\rangle\right) \cdot h \rightarrow\left\langle\omega_{1}\right\rangle$ and $\tau_{2}:\langle\theta\rangle \odot_{A}\langle\psi \cdot(1-h)\rangle \rightarrow\left\langle\omega_{2}\right\rangle$. Set

$$
u_{1}:=\tau(l(\theta) \otimes h r(\psi)) \in A l\left(\omega_{1}\right), \quad u_{2}:=\tau(l(\theta) \otimes(1-h) r(\psi)) \in r\left(\omega_{2}\right) A .
$$

In view of

$$
\theta(a) \otimes r(\psi) b=l(\theta) \cdot a \otimes r(\psi) b=l(\theta) \otimes a \cdot(r(\psi) b)=l(\theta) \otimes \psi^{-1}(a) b, \quad a, b \in A,
$$

in $\langle\theta\rangle \odot_{A}\langle\psi\rangle$, we have

$$
\begin{aligned}
& l(\theta) \otimes h r(\psi)=\theta(r(\theta)) \otimes h r(\psi)=l(\theta) \otimes h \psi^{-1}(r(\theta)) \\
&=(l(\theta) \otimes h r(\psi)) \cdot\left(h \psi^{-1}(r(\theta) l(\psi))\right)=(l(\theta) \otimes h r(\psi)) \cdot(h r(\theta \circ \psi)), \\
& \quad(\theta \circ \psi)(h r(\psi)) \otimes h r(\psi)=l(\theta) \otimes \psi^{-1}(\psi(h r(\psi))) h=l(\theta) \otimes h r(\psi) .
\end{aligned}
$$

Hence

$$
u_{1}=\tau((l(\theta) \otimes h r(\psi)) \cdot(h r(\theta \circ \psi)))=u_{1} \cdot(h r(\theta \circ \psi))=u_{1} \omega_{1}(h r(\theta \circ \psi)),
$$

and since

$$
\begin{aligned}
u_{1} u_{1}^{*} & =\langle\tau(l(\theta) \otimes h r(\psi)), \tau(l(\theta) \otimes h r(\psi))\rangle=\langle l(\theta) \otimes h r(\psi), l(\theta) \otimes h r(\psi)\rangle \\
& =\langle l(\theta) \cdot\langle h r(\psi), h r(\psi)\rangle, l(\theta)\rangle=(\theta \circ \psi)(h r(\psi)), \\
u_{1} u_{1}^{*} u_{1} & =\left(u_{1} u_{1}^{*}\right) u_{1}=\tau((\theta \circ \psi)(h r(\psi)) \otimes h r(\psi))=\tau(l(\theta) \otimes h r(\psi))=u_{1} .
\end{aligned}
$$

Thus $u_{1} \in \operatorname{PI} A$ and $u_{1}^{*} u_{1} \leq \omega_{1}(h r(\theta \circ \psi))$. Similarly $u_{2}=u_{2}(1-h) r(\theta \circ \psi)$,

$$
\begin{aligned}
\omega_{2}\left(u_{2} u_{2}^{*}\right) & =\langle\tau(l(\theta) \otimes(1-h) r(\psi)), \tau(l(\theta) \otimes(1-h) r(\psi))\rangle \\
& =(\theta \circ \psi)((1-h) r(\theta \circ \psi)),
\end{aligned}
$$

and $u_{2} u_{2}^{*}=\left(\omega_{2}^{-1} \circ \theta \circ \psi\right)((1-h) r(\theta \circ \psi))$, since $u_{2} \in r\left(\omega_{2}\right) A$. Since $a \cdot u_{2}=\omega_{2}^{-1}(a) u_{2}$, $a \in A$, in $\left\langle\omega_{2}\right\rangle=r\left(\omega_{2}\right) A$,

$$
\begin{aligned}
u_{2} u_{2}^{*} u_{2} & =\left(u_{2} u_{2}^{*}\right) u_{2} \\
& =(\theta \circ \psi)((1-h) r(\theta \circ \psi)) \cdot \tau(l(\theta) \otimes(1-h) r(\psi)) \\
& =\tau((\theta \circ \psi)((1-h) r(\theta \circ \psi)) \otimes(1-h) r(\psi))=u_{2}
\end{aligned}
$$

as above. Hence $u_{2} \in \operatorname{PI} A$ and $u_{2}^{*} u_{2} \leq(1-h) r(\theta \circ \psi)$. For $a, b \in A$ we have

$$
\begin{gathered}
\tau(a l(\theta) \otimes h r(\psi) b)=\tau(a \cdot(l(\theta) \otimes h r(\psi)) \cdot b)=a \cdot u_{1} \cdot b=a u_{1} \omega_{1}(b), \\
\tau(a l(\theta) \otimes(1-h) r(\psi) b)=a \cdot u_{2} \cdot b=\omega_{2}^{-1}(a) u_{2} b,
\end{gathered}
$$

and so

$$
\begin{aligned}
u_{1} \omega_{1}(b) u_{1}^{*} & =\langle\tau(l(\theta) \otimes h r(\psi) b), \tau(l(\theta) \otimes h r(\psi))\rangle \\
& =(\theta \circ \psi)(h r(\psi) b r(\psi))=(\theta \circ \psi)(h r(\theta \circ \psi) b r(\theta \circ \psi)) \\
\omega_{2}\left(u_{2} b u_{2}^{*}\right) & =\langle\tau(l(\theta) \otimes(1-h) r(\psi) b), \tau(l(\theta) \otimes(1-h) r(\psi))\rangle \\
& =(\theta \circ \psi)((1-h) r(\theta \circ \psi) b r(\theta \circ \psi))
\end{aligned}
$$

Since $\left(\operatorname{Ad} u_{1}\right) \circ \omega_{1}|h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi)=\theta \circ \psi| h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi)$ is injective and $\omega_{1} \in(\operatorname{PAut} A)^{+}$, we have $h r(\theta \circ \psi) \leq r\left(\omega_{1}\right)$, and $\operatorname{Ad} u_{1}$ on $\omega_{1}(h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi))=$ $\omega_{1}(h r(\theta \circ \psi)) A \omega_{1}(h r(\theta \circ \psi))$ is injective. Hence $\left(\operatorname{Ad} u_{1}\right)\left(\omega_{1}(h r(\theta \circ \psi))-u_{1}^{*} u_{1}\right)=0$ implies $u_{1}^{*} u_{1}=\omega_{1}(h r(\theta \circ \psi))$. Similarly $u_{2}^{*} u_{2}=(1-h) r(\theta \circ \psi)$.
(iii) Define τ_{j}, ω_{j} as above. Then $\omega_{1} \in(\text { PAut } A)^{+}$, since $u^{*} u=h l(\psi), u u^{*} \leq r(\theta)$ and so $r\left(\omega_{1}\right)=\psi^{-1}(h l(\psi)) \in \operatorname{Proj} Z(A)$. We have

$$
\langle\theta\rangle \odot_{A} h \cdot\langle\psi\rangle=r(\theta) A \odot_{A} \operatorname{Ahl}(\psi)
$$

and for $a, b \in A, x, x_{j} \in r(\theta) A$ and $y, y_{j} \in A h l(\theta)=A u^{*} u$ we have

$$
\begin{aligned}
& \tau_{1}(a \cdot(x \otimes y) \cdot b)=\tau_{1}\left(\theta^{-1}(a) x \otimes y \psi(b)\right)=\theta\left(\theta^{-1}(a) x y \psi(b) u^{*}\right) \\
& =a \theta\left(x y u^{*} u \psi(b) u^{*}\right)=a \tau_{1}(x \otimes y) \omega_{1}(b) \\
& =a \cdot \tau_{1}(x \otimes y) \cdot b, \\
& \left\langle\tau_{1}\left(x_{1} \otimes y_{1}\right), \tau_{1}\left(x_{2} \otimes y_{2}\right)\right\rangle=\theta\left(x_{1} y_{1} u^{*}\right) \theta\left(u y_{2}^{*} x_{2}^{*}\right)=\theta\left(x_{1} y_{1} y_{2}^{*} x_{2}^{*}\right) \\
& =\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle, \\
& \tau_{1}\left(r(\theta) A \odot_{A} \operatorname{Ahl}(\psi)\right)=\theta\left(r(\theta) A h l(\psi) u^{*}\right)=\theta\left(r(\theta) A u u^{*}\right) \\
& =\theta\left(r(\theta) A r(\theta) u u^{*}\right)=A l(\theta) \theta\left(u u^{*}\right) \\
& =A l\left(\omega_{1}\right) \text {. }
\end{aligned}
$$

Hence τ_{1} is an isomorphism, and similarly for τ_{2}.

4 Normalizers

Throughout this section, A denotes a fixed $A W^{*}$-algebra.
Definition 4.1 Let B be an $A W^{*}$-algebra containing A as an $A W^{*}$-subalgebra with the same unit $1_{A}=1_{B}=: 1$, and regard B as an A-bimodule.
(i) Write $\operatorname{INV}_{B}^{\prime}(A)$ for the set of all sub- A-bimodules X of B satisfying (2.12) so that $\operatorname{INV}_{B}^{\prime}(A) \subset \operatorname{INV}^{\prime}(A)((2.13)$ is automatically satisfied here). Call an element of $\operatorname{INV}_{B}^{\prime}(A)$ an algebraic invertible A-module in B, and write $\operatorname{RINV}_{B}(A)$ (resp., $\left.\operatorname{INV}_{B}(A)^{+}, \operatorname{INV}_{B}(A)^{0}\right)$ for the subset of all elements in $\operatorname{INV}_{B}^{\prime}(A)$ which are also regular (resp., positive, central).
(ii) Call the following sets respectively the normalizer, partial isometry normalizer, regular normalizer, positive normalizer and central normalizer of A in B :

$$
\begin{gathered}
N_{B}(A)=\left\{x \in B: x A x^{*} \subset A, x^{*} A x \subset A\right\}, \\
\text { PI } N_{B}(A)=N_{B}(A) \cap \operatorname{PI} B \\
R N_{B}(A)=\left\{s \in \operatorname{PI} N_{B}(A): \exists h \in \operatorname{Proj} Z(A), h \leq s^{*} s, s(1-h) s^{*} \in \operatorname{Proj} Z(A)\right\}, \\
N_{B}(A)^{+}=\left\{s \in \operatorname{PI} N_{B}(A): s^{*} s \in Z(A)\right\}, \\
N_{B}(A)^{0}=\left\{s \in \operatorname{PI} N_{B}(A): s^{*} s, s s^{*} \in Z(A)\right\},
\end{gathered}
$$

so that $N_{B}(A)^{0} \subset N_{B}(A)^{+} \subset R N_{B}(A) \subset \operatorname{PI} N_{B}(A) \subset N_{B}(A)$.
(iii) For $s \in R N_{B}(A)$ call $s^{+}=s h, s^{0}=s k, s^{-}=s(1-h+k), s^{++}=s(h-k)$, and $s^{--}=s(1-h)$, respectively, the positive, central, negative, purely positive and purely negative parts of s, where h is the largest central projection of A such that $h s^{*} s=u^{*} u, u u^{*}=h$ for some $u \in \operatorname{PI} A$, and k is the largest central projection of A such that $k s^{*} s=v^{*} v, v v^{*}=k, s k s^{*}=w^{*} w$ and $w w^{*} \in Z(A)$ for some $v, w \in \operatorname{PI} A$ (see (ELCP), and note that $s^{*} s, s k s^{*} \in \operatorname{Proj} A$).

Following the previous convention, we write $A x A$, etc. for the linear span of the set $\{a x b: a, b \in A\}$, etc. But the set itself can be linear in some cases (see (vi) below).

Proposition 4.2 Keep the notation A, B, etc. as above.
(i) For $x \in B$ we have $A x A \in \operatorname{INV}_{B}^{\prime}(A)$ if and only if $x \in N_{B}(A)$.
(ii) If $s \in \operatorname{PI} N_{B}(A)$, then $s^{*} s, s s^{*} \in \operatorname{Proj} A$, and $\operatorname{Ad} s=\operatorname{Ad} s \mid s^{*} s A s^{*} s: s^{*} s A s^{*} s \rightarrow$ s^{*} Ass* *, where $(\operatorname{Ad} s)(x)=s x s^{*}$ for $x \in B$, is a $*$-isomorphism, i.e., Ad $s \in \operatorname{PAut} A$.
(iii) For $s \in \operatorname{PI} B$ we have $s \in N_{B}(A)^{+}$if and only if $s s^{*} \in A, s A \subset A s$ and $s^{*} A s \subset A$. In this case, $\theta:=\operatorname{Ad} s \in(\text { PAut } A)^{+}$with $r(\theta)=s^{*}$ s and $l(\theta)=s s^{*}$. In particular, for $s \in \operatorname{PI} B$ we have $s \in N_{B}(A)^{0}$ if and only if $s s^{*}, s^{*} s \in A$ and $A s=s A$.
(iv) If $s \in N_{B}(A)^{+}$and $t \in \operatorname{PI} N_{B}(A)$, then $s t, t s^{*} \in \operatorname{PI} N_{B}(A)$. The set $N_{B}(A)$ is a multiplicative semigroup closed under involution, and $N_{B}(A)^{0} \subset N_{B}(A)^{+}$are its subsemigroups. If $x_{1}, x_{2} \in N_{B}(A)$ (resp., PI $\left.N_{B}(A), R N_{B}(A), N_{B}(A)^{+}, N_{B}(A)^{0}\right)$ and $x_{1}=x_{1} h=k x_{1}, x_{2}=x_{2}(1-h)=(1-k) x_{2}$ for some $h, k \in \operatorname{Proj} Z(A)$, then $x_{1}+x_{2} \in N_{B}(A)\left(r e s p\right.$. , PI $\left.N_{B}(A), R N_{B}(A), N_{B}(A)^{+}, N_{B}(A)^{0}\right)$.
(v) Let $s, t \in N_{B}(A)^{+}$. We have $A s \subset$ At if and only if $s^{*} s \leq t^{*} t$, $s t^{*} \in A$, and in this case, st* $\in \operatorname{PI} A, A s=A\left(s t^{*}\right) t$. In particular, As $=A t$ if and only if $s^{*} s=t^{*} t$, $s t^{*} \in A$. We have $A s \subset t^{*} A$ if and only if $s s^{*} \leq t^{*} t, t s \in A$, and in this case, $t s \in \operatorname{PI} A$, $t^{*} A s^{*} s=t^{*} s^{*} s A=s A$. In particular, $A s=t^{*} A$ if and only if $s s^{*} \leq t^{*} t, t t^{*} \leq s^{*} s$ and $t s \in A$, and in this case, $A s=t^{*} A=A r=r A$ for some $r \in N_{B}(A)^{0}$.
(vi) If $X \in \operatorname{RINV}_{B}(A)$, then $X=A s A$ for some $s \in R N_{B}(A)$. In particular, if $X \in$ $\operatorname{INV}_{B}(A)^{+}\left(\right.$resp., $\left.\operatorname{INV}_{B}(A)^{0}\right)$, then we may take s so that $s \in N_{B}(A)^{+}\left(\right.$resp., $\left.N_{B}(A)^{0}\right)$. Conversely, if $s \in R N_{B}(A)$, then $\theta:=\operatorname{Ad} s \in$ RPAut A with $r(\theta)=s^{*}$ s and $l(\theta)=s s^{*}$, $A s A \cong\langle\theta\rangle$, i.e., $A s A \in \operatorname{RINV}_{B}(A)$, and $A s A=\{a s b: a, b \in A\}$. Moreover $A s^{+} A$, $A s^{0} A$, etc. are respectively the positive, central parts of $A s A$, etc., i.e., $(A s A)^{+}=A s^{+} A$, $(\text { As } A)^{0}=A s^{0} A$, etc. (see Proposition 3.5).

Proof Part (i) is clear, since $1 \in A$.
(ii) If $s \in \operatorname{PI} B$ and $s^{*} s \in A$, then $s^{*} s A s^{*} s$ and $s A s^{*}$ are $*$-subalgebras of B, and $s^{*} s A s^{*} s \rightarrow s A s^{*}, x \mapsto s x s^{*}$, is a $*$-isomorphism. If, further, $s \in N_{B}(A)$, then $s A s^{*}=$ $s s^{*} A s s^{*}$, since $s A s^{*} \subset A$ implies $s A s^{*}=s s^{*}\left(s A s^{*}\right) s s^{*} \subset s s^{*} A s s^{*}$ and $s^{*} A s \subset A$ implies $s s^{*} A s s^{*} \subset s A s^{*}$, and the assertion follows.
(iii) Necessity: If $s \in N_{B}(A)^{+}$, then $s A=s s^{*} s A=s A s^{*} s \subset A s$, etc.

Sufficiency: For s and θ as above set $s^{*} s=r, s s^{*}=l$. Then we show that $r \in Z(A)$ and $\theta \in(\text { PAut } A)^{+}$with $r(\theta)=r$ and $l(\theta)=l$. By assumption, $l \in A, \theta(A)=s A s^{*} \subset$ $A s s^{*}=A l \subset A$, and $r=s^{*} \cdot 1 \cdot s \in s^{*} A s \subset A$. For $a \in A, s a \in s A \subset A s$ and $s a=a^{\prime} s$ for some $a^{\prime} \in A$; so $\theta(a)=s a s^{*}=a^{\prime} s s^{*}$ and $s a=a^{\prime} s=a^{\prime} s s^{*} s=\theta(a) s$. For $a, b \in A$ we have

$$
\begin{gathered}
\theta\left(a^{*}\right)=s a^{*} s^{*}=\left(s a^{*} s^{*}\right)^{*}=\theta(a)^{*} \\
\theta(a b) s=s(a b)=(s a) b=\theta(a) s b=\theta(a) \theta(b) s, \\
\theta(a b)=\theta(a b) s s^{*}=\theta(a) \theta(b) s s^{*}=\theta(a) \theta(b)
\end{gathered}
$$

We have $\theta(A)=l A l$, since $\theta(A)=\theta(A)^{*} \subset A l \cap l A=l A l$ and $s^{*} A s \subset A$ implies $l A l=s s^{*} A s s^{*} \subset s A s^{*}=\theta(A)$. We have $r \in Z(A)$, since for all $a \in A$,

$$
\begin{gathered}
a r=a s^{*} s=\left(s a^{*}\right)^{*} s=\left(\theta\left(a^{*}\right) s\right)^{*} s=s^{*} \theta(a) s, \\
r a=\left(a^{*} r\right)^{*}=\left(s^{*} \theta\left(a^{*}\right) s\right)^{*}=s^{*} \theta(a) s=a r
\end{gathered}
$$

Ker $\theta=(1-r) A$, since $s a s^{*}=0$ if and only if $s^{*} s a=s^{*} s a s^{*} s=0$, and the assertion follows.
(iv) If $x, y \in N_{B}(A)$, then $x y \in N_{B}(A)$. For s, t as above, $s^{*} s \in Z(A), t t^{*}, t^{*} t \in A$, and

$$
\begin{aligned}
s t(s t)^{*} s t & =s t t^{*} s^{*} s t=s s^{*} s t t^{*} t=s t \\
t s^{*}\left(t s^{*}\right)^{*} t s^{*} & =t s^{*} s t^{*} t s^{*}=t t^{*} t s^{*} s s^{*}=t s^{*}
\end{aligned}
$$

If $s, t \in N_{B}(A)^{+}$, then $(s t)^{*} s t \in Z(A)$ and $s t \in N_{B}(A)^{+}$. Indeed, $(s t)^{*} s t=t^{*} s^{*} s t$ is the inverse image of $\left(s^{*} s\right)\left(t t^{*}\right) \in Z\left(t t^{*} A t t^{*}\right)$ under the $*$-isomorphism $\operatorname{Ad} t: t^{*} t A \rightarrow$ $t t^{*} A t t^{*}$ (see (iii)). Hence the second assertion follows. To see the last assertion, it suffices to note that for x_{1}, x_{2} as above $x_{1} A x_{2}=x_{1} h A(1-h) x_{2}=\{0\}$ and similarly $x_{2} A x_{1}=\{0\}$.
(v) If $A s \subset A t$, then $s \in A t, s=s t^{*} t, s^{*} s=s^{*} s t^{*} t$ and $s t^{*} \in A s t^{*} \subset A t t^{*} \subset A$. Further $s t^{*} \in \operatorname{PI} A$ by (iv), and $A s=A\left(s t^{*}\right) t$. Conversely, if $s^{*} s \leq t^{*} t$, $s t^{*} \in A$, then $s=s s^{*} s=s s^{*} s t^{*} t=s t^{*} t \in A t$ and $A s \subset A t$.

If $A s \subset t^{*} A$, then $s \in t^{*} A, s=t^{*} t s, s s^{*} \leq t^{*} t$ and $t s \in t A s \subset t t^{*} A \subset A$. Further $s t \in \operatorname{PI} A$ and $A s=t^{*} s^{*} s A$ as above. Hence, if $A s=t^{*} A$, then $t t^{*}=t t^{*} s^{*} s$, $t t^{*} \leq s^{*} s$. Conversely, if $s s^{*} \leq t^{*} t, t s \in A$, then, since $t^{*} t \in Z(A)$ and $t A \subset A t$ by (iii), $A s=A t^{*} t s=t^{*} t A s \subset t^{*} A t s \subset t^{*} A$.

Finally, suppose $A s=t^{*} A$. Then with $u:=s t \in \operatorname{PI} A$ we have $u^{*} u=t^{*} s^{*} s t=$ $t^{*} t \in Z(A)$, since $t t^{*} \leq s^{*} s$, and $u u^{*}=s t t^{*} s^{*} \leq s s^{*} \leq t^{*} t$. Hence, by (WSB),
$v^{*} v=s s^{*}$ and $v v^{*}=t^{*} t$ for some $v \in \operatorname{PI} A$. Then $r:=v s \in N_{B}(A)^{0}$, since $r^{*} r=$ $s^{*} v^{*} v s=s^{*} s s^{*} s=s^{*} s \in Z(A)$ and $r r^{*}=v s s^{*} v^{*}=v v^{*} v v^{*}=v v^{*}=t^{*} t \in Z(A)$, and $A s=A r$, since $v^{*} v=s s^{*}$.
(vi) If there is an isomorphism $\tau:\langle\theta\rangle=A l(\theta) \rightarrow X \in \operatorname{INV}_{B}^{\prime}(A)$ for some $\theta \in$ (PAut $A)^{+}$, then with $s:=\tau(l(\theta)) \in B$ we have $X=\tau(A l(\theta))=A s, s \in N_{B}(A)^{+}$, and $\theta=\operatorname{Ad} s$ as in the proof of Proposition 3.4(i). Hence, in view of (iv) and (v), the first assertion follows.

If $s \in \operatorname{PI} N_{B}(A)$, then $\operatorname{Ad} s \in \operatorname{PAut} A$ by (ii). If, further, $s \in R N_{B}(A)$ and $h \leq s^{*} s$, $s(1-h) s^{*} \in Z(A)$ for some $h \in \operatorname{Proj} Z(A)$, then $s h,(1-h) s^{*} \in N_{B}(A)^{+}$, and by (iii), $\operatorname{Ad}(s h), \operatorname{Ad}\left((1-h) s^{*}\right) \in(\text { PAut } A)^{+}$, and AshA $=A s h \rightarrow A s h s^{*}, x \mapsto x h s^{*}$, gives an isomorphism $A s h A \cong\langle\operatorname{Ad}(s h)\rangle$. Similarly $A s(1-h) A=s(1-h) A \cong s^{*} s(1-h) A=$ $\left\langle\operatorname{Ad}\left((1-h) s^{*}\right)\right\rangle^{-1}=\langle\operatorname{Ad}(s(1-h))\rangle$, and $A s A=A s h+s(1-h) A \cong\langle\operatorname{Ad} s\rangle$. To see $A s A=\{a s b: a, b \in A\}$, since $A s A=A s h+s(1-h) A$, note that for $a, b \in A$ we have

$$
a s h+s(1-h) b=\left(a s h s^{*}+s(1-h) s^{*}\right) s\left(h s^{*} s+(1-h) b\right) .
$$

To see the last assertion it suffices to show that for $s \in R N_{B}(A)$ we have $A s A \in$ $\operatorname{INV}_{B}(A)^{+}$if and only if $s^{*} s=u^{*} u$ and $u u^{*} \in Z(A)$ for some $u \in \operatorname{PI} A$. Indeed, since $\left(s^{0}\right)^{*}$ is the positive part of $\left(s^{+}\right)^{*}$, the assertion for s^{0}, etc. follows from that for s^{+}. Further, if u as above exists, then $\operatorname{Ad}\left(s u^{*}\right) \in(\text { PAut } A)^{+}$and $A s A=A s u^{*} \cong$ $\left\langle\operatorname{Ad}\left(s u^{*}\right)\right\rangle$, since

$$
s A=s u^{*} u A=s u^{*} \cdot u u^{*} \cdot u A=s u^{*} u A u u^{*}=s A u s^{*} s u^{*} \subset A s u^{*} .
$$

Conversely, if $s \in R N_{B}(A)$, i.e., $h \leq s^{*} s$ and $s(1-h) s^{*} \in Z(A)$ for some $h \in \operatorname{Proj} Z(A)$, and $A s A \in \operatorname{INV}_{B}(A)^{+}$, then $A s h+s(1-h) A=A s A=A t$ for some $t \in N_{B}(A)^{+}$. Hence Ash $=A t h$ and $s(1-h) A=A t(1-h)$ with $s h,(1-h) s^{*}, t h, t(1-h) \in N_{B}(A)^{+}$. Then, as in the proof of $(\mathrm{v}), s^{*} s(1-h)=v^{*} v$ and $v v^{*}=t^{*} t(1-h)$ for some $v=v(1-h) \in$ PI A. Thus $u:=h+v \in \operatorname{PI} A$ satisfies $u^{*} u=h+v^{*} v=s^{*} s$ and $u u^{*}=h+v v^{*}=h+t^{*} t(1-h) \in Z(A)$.

Proposition 4.3 If A, B, etc. are as before, then
(i) $A \cdot R N_{B}(A) \cdot A:=\left\{a s b: a, b \in A, s \in R N_{B}(A)\right\} \subset N_{B}(A)$;
(ii) $x \in A \cdot R N_{B}(A) \cdot A \cap \operatorname{PI} B$ if and only if

$$
\exists s \in R N_{B}(A), \exists u, v \in \operatorname{PI} A, v v^{*}=s^{*} u^{*} u s, u^{*} u=s v v^{*} s^{*}: \quad x=u s v .
$$

Proof Part (i) is obvious, since $N_{B}(A)$ is closed under multiplication.
(ii) The sufficiency is clear, since $u S v$ as above gives a partial isomerty.

Necessity: Suppose $x=a s b \in \operatorname{PI} B$, where $a, b \in A$ and $s \in R N_{B}(A)$. We may assume further $s \in N_{B}(A)^{+}$. Indeed, for some $h \in \operatorname{Proj} Z(A)$ we have $h \leq s^{*} s$, $k:=s(1-h) s^{*} \in \operatorname{Proj} Z(A)$ and so $s h=(1-k) s, s(1-h)=k s, s=s h+s(1-h)$, with $\operatorname{sh},(s(1-h))^{*} \in N_{B}(A)^{+}$. Hence, if we have the expressions for $a(s h) b$ and $a(s(1-h)) b$ as above, then so do we for $a s b$. Then $\theta:=\operatorname{Ad} s \in(\operatorname{PAut} A)^{+}$(see Proposition 4.2(iii)), and since $x=a s b \in \operatorname{PI} B, x^{*} x \in A \cap \operatorname{Proj} B=\operatorname{Proj} A$. Let $b^{*}=v_{1}\left|b^{*}\right|$ be the polar decomposition of b^{*} with $v_{1} \in \operatorname{PI} A$ and $v_{1}^{*} v_{1}\left|b^{*}\right|=\left|b^{*}\right|$,
which exists, since A is an $A W^{*}$-algebra, and let $u:=a \theta\left(\left|b^{*}\right|\right), v:=v_{1}^{*} x^{*} x$. Then $v \in \mathrm{PI} A$ with $v v^{*} \leq s^{*} s=r(\theta)$ and $v^{*} v=x^{*} x$, since $x=a s b=a s b s^{*} s=x s^{*} s$ implies $v v^{*} \leq s^{*} s$ and $x=a s b=a s\left|b^{*}\right| v_{1}^{*}$ implies $x=x v_{1} v_{1}^{*}$. Hence $\theta\left(v v^{*}\right) \in \operatorname{Proj} A$, and

$$
\begin{aligned}
\theta\left(v v^{*}\right) & =s v v^{*} s^{*}=s v_{1}^{*} x^{*} x v_{1} s^{*}=s v_{1}^{*} b^{*} s^{*} a^{*} a s b v_{1} s^{*} \\
& =s v_{1}^{*} v_{1}\left|b^{*}\right| s^{*} a^{*} a s\left|b^{*}\right| v_{1}^{*} v_{1} s^{*}=s\left|b^{*}\right| s^{*} a^{*} a s\left|b^{*}\right| s^{*}=u^{*} u
\end{aligned}
$$

Thus $u \in \operatorname{PI} A, s^{*} u^{*} u s=s^{*} s v v^{*} s^{*} s=v v^{*}$, and

$$
x=a s b=a s b x^{*} x=a s s^{*} s\left|b^{*}\right| v_{1}^{*} x^{*} x=a s\left|b^{*}\right| s^{*} s v_{1}^{*} x^{*} x=u s v .
$$

The following property of A holds (SRU is short for "Square Root of a Unitary"):

$$
\left\{\begin{array}{l}
\text { For every } h \in \operatorname{Proj} Z(A), \text { every unitary } u \in h A\left(\text { i.e., } u^{*} u=u u^{*}=h\right), \tag{SRU}\\
\text { and every } * \text {-automorphism } \theta \text { of } h A \text { with } \theta(u)=u \text {, there exists a unitary } \\
v \in h \text { such that } v^{2}=u, \theta(v)=v .
\end{array}\right.
$$

Indeed, since in the notation above $\{x \in h A: \theta(x)=x\}$ is an $A W^{*}$-subalgebra of $h A$ and u generates its commutative $A W^{*}$-subalgebra, it suffices to show that a unitary u in a commutative $A W^{*}$-algebra A has a square root v in A. Regard A as $C(\Omega)$, the C^{*}-algebra of all continuous complex-valued functions on a stonean (extremely disconnected, compact Hausdorff) space Ω, and so u as a continuous function of Ω to $\mathbb{T}:=\{t \in \mathbb{C}:|t|=1\}$. The function $f: \mathbb{T} \rightarrow \mathbb{C}, f\left(e^{i r}\right)=e^{i r / 2}, r \in \mathbb{R}, 0 \leq r<2 \pi$, being continuous except at 1 , is a Baire function (a pointwise limit of a sequence of continuous functions in this case), and so is $v^{\prime}:=f \circ u$ on Ω, with $v^{\prime 2}=u$. Since Ω is stonean, $v^{\prime}=v$ except on a meager (of the first category) subset of Ω for some $v \in A$ (see [5] or [32, p. 104, 1.7; p. 113, 1.24]), and this v is the desired unitary.

Proposition 4.4 If $X \in \operatorname{RINV}_{B}(A)$ and $X=X^{*}$, then $X=$ AsA for some $s \in$ $R N_{B}(A)$, with $s^{0}=\left(s^{0}\right)^{*}$ and $s^{--}=\left(s^{++}\right)^{*}$, so that $s=s^{*}$.

Proof Suppose first $X=X^{*} \in \operatorname{INV}_{B}(A)^{0}$. Then, by Proposition 4.2(v), $X=A r$ for some $r \in N_{B}(A)^{0}$, and $A r=X=X^{*}=r^{*} A=A r^{*}$. Hence, by Proposition 4.2(v), $r^{*} r=r r^{*}=: h \in \operatorname{Proj} Z(A), r^{2}$ is a unitary in $h A$, and so $\theta:=(\operatorname{Ad} r) \mid h A$ is a *-automorphism of $h A$ with $\theta\left(r^{2}\right)=r^{2}$. Then, by (SRU), $v^{2}=r^{2}, \theta(v)=v$ for some unitary $v \in h A$, and $s:=v^{*} r$ satisfies the assertion. Indeed, $X=A s$ by Proposition 4.2(v), and $v^{*} r=\theta(v)^{*} r=r v^{*} r^{*} r=r v^{*}$. Hence

$$
\begin{gathered}
s^{*}=r^{*} v=v r^{*}=h v r^{*}=v^{*} v v r^{*}=v^{*} r^{2} r^{*}=v^{*} r=s, \\
s^{*} s=s s^{*}=s^{2}=v^{*} r v^{*} r=\left(v^{*}\right)^{2} r^{2}=\left(r^{*}\right)^{2} r^{2}=h .
\end{gathered}
$$

In general, we have $X=X^{++} \oplus X^{0} \oplus X^{--}$(see Proposition 3.5). Since this decomposition is unique and since $X=X^{*}$, we have $X^{--}=\left(X^{++}\right)^{*}$ and $\left(X^{0}\right)^{*}=X^{0}$. By the first paragraph and Proposition 4.2(v), $X^{0}=A s_{0}$ and $X^{++}=A s_{1}$ for some $s_{0} \in N_{B}(A)^{0}$ and $s_{1} \in N_{B}(A)^{+}$with $s_{0}^{*}=s_{0}$ and with $s_{0}^{2}, s_{1}^{*} s_{1}$ and $s_{1} s_{1}^{*}$ pairwise orthogonal. Then $s:=s_{1}+s_{0}+s_{1}^{*}$ satisfies the assertion.

5 The Picard Semigroup of a C^{*}-Algebra

Throughout this section A denotes a fixed C^{*}-algebra.

Definition 5.1 An invertible A-module is an algebraic invertible A-module (X, θ) in the sense of Definition 2.1 for which X is a left Hilbert A-module, and $\operatorname{INV}(A)$ denotes the set of all such modules (so $\operatorname{INV}(A) \subset \operatorname{INV}^{\prime}(A)$). That is, the inner product in X satisfies, in addition to (2.2)-(2.4),

$$
\begin{equation*}
\langle x, x\rangle \geq 0 \text { in } A, \forall x \in X \tag{5.1}
\end{equation*}
$$

and X is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$. Note further that $\operatorname{End}_{A}(X)$, each of whose elements is necessarily bounded, is a C^{*}-algebra. Denote by $K(X)$ (resp., $K_{r}(X), K_{l}(X)$) the norm closure of $F(X) \subset \operatorname{End}_{A}(X)$ (resp., $F_{r}(X), F_{l}(X) \subset A$, see (2.6)). Then these are closed two-sided ideals of C^{*}-algebras with $K_{r}(X)=\theta^{-1}(K(X))$, and (2.5) is rephrased as

$$
\begin{equation*}
K(X) \subset \theta\left((\operatorname{Ker} \theta)^{\perp}\right) \tag{5.2}
\end{equation*}
$$

A submodule of an invertible A-module means a norm closed sub- A-bimodule; an ideal of A means a norm closed two-sided one (hence a $*$-ideal) and so they belong to INV (A).

Note also that for $X \in \operatorname{INV}(A)$ and an ideal I of A, the sets $I \cdot X$ and $X \cdot I$, being norm closed [15, p. 268], are submodules of X and that $\operatorname{RINV}_{B}(A) \subset \operatorname{RINV}(A) \subset$ $\operatorname{INV}(A)$ if A is an $A W^{*}$-subalgebra of another $A W^{*}$-algebra B containing the unit (see Section 3 and Definition 4.1).

Define two operations, inversion and product, in $\operatorname{INV}(A)$ as follows. The inverse $(X, \theta)^{-1}=\left(X^{*}, \theta\right) \in \operatorname{INV}^{\prime}(A)$ of $(X, \theta) \in \operatorname{INV}(A)$ in the sense of Section 2 is also in $\operatorname{INV}(A)$, since (5.1) holds for X^{*} by (2), $\left\|x^{*}\right\|^{2}=\left\|\left\langle x^{*}, x^{*}\right\rangle\right\|=\left\|\theta^{-1}(\langle\cdot, x\rangle \cdot x)\right\|=$ $\|\langle\cdot, x\rangle \cdot x\|=\|x\|^{2}$ and so X^{*} is complete. Further (2.9), (2.10), etc. hold with $F(\cdot)$ replaced by $K(\cdot)$. For $\left(X_{j}, \theta_{j}\right) \in \operatorname{INV}(A), j=1,2$, define the product $\left(X_{1}, \theta_{1}\right) \otimes_{A}$ $\left(X_{2}, \theta_{2}\right)=\left(X_{1} \otimes_{\theta_{1}} X_{2}, \tilde{\theta}_{2}\right) \in \operatorname{INV}(A)$ as the norm completion of $\left(X_{1}, \theta_{1}\right) \odot_{A}\left(X_{2}, \theta_{2}\right)$ in Section 2. That is, $X_{1} \otimes_{\theta_{1}} X_{2}$ is the Hilbert A-module completion of $X_{1} \odot_{\theta_{1}} X_{2}$ [2, p. 130] and $\widetilde{\theta_{2}}: A \rightarrow \operatorname{End}_{A}\left(X_{1} \otimes_{\theta_{1}} X_{2}\right)$ is the natural extension of $\widetilde{\theta_{2}}$ in Section 2.

All the remaining arguments in Propositions 2.3 and 2.5 and Remarks 2.4 and 2.6 hold true with the obvious modifications (with $\odot_{A}, F(\cdot)$, etc. replaced by $\otimes_{A}, K(\cdot)$, etc.). We omit writing down the statements corresponding to those in 2.3-2.6, and we freely use them below. Note that the inclusions in the statement corresponding to Proposition 2.3(iii) become equalities.

Denote by $[X]$ the isomorphism class of $X \in \operatorname{INV}(A)$ and by $[\operatorname{INV}(A)]$ the set of all such $[X]$. Note that for ideals I, J of A regarded as invertible A-modules we have $[I]=[J]$ if and only if $I=J$, and so the brackets can be omitted in this case, and that the set of all ideals of A is a commutative inverse semigroup with the inverse $I^{-1}=I^{*}=I$ and the product $I J$ (this is norm closed). Moreover $K_{r}(X)$ and $K_{l}(X)$ depend only on the isomorphism class $[X]$.

Here recall (see for example [20]) that an inverse semigroup is a semigroup S such that there corresponds to each $x \in S$ a unique element $x^{-1} \in S$, called the inverse of x, satisfying $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$, and that the subset $\left\{x x^{-1}: x \in S\right\}$, which coincides with the subset of all idempotents in S, forms a commutative inverse subsemigroup of S.

Theorem 5.2

(i) The set $[\operatorname{INV}(A)]$ is an inverse semigroup with the inverse and product given by

$$
[X]^{-1}=\left[X^{-1}\right], \quad\left[X_{1}\right] \cdot\left[X_{2}\right]=\left[X_{1} \otimes_{A} X_{2}\right]
$$

its subsemigroup $\left\{[X] \cdot[X]^{-1}:[X] \in[\operatorname{INV}(A)]\right\}$ is identified with the semigroup of all ideals of A.
(ii) For an ideal I of A the set $[\operatorname{INV}(A)]_{I}:=\left\{[X] \in[\operatorname{INV}(A)]:[X] \cdot[X]^{-1}=\right.$ $\left.[X]^{-1} \cdot[X]=I\right\}$ is a subgroup of $[\operatorname{INV}(A)]$. In particular, if A is simple, then $[\operatorname{INV}(A)] \backslash\{0\}$ is a group.

Proof By the considerations above it suffices to show $[X] \cdot[X]^{-1} \cdot[X]=[X]$ for $X=(X, \theta) \in \operatorname{INV}(A)$ and the uniqueness of the inverse $[X]^{-1}$. We have

$$
X=K_{l}(X) \cdot X=X \cdot K_{r}(X)
$$

since for an approximate unit $\left\{u_{i}\right\}$ for $K_{l}(X)$ and $x \in X, \lim u_{i} \cdot x=x$ and since $\left(X \cdot K_{r}(X)\right)^{*}=K_{l}\left(X^{*}\right) \cdot X^{*}$. Hence

$$
[X] \cdot[X]^{-1} \cdot[X]=K_{l}(X) \cdot[X]=\left[K_{l}(X) \cdot X\right]=[X]
$$

Suppose $[X] \cdot[Y] \cdot[X]=[X]$ and $[Y] \cdot[X] \cdot[Y]=[Y]$ for $Y \in \operatorname{INV}(A)$. Then the first equality multiplied on both sides by $[X]^{-1}$ turns to $\left[K_{r}(X) \cdot Y \cdot K_{l}(X)\right]=[X]^{-1}$. Moreover $K_{r}(X)=K_{l}(Y)$ and $K_{l}(X)=K_{r}(Y)$, and it follows that $[Y]=[X]^{-1}$. Indeed,

$$
\begin{aligned}
K_{l}(X) & =[X] \cdot[X]^{-1}=[X] \cdot\left([X]^{-1} \cdot[X]\right) \cdot[X]^{-1} \\
& =[X] \cdot\left([X]^{-1} \cdot[Y]^{-1} \cdot[X]^{-1}[X] \cdot[Y] \cdot[X]\right)[X]^{-1} \\
& =K_{l}(X) \cdot[Y]^{-1} \cdot K_{r}(X) \cdot[Y] \cdot K_{l}(X) \\
& \subset K_{l}(X)[Y]^{-1} \cdot[Y] K_{l}(X)=K_{l}(X) K_{r}(Y) \subset K_{l}(X),
\end{aligned}
$$

so $K_{l}(X) K_{r}(Y)=K_{l}(X)$, and $K_{l}(X) \subset K_{r}(Y)$. Similarly $K_{r}(X) \subset K_{l}(Y)$, and the desired equalities follow.

Definition 5.3 We call the inverse semigroup $[\operatorname{INV}(A)]$ the Picard semigroup of A. This term comes from the fact that the group $[\operatorname{INV}(A)]_{A}$ above for $I=A$ coincides with the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(A)$ of A in [3].

The following result describes all the submodules of an invertible A-module X in terms of $K_{r}(X)$ or $K_{l}(X)$. Denote by $M(B)$ and $Z(B)$ the multiplier C^{*}-algebra and the center of a C^{*}-algebra B, respectively, and write $M_{j}(X)=M\left(K_{j}(X)\right), j=r, l$. As is well known [2, p. 129], $\operatorname{End}_{A}(X)=M(K(X))$ for any Hilbert A-module X.

Proposition 5.4

(i) For $(X, \theta) \in \operatorname{INV}(A)$ the map $I \mapsto(I \cdot X, \theta)$ is a bijection between the set of all ideals of $K_{l}(X)$ and the set of all submodules of (X, θ), with inverse given by $Y \mapsto K_{l}(Y)$, and similarly for the map $J \mapsto(X \cdot J, \theta)$ from the set of all ideals of $K_{r}(X)$.
(ii) For $(X, \theta) \in \operatorname{INV}(A)$ there is a $*$-isomorphism $\bar{\theta}: Z\left(M_{r}(X)\right) \rightarrow Z\left(M_{l}(X)\right)$ such that $x \hat{\theta}(a)=\bar{\theta}(a) \cdot x$ for all $a \in Z\left(M_{r}(X)\right)$ and $x \in X$, where $\hat{\theta}: M_{r}(X)=$ $M\left(K_{r}(X)\right) \rightarrow M(K(X))=\operatorname{End}_{A}(X)$ is the unique extension of the $*$-isomorphism $\theta \mid K_{r}(X): K_{r}(X) \rightarrow K(X)$, and the original left module operation of $K_{l}(X) \subset A$ on X is canonically extended to that of $M_{l}(X)$.

Proof (i) Note that X is a $K_{l}(X)-K_{r}(X)$-imprimitivity bimodule in the sense of Rieffel [28] if, on the left Hilbert A-module X, the module operation is restricted to $K_{l}(X)$, and the $K_{l}(X)$-valued and $K_{r}(X)$-valued inner products are defined respectively as the original one and $\langle x, y\rangle=\theta^{-1}(\langle\cdot, x\rangle \cdot y)$. Hence the assertion follows from [28] and Proposition 3.2.
(ii) For $a \in Z\left(M_{r}(X)\right)$ the map $x^{*} \mapsto\left(x \hat{\theta}\left(a^{*}\right)\right)^{*}, x \in X$, defines an element of $Z\left(\operatorname{End}_{A}\left(X^{*}\right)\right)$, written $\rho(a)$. Indeed, $a b=b a$ for $b \in A$, since

$$
M_{r}(X)=M\left(\theta^{-1}(K(X))\right)
$$

and $\theta^{-1}(K(X))$ is an ideal of A;

$$
\begin{aligned}
\left(b \cdot x^{*}\right) \rho(a) & =\left(x \theta\left(b^{*}\right)\right)^{*} \rho(a)=\left(x \theta\left(b^{*}\right) \hat{\theta}\left(a^{*}\right)\right)^{*} \\
& =\left(x \hat{\theta}\left(a^{*}\right) \theta\left(b^{*}\right)\right)^{*}=b \cdot\left(x^{*} \rho(a)\right) ;
\end{aligned}
$$

and $\rho(a) \in \operatorname{End}_{A}\left(X^{*}\right)$. Further, since $\hat{\theta}(a) \in Z\left(\operatorname{End}_{A}(X)\right)$, it follows that $\left(\left\langle\cdot, x^{*}\right\rangle\right.$. $\left.y^{*}\right) \rho(a)=\rho(a)\left(\left\langle\cdot, x^{*}\right\rangle \cdot y^{*}\right)$ for all $x, y \in X$ and that $\rho(a) \in Z\left(\operatorname{End}_{A}\left(X^{*}\right)\right)$. Denote by $\widehat{\left(\theta_{-1}\right)}: M_{l}(X)=M\left(K_{l}(X)\right)=M\left(K_{r}\left(X^{*}\right)\right) \rightarrow M\left(K\left(X^{*}\right)\right)=\operatorname{End}_{A}\left(X^{*}\right)$ the unique extension of the $*$-isomorphism $\theta_{-1} \mid K_{r}\left(X^{*}\right): K_{r}\left(X^{*}\right) \rightarrow K\left(X^{*}\right)$, and write $b \cdot x=$ $\left(x^{*} \widehat{\left(\theta_{-1}\right)}\left(b^{*}\right)\right)^{*}$ for $b \in M_{l}(X)$ and $x \in X$. Then $\bar{\theta}:={\widehat{\left(\theta_{-1}\right)}}^{-1} \circ \rho: Z\left(M_{r}(X)\right) \rightarrow$ $Z\left(M_{l}(X)\right)$ is a $*$-homomorphism such that

$$
x \hat{\theta}(a)=\left(x^{*} \rho\left(a^{*}\right)\right)^{*}=\left(x^{*}\left(\widehat{\theta_{-1}}\right) \circ \bar{\theta}\left(a^{*}\right)\right)^{*}=\bar{\theta}(a) \cdot x
$$

for $a \in Z\left(M_{r}(X)\right)$ and $x \in X$. By left-right symmetry, $\bar{\theta}$ has an inverse and it is a *-isomorphism.

As noted above, an invertible A-module X is a $K_{l}(X)-K_{r}(X)$-imprimitivity bimodule, and the definition of the Picard group $\operatorname{Pic}(A)$ involves the notion of $A-A$-imprimitivity bimodules. The following shows, conversely, that any I - J-imprimitivity bimodule for some ideals I, J of A is indeed an invertible A-module.

Proposition 5.5 Let X be a left Hilbert A-module such that there is a $*$-isomorphism $\theta: I \rightarrow K(X)$ for some ideal I of A. Then a unique $*$-homomorphism $\theta_{1}: A \rightarrow$ $\operatorname{End}_{A}(X)$ is defined so that $\theta_{1} \mid I=\theta$ and $\operatorname{Ker} \theta_{1}=I^{\perp}$. Hence $K(X) \subset \theta_{1}\left(\left(\operatorname{Ker} \theta_{1}\right)^{\perp}\right)$, and $\left(X, \theta_{1}\right)$ is an invertible A-module.

Proof If $\pi: A \rightarrow A / I^{\perp}$ is the quotient $*$-homomorphism, then $\pi \mid I$ is injective and $\pi(I)$ is an essential ideal of A / I^{\perp}. Hence we have canonically $\pi(I) \subset A / I^{\perp} \subset$ $M(\pi(I))$. Moreover $\theta: I \rightarrow K(X)$ and $\pi \mid I: I \rightarrow \pi(I)$ extend uniquely to $*$-isomorphisms $\hat{\theta}: M(I) \rightarrow M(K(X))=\operatorname{End}_{A}(X)$ and $\hat{\pi}: M(I) \rightarrow M(\pi(I))$. Then $\theta_{1}:=$ $\hat{\theta} \circ \hat{\pi}^{-1} \circ \pi: A \rightarrow \operatorname{End}_{A}(X)$ is a $*$-homomorphism with $\theta_{1} \mid I=\theta$ and $\operatorname{Ker} \theta_{1}=I^{\perp}$. To see the uniqueness of θ_{1} let θ_{2} be another such $*$-homomorphism. Then $\theta_{1} \mid\left(I+I^{\perp}\right)=$ $\theta_{2} \mid\left(I+I^{\perp}\right)$. Since $I+I^{\perp}$ is an essential ideal of A and so $I+I^{\perp} \subset A \subset M\left(I+I^{\perp}\right)$, the surjective $*$-homomorphisms $\theta_{j} \mid\left(I+I^{\perp}\right): I+I^{\perp} \rightarrow \theta(I)=K(X), j=1,2$, extend to unique $*$-homomorphisms $\left(\theta_{j} \mid\left(I+I^{\perp}\right)\right)^{\wedge}: M\left(I+I^{\perp}\right) \rightarrow M(K(X))=$ $\operatorname{End}_{A}(X)$ (see [25, p. 82, lines 3-4]). Hence $\left(\theta_{1} \mid\left(I+I^{\perp}\right)\right)^{\wedge}=\left(\theta_{2} \mid\left(I+I^{\perp}\right)\right)^{\wedge}$, and $\theta_{1}=\left(\theta_{1} \mid\left(I+I^{\perp}\right)\right)^{\wedge}\left|A=\left(\theta_{2} \mid\left(I+I^{\perp}\right)\right)^{\wedge}\right| A=\theta_{2}$.

6 The Picard Semigroup of a Monotone Complete C^{*}-Algebra

Throughout this section, A denotes a fixed monotone complete C^{*}-algebra. The proofs of Propositions 6.3, 6.4 and Theorem 6.5 are omitted, since they parallel those of the assertions in Sections 2 and 5.

We recall here the following facts, which will be used repeatedly later.
Remark 6.1 (i) If B is an $A W^{*}$-algebra and C is its C^{*}-subalgebra, then the multiplier algebra $M(C)$ of C is identified with the subset $\{x \in p B p: x C+C x \subset C\}$ of B, where p is the smallest projection of B with $p C=C$ (see [16,27]). Henceforth, in such a situation, we write $M(C)$ for the subset. In particular, if C is an ideal of B, then $M(C)=h B$ for some $h \in \operatorname{Proj} Z(B)$.
(ii) A left Hilbert A-module X is self-dual (i.e., each bounded module homomorphism of X into A is of the form $\langle\cdot, x\rangle: y \mapsto\langle y, x\rangle$ for some $x \in X$) if and only if there are a monotone complete C^{*}-algebra B and $e, f \in \operatorname{Proj} B$, with $C(f)=1$, so that X, A and $\operatorname{End}_{A}(X)$ are identified respectively with $f B e, f B f$ and $e B e$, where $a \cdot x=a x,\langle x, y\rangle=x y^{*} \in f B f=A$ for $a \in A=f B f, x, y \in X=f B e$, and $\langle\cdot, x\rangle \cdot y \in K(X)$ for $x, y \in X$ is identified with $x^{*} y \in e B e$. (See [12]; an obvious change in the presentation is needed here, since right, rather than left, A-modules are treated in [12], and note that additive completeness there is now known to be equivalent to monotone completeness, [29].) To be more explicit, we may take for some index set $I, B=A \bar{\otimes} B\left(l^{2}(I)\right)$, the monotone complete C^{*}-algebra consisting of matrices $\left[a_{i j}\right], i, j \in I$, with entries from $A, f=\left[\delta_{i_{0} i} \delta_{i_{0} j} 1\right]=1 \otimes e_{0}$ for some fixed $i_{0} \in I, e_{0}:=\left[\delta_{i_{0}} \delta_{i_{0} j}\right] \in B\left(l^{2}(I)\right)$, and $e=\left[\delta_{i j} e_{i}\right]$ for some $e_{i} \in \operatorname{Proj} A, i \in I$. Further, A and $f B f=\left\{\left[\delta_{i_{0} i} \delta_{i_{0}} a\right]: a \in A\right\}$ are identified by the $*$-monomorphism $\pi: A \rightarrow f B f \subset B$ defined by $\pi(a)=\left[\delta_{i_{0}} \delta_{i_{0} j} a\right]=a \otimes e_{0}$.

Definition 6.2 An invertible A-module (X, θ) is called self-dual if X is a self-dual left Hilbert A-module $\left(\operatorname{so~}_{\operatorname{End}}^{A}(X)\right.$ is a monotone complete C^{*}-algebra, $\left.[12,1.1]\right)$
and if the $*$-homomorphism $\theta: A \rightarrow \operatorname{End}_{A}(X)$ is normal (i.e., preserves the suprema of bounded increasing nets). Denote by $\operatorname{SDINV}(A)$ the set of all self-dual invertible A-modules.

Then $\operatorname{Ker} \theta=(1-h) A$ for some $h \in \operatorname{Proj} Z(A)$, and $\theta \mid h A$ is a $*$-isomorphism of $h A$ onto $\operatorname{End}_{A}(X)$, since $\theta(h A)=\theta\left((\operatorname{Ker} \theta)^{\perp}\right)$ is monotone closed in $\operatorname{End}_{A}(X)$ and so contains $M(K(X))=\operatorname{End}_{A}(X)$ by Remark 6.1(i). Thus a self-dual invertible A-module is identified with a pair (X, θ) of a self-dual left Hilbert A-module X and a $*$-isomorphism θ of $h A$ onto $\operatorname{End}_{A}(X)$ for some $h \in \operatorname{Proj} Z(A)$.

For $(X, \theta) \in \operatorname{SDINV}(A)$ define two central projections $z_{j}(X)=z_{j}(X, \theta), j=r, l$, of A, so that $M_{j}(X)=M\left(K_{j}(X)\right)=z_{j}(X) A$ (see Remark 6.1(i)), $\operatorname{Ker} \theta=\left(1-z_{r}(X)\right) A$ and $\theta \mid z_{r}(X) A: z_{r}(X) A \rightarrow \operatorname{End}_{A}(X)$ is a $*$-isomorphism. Write θ^{-1} for the inverse of $\theta \mid z_{r}(X) A$. Equivalently, $z_{j}(X)$ are the smallest central projections of A such that $z_{l}(X) \cdot x=x=x \cdot z_{r}(X)$ for all $x \in X$.

We introduce two operations in $\operatorname{SDINV}(A)$ as follows. First, note that the inverse $(X, \theta)^{-1}=\left(X^{*}, \theta_{-1}\right)$ of $(X, \theta) \in \operatorname{SDINV}(A)$ is also in $\operatorname{SDINV}(A)$. Indeed, as in Remark 6.1(ii), take B, e, f so that $X=f B e, A=f B f$, etc. Then, $\theta \mid h A$, where $h:=z_{r}(X)$, is a $*$-isomorphism of $h A$ onto $\operatorname{End}_{A}(X)=e B e ; k:=z_{l}(X)=C(e) f$, a central projection of $f B f=A$ (note that $M(f B e B f)=C(e) f B f) ; X^{*}$ is identified with $e B f=(f B e)^{*}$ equipped with the module operation $a \cdot x^{*} \cdot b=\theta(a) x^{*} b$ and the inner product $\left\langle x^{*}, y^{*}\right\rangle=\theta^{-1}\left(x^{*} y\right) \in h A$ for $a, b \in A$ and $x, y \in X ; \operatorname{End}_{A}\left(X^{*}\right)=$ $M(f B e B f)=k A$; and $\theta_{-1}: A \rightarrow \operatorname{End}_{A}\left(X^{*}\right)$ is identified with the map $a \mapsto k a$. Hence, via the $*$-isomorphism $\theta \mid h A, X^{*}$ is identified with $e B f$, regarded canonically as a left Hilbert $e B e$-module, so $X^{-1}=(X, \theta)^{-1}$ is self-dual, and $z_{r}\left(X^{-1}\right)=k=$ $z_{l}(X), z_{l}\left(X^{-1}\right)=h=z_{r}(X)$.

Next, for $\left(X_{j}, \theta_{j}\right) \in \operatorname{SDINV}(A), j=1,2$, define their product, which we denote $\left(X_{1}, \theta_{1}\right) \bar{\otimes}_{A}\left(X_{2}, \theta_{2}\right)$, as $\left(X_{1} \bar{\otimes}_{\theta_{1}} X_{2}, \widetilde{\theta_{2}}\right)$, where $X_{1} \bar{\otimes}_{\theta_{1}} X_{2}$ is the self-dual completion [12, 2.2] of the Hilbert A-module $X_{1} \otimes_{\theta_{1}} X_{2}$, i.e., a unique self-dual Hilbert A-module containing $X_{1} \otimes_{\theta_{1}} X_{2}$ and generated by it, and $\widetilde{\theta_{2}}$ is the $*$-homomorphism of A into End $A_{A}\left(X_{1} \bar{\otimes}_{\theta_{1}} X_{2}\right)$, which we obtain by extending each $\widetilde{\theta}_{2}(a) \in \operatorname{End}_{A}\left(X_{1} \otimes_{\theta_{1}} X_{2}\right)$ to the whole of $X_{1} \bar{\otimes}_{\theta_{1}} X_{2}$. The normality of $\widetilde{\theta}_{2}$ follows from the normality of the maps $a \mapsto$ $\left\langle\left(x_{1} \otimes x_{2}\right) \tilde{\theta}_{2}(a), x_{1} \otimes x_{2}\right\rangle=\left\langle x_{1} \theta_{1}\left(\left\langle x_{2} \theta_{2}(a), x_{2}\right\rangle\right), x_{1}\right\rangle$ for $x_{j} \in X_{j}$, and $\widetilde{\theta_{2}}$ is surjective, since $\widetilde{\theta}_{2}(A)$ is monotone closed in $\operatorname{End}_{A}\left(X_{1} \bar{\otimes}_{\theta_{1}} X_{2}\right)$, it contains $K\left(X_{1} \otimes_{\theta_{1}} X_{2}\right)$, and $X_{1} \otimes_{\theta_{1}} X_{2}$ generates $X_{1} \bar{\otimes}_{\theta_{1}} X_{2}$. Thus $\left(X_{1} \bar{\otimes}_{\theta_{1}} X_{2}, \widetilde{\theta}_{2}\right)$ is self-dual.

We see that a submodule (Y, θ) of $(X, \theta) \in \operatorname{SDINV}(A)$ is self-dual if and only if $Y=X \theta(h)=\bar{\theta}(h) \cdot X$ for some $h \in \operatorname{Proj}\left(z_{r}(X) Z(A)\right)$, where $\bar{\theta}$ is the $*$-isomorphism $z_{r}(X) Z(A)=Z\left(M_{r}(X)\right) \rightarrow Z\left(M_{l}(X)\right)=z_{l}(X) Z(A)$ in Proposition 5.4(ii) and we note that $\hat{\theta}$ there is just $\theta \mid z_{r}(X) A$. Indeed, identify X with $f B e$, with B, e, f as above. If (Y, θ) is self-dual and so Y is a self-dual Hilbert A-module, then $Y=X p=f B p$ for some $p \in \operatorname{Proj}\left(\operatorname{End}_{A}(X)\right)$, i.e., $p \in \operatorname{Proj} B, p \leq e[12,1.9]$, and that $p \in Z(e B e)$ follows, since $f B p B e=(f B p)(e B e) \subset f B p, f B p B(e-p)=0$ and $C(f)=1$. Hence $h=\theta^{-1}(p)$ is the desired central projection in $z_{r}(X) A$, and the reverse implication is clear.

Moreover the following version of Proposition 5.4 holds.

Proposition 6.3

(i) For $(X, \theta) \in \operatorname{SDINV}(A)$ the map $h \mapsto(X \cdot h, \theta)=(X \theta(h), \theta)$ is a bijection between $\operatorname{Proj} z_{r}(X) Z(A)$ and the set of all self-dual submodules of (X, θ), and similarly for the map $k \mapsto(k \cdot X, \theta)$ from $\operatorname{Proj} z_{l}(X) Z(A)$.
(ii) The *-isomorphism $\bar{\theta}: z_{r}(X) Z(A) \rightarrow z_{l}(X) Z(A)$ in Proposition 5.4 relates the two bijections above so that $x \theta(a)=\bar{\theta}(a) \cdot x$ for $a \in z_{r}(X) Z(A)$ and $x \in X$.

We regard an ideal of A of the form $h A$ for $h \in \operatorname{Proj} Z(A)$ canonically as a self-dual invertible A-module. Then we can state the following version of Proposition 2.3.

Proposition 6.4 Let $(X, \theta),\left(X_{j}, \theta_{j}\right)$, etc. be in $\operatorname{SDINV}(A)$.
(i) We have

$$
(X, \theta) \bar{\otimes}_{A}(X, \theta)^{-1} \cong z_{l}(X) A, \quad(X, \theta)^{-1} \bar{\otimes}_{A}(X, \theta) \cong z_{r}(X) A,
$$

and for $h, k \in \operatorname{Proj} Z(A)$ we have

$$
h A \bar{\otimes}_{A}(X, \theta) \cong(h \cdot X, \theta), \quad(X, \theta) \bar{\otimes}_{A} k A \cong(X \theta(k), \theta), \quad h A \bar{\otimes}_{A} k A \cong h k A
$$

(ii) We have

$$
\left(\left(X_{1}, \theta_{1}\right) \bar{\otimes}_{A}\left(X_{2}, \theta_{2}\right)\right)^{-1} \cong\left(X_{2}, \theta_{2}\right)^{-1} \bar{\otimes}_{A}\left(X_{1}, \theta_{1}\right)^{-1}
$$

(iii) We have, for $h, k \in \operatorname{Proj} Z(A)$,

$$
z_{r}(k \cdot X \cdot h)=(\bar{\theta})^{-1}\left(k z_{l}(X)\right) h, \quad z_{l}(k \cdot X \cdot h)=k \bar{\theta}\left(h z_{r}(X)\right)
$$

and

$$
\begin{gathered}
z_{r}\left(\left(X_{1}, \theta_{1}\right) \bar{\otimes}_{A}\left(X_{2}, \theta_{2}\right)\right)=\left(\overline{\theta_{2}}\right)^{-1}\left(z_{r}\left(X_{1}\right) z_{l}\left(X_{2}\right)\right) \\
\quad z_{l}\left(\left(X_{1}, \theta_{1}\right) \bar{\otimes}_{A}\left(X_{2}, \theta_{2}\right)\right)=\overline{\theta_{1}}\left(z_{r}\left(X_{1}\right) z_{l}\left(X_{2}\right)\right) .
\end{gathered}
$$

(iv) If $\tau_{j}: X_{j} \rightarrow Y_{j}, j=1,2$, are monomorphisms, then a monomorphism

$$
\tau_{1} \bar{\otimes} \tau_{2}: X_{1} \bar{\otimes}_{A} X_{2} \rightarrow Y_{1} \bar{\otimes}_{A} Y_{2}
$$

is defined by $\left(\tau_{1} \bar{\otimes}_{A} \tau_{2}\right)\left(x \otimes x_{2}\right)=\tau_{1}\left(x_{1}\right) \otimes \tau_{2}\left(x_{2}\right)$.
(v) The operation $\bar{\otimes}_{A}$ is associative in the sense of Proposition 2.3(v).

As in Theorem 5.2 we associate with the monotone complete C^{*}-algebra A the following inverse semigroup [$\operatorname{SDINV}(A)$], which we call the Picard semigroup of A :

Theorem 6.5

(i) The set $[\operatorname{SDINV}(A)]$ of all isomorphism classes $[X, \theta]$ of elements (X, θ) in $\operatorname{SDINV}(A)$ is an inverse semigroup with the inverse and product given by

$$
[X]^{-1}=\left[X^{-1}\right], \quad\left[X_{1}\right] \cdot\left[X_{2}\right]=\left[X_{1} \bar{\otimes}_{A} X_{2}\right]
$$

and its subsemigroup $\left\{[X] \cdot[X]^{-1}:[X] \in[\operatorname{SDINV}(A)]\right\}$ is identified with the multiplicative semigroup $\operatorname{Proj} Z(A)$ of all central projections of A.
(ii) For $h \in \operatorname{Proj} Z(A)$ the subset

$$
[\operatorname{SDINV}(A)]_{h}:=\left\{[X] \in[\operatorname{SDINV}(A)]:[X] \cdot[X]^{-1}=[X]^{-1} \cdot[X]=h A\right\}
$$

is a subgroup of $[\operatorname{SDINV}(A)]$. In particular, if A is a monotone complete $A W^{*}$-factor, then $[\operatorname{SDINV}(A)] \backslash\{0\}$ is a group.

The rest of this section establishes an isomorphism between [SDINV (A)] and the set of certain equivalence classes in PAut A, introducing an inverse semigroup structure in the latter set. Note that as A is an $A W^{*}$-algebra, all the results in Section 3 are available here.

In view of Definition 6.2, the regular invertible A-module $\langle\theta\rangle$ associated with $\theta \in$ RPAut A (see Definition 3.3) belongs to $\operatorname{SDINV}(A)$. It follows immediately that in the notation of Section 6,

$$
z_{r}(\langle\theta\rangle)=C(r(\theta)), \quad z_{l}(\langle\theta\rangle)=C(l(\theta))
$$

and that the $*$-isomorphism $C(r(\theta)) Z(A) \rightarrow C(l(\theta)) Z(A)$ defined in Proposition 5.4(ii) for $\langle\theta\rangle$ coincides with the $*$-isomorphism $\bar{\theta}$ defined in Section 3 for $\theta \in \operatorname{PAut} A$ (see also the argument before Proposition 6.3; this is the reason for the notational coincidence).

To state the following theorem we need a fact from [12, 2.10(ii)], whose omitted proof is filled in here. Let B be a monotone complete C^{*}-algebra and X a monotone closed triple subsystem of B (i.e., a linear subspace of B closed under orderconvergence such that $\left.X X^{*} X \subset X\right)$. Denote by $K_{r}(X), K_{l}(X)$ the norm closed linear spans of $X^{*} X, X X^{*}$, respectively, which are C^{*}-subalgebras of B. (Note that the usage of the subscripts r, l here is consistent with that in [12].) Then their monotone closures, $M_{r}(X), M_{l}(X)$, in B satisfy $X M_{r}(X) \subset X, M_{l}(X) X \subset X$, and so $K_{r}(X) M_{r}(X) \subset$ $K_{r}(X), M_{l}(X) K_{l}(X) \subset K_{l}(X)$, since $X K_{r}(X)+K_{l}(X) X \subset X$, and X is monotone closed in B (see $[10,18]$). Hence $M_{j}(X), j=r, l$, are monotone closed (so $A W^{*}$) subalgebras of B, and they are multiplier algebras of $K_{j}(X)$ realized in B (see Remark 6.1(i)). Moreover X is regarded canonically as a self-dual left Hilbert $M_{l}(X)$-module with $\operatorname{End}_{M_{l}(X)}(X)=M_{r}(X)$ or a self-dual right Hilbert $M_{r}(X)$-module with $\operatorname{End}_{M_{r}(X)}(X)=M_{l}(X)$. Indeed,

$$
L(X):=\left[\begin{array}{cc}
M_{l}(X) & X \\
X^{*} & M_{r}(X)
\end{array}\right]
$$

is a monotone closed C^{*}-subalgebra of $B \otimes M_{2}$, the monotone complete C^{*}-algebra of 2×2 matrices over B, and hence a monotone complete C^{*}-algebra, and the argument in Remark 6.1(ii) applies.

We also remark that if the above B is a von Neumann algebra, then a triple subsystem X of B is monotone closed in B if and only if it is σ-weakly closed in B. Indeed, the sufficiency is clear, since the supremum of a bounded increasing net in the self-adjoint part of B is a σ-weak limit of the net. Conversely, if X is monotone closed in B, then so is the $*$-algebra $L(X)$ in $B \otimes M_{2}$, and by [17], $L(X)$ and hence $\left[\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] L(X)\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ is σ-weakly closed in $B \otimes M_{2}$. Thus X is σ-weakly closed in B.

Theorem 6.6 We have $\operatorname{SDINV}(A)=\operatorname{RINV}(A)$. That is, for an invertible A-module (X, θ) the following conditions are equivalent:
(i) (X, θ) is self-dual;
(ii) (X, θ) is regular, i.e., isomorphic to $\langle\psi\rangle$ for some $\psi \in \operatorname{RPAut} A$;
(iii) There exists a monotone complete C^{*}-algebra B which contains X as a monotone closed triple subsystem, and $*$-isomorphisms $\theta^{\prime}: h A \rightarrow M_{r}(X), \psi: k A \rightarrow M_{l}(X)$ for some $h, k \in \operatorname{Proj} Z(A)$, so that the module operation and inner product in X are given by

$$
a \cdot x \cdot b=\psi(k a) x \theta^{\prime}(h b), \quad\langle x, y\rangle=\psi^{-1}\left(x y^{*}\right)
$$

for $a, b \in A, x, y \in X$, and the $*$-homomorphism θ is given by $a \mapsto h a \mapsto \theta^{\prime}(h a)$.
Proof The implications (i) \Rightarrow (iii), (ii) \Rightarrow (i), and (iii) \Rightarrow (i) follow from Remark 6.1 and the above arguments; it remains only to show (i) \Rightarrow (ii).

Let (X, θ) be self-dual. As in Remark 6.1(ii), take B, e, f so that $X=f B e, A=$ $f B f, \operatorname{End}_{A}(X)=e B e$ and $a \cdot x=a x,\langle x, y\rangle=x y^{*}$ for $a \in A, x, y \in X$. By (GC) (see Section 3) applied to $e, f \in \operatorname{Proj} B$ there exist $h \in \operatorname{Proj} Z(B)$ and $u, v \in \operatorname{PI} B$ such that

$$
h e=u^{*} u, \quad u u^{*} \leq h f, \quad(1-h) e \geq v^{*} v, \quad v v^{*}=(1-h) f
$$

Then $X_{1}:=h X$ and $X_{2}:=(1-h) X$ are submodules of X with $(X, \theta)=\left(X_{1}, \theta\right) \oplus$ $\left(X_{2}, \theta\right)$. With $e_{1}:=u u^{*} \in f B f=A$ we have

$$
X_{1} u^{*}=h f B e u^{*}=f B e u^{*}=f B u^{*}=f B f u u^{*}=A e_{1}
$$

and
$\theta_{1}:=(\operatorname{Ad} u) \circ \theta: A \rightarrow e B e \rightarrow h e B e=u^{*} u B u^{*} u \rightarrow u u^{*} B u u^{*}=u u^{*} f B f u u^{*}=e_{1} A e_{1}$
is a surjective normal $*$-homomorphism. Hence $\theta_{1} \in(\text { PAut } A)^{+}$when regarded as the composition of the map $a \mapsto k a$ and the $*$-isomorphism $\theta_{1} \mid k A$ for some $k \in$ $\operatorname{Proj} Z(A)$, and an isomorphism $\tau_{1}:\left(X_{1}, \theta\right) \rightarrow\left\langle\theta_{1}\right\rangle=\left(A e_{1}, \theta_{1}\right)$ is defined by $\tau_{1}(x)=$ $x u^{*}$. Moreover, with $e_{2}:=\theta^{-1}\left(v^{*} v\right) \in \theta^{-1}(e B e)=z_{r}(X) A$ we have
$v^{*} X_{2} \subset e B e, \quad \theta^{-1}\left(v^{*} X_{2}\right)=\theta^{-1}\left(v^{*}(1-h) f B e\right)=\theta^{-1}\left(v^{*} B e\right)=\theta^{-1}\left(v^{*} v e B e\right)=e_{2} A$,
and

$$
\begin{aligned}
\theta_{2}:=\theta^{-1} \circ\left(\operatorname{Ad} v^{*}\right): A & =f B f \rightarrow(1-h) f B f=v v^{*} B v v^{*} \rightarrow v^{*} v B v^{*} v \\
& =v^{*} v e B e v^{*} v \rightarrow e_{2} A e_{2}
\end{aligned}
$$

is a surjective normal $*$-homomorphism. Hence $\theta_{2} \in(\text { PAut } A)^{+}$, and an isomorphism $\tau_{2}:\left(X_{2}, \theta\right) \rightarrow\left\langle\theta_{2}\right\rangle^{-1}=\left(A e_{2}, \theta_{2}\right)^{-1}=\left(e_{2} A,\left(\theta_{2}\right)_{-1}\right)$ is defined by $\tau_{2}(x)=$ $\theta^{-1}\left(v^{*} x\right)$. We have $\psi:=\theta_{1} \oplus \theta_{2}^{-1} \in$ RPAut A, since

$$
\theta_{1}\left(l\left(\theta_{2}\right)\right)=\theta_{1}\left(e_{2}\right)=u \theta\left(\theta^{-1}\left(v^{*} v\right)\right) u^{*}=0
$$

and $\theta_{2}\left(l\left(\theta_{1}\right)\right)=\theta_{2}\left(e_{1}\right)=0$, and $(X, \theta) \cong\left\langle\theta_{1}\right\rangle \oplus\left\langle\theta_{2}\right\rangle^{-1}=\langle\psi\rangle$, as desired.

Corollary 6.7 For a monotone complete C^{*}-algebra B and its linear subspace X the following are equivalent:
(i) There exists a monotone closed C^{*}-subalgebra C of B, satisfying $C X+X C \subset X$ and $X X^{*}+X^{*} X \subset C$, so that X, regarded canonically as a left pre-Hilbert C-module, is a self-dual Hilbert C-module;
(ii) There exist a monotone closed C^{*}-subalgebra C of B and $s \in R N_{p B p}(C)$ such that $X=C s C$, where p is the unit of C;
(iii) X is monotone closed in B, and there exists a monotone closed C^{*}-subalgebra C of B such that $C X+X C \subset X$ and $X X^{*}+X^{*} X \subset C$;
(iv) X is a monotone closed triple subsystem of B such that $X^{*} X X+X X X^{*} \subset X$.

For X as in (iv), we may take $M_{r}(X)+M_{l}(X)$ as C in (i) or (ii) or (iii), and it is the smallest in the sense that such a C contains $M_{r}(X)+M_{l}(X)$ as a monotone closed twosided ideal.

Proof (i) \Rightarrow (ii): Note first that under the stated condition we may assume the unit p of C to be the unit 1 of B. Indeed, for $x \in X$ we have $x(1-p)=x-x p \in X$, $(x(1-p))^{*} x(1-p) \in X^{*} X \subset C=p C$, and $x(1-p)=0, x=x p$. Similarly $x=p x$, and so it suffices to consider $p B p$ instead of B.

If we define, for the self-dual Hilbert C-module X as above, a $*$-homomorphism $\theta: C \rightarrow \operatorname{End}_{C}(X)$ by $x \theta(a)=x a$, then $(X, \theta) \in \operatorname{SDINV}(C)$. Indeed, C, being monotone closed in B, is an $A W^{*}$-algebra, and by Remark 6.1(i), $M_{r}(X)=M\left(K_{r}(X)\right)=h C$ for some $h \in \operatorname{Proj} Z(C)$, since the norm closure, $K_{r}(X)$, of $X^{*} X$, is a two-sided ideal of C. Moreover, $\theta \mid h C$ is a $*$-isomorphism onto $\operatorname{End}_{C}(X)$, since its restriction to $K_{r}(X)$ is a $*$-isomorphism $K_{r}(X) \rightarrow K(X), M_{r}(X)=M\left(K_{r}(X)\right), M(K(X))=\operatorname{End}_{C}(X)$ and the multiplier algebras are unique; $\operatorname{Ker} \theta=(1-h) C$, since $\theta(a)=0$ for $a \in C$ if and only if $x^{*} y a=0$ in C for all $x, y \in X$ if and only if $h a=0$; and the assertion follows. Then, by Theorem 6.6, (i) \Rightarrow (ii), $X \cong\langle\theta\rangle$ for some $\theta \in$ RPAut C. If $\langle\theta\rangle=\left\langle\theta_{1}\right\rangle \oplus\left\langle\theta_{2}\right\rangle^{-1}=C l\left(\theta_{1}\right) \oplus l\left(\theta_{2}\right) C$ for $\theta_{1}, \theta_{2} \in(\text { PAut } C)^{+}$and τ is an isomorphism of $\langle\theta\rangle$ onto X, then $s:=\tau\left(l\left(\theta_{1}\right) \oplus l\left(\theta_{2}\right)\right) \in R N_{B}(C)$ and $X=C s C$.
(ii) \Rightarrow (iii): It suffices to show that $C s C$ is monotone closed in B. As above we may assume that the units of C and B coincide. For some $h \in \operatorname{Proj} Z(C)$ we have $h \leq s^{*} s, s(1-h) s^{*} \in \operatorname{Proj} Z(C)$, and $C s C=C s h+s(1-h) C$. Suppose that $x_{i} \rightarrow x(O)$ (x_{i} order-converges to x in B) for some $x_{i} \in C s C$ and $x \in B$. Then $x_{i} h s^{*} \rightarrow x h s^{*}(O)$, $x_{i} h s^{*} \in C s h s^{*}$, and $C s h s^{*}$ is monotone closed in B, since so is C and shs* \in Proj C. Hence $x h s^{*} \in C s h s^{*}$, and $x h=x h s^{*} s \in C s h s^{*} s=C s h$, since $x_{i} h \in C s h$ and so $x_{i} h s^{*} s=x_{i} h$. Similarly, $x(1-h) \in s(1-h) C$, since $s^{*} x_{i}(1-h) \in s^{*} s(1-h) C$, $s^{*} s(1-h) C$ is monotone closed in B and $s s^{*} x_{i}(1-h)=x_{i}(1-h)$. Thus $x=$ $x h+x(1-h) \in C s C$, as desired.
(iii) \Rightarrow (iv): If C is as in (iii), then $X X^{*} X=\left(X X^{*}\right) X \subset C X \subset X$ and $X^{*} X X+$ $X X X^{*} \subset C X+X C \subset X$.
(iv) \Rightarrow (i): For X as in (iv), using the the argument and notation before Theorem 6.6, the monotone closure, C, of $M_{r}(X)+M_{l}(X)$ in B is a monotone closed C^{*}-subalgebra of B containing $M_{r}(X), M_{l}(X)$ as monotone closed two-sided ideals, since $X^{*} X \cdot X X^{*}=\left(X^{*} X X\right) X^{*} \subset X X^{*}, X^{*} X \cdot X X^{*}=X^{*}\left(X X X^{*}\right) \subset X^{*} X$, etc. imply $M_{r}(X) M_{l}(X)+M_{l}(X) M_{r}(X) \subset M_{r}(X) \cap M_{l}(X)$, and since $M_{r}(X), M_{l}(X)$ are
monotone closed C^{*}-subalgebras of B.
Hence $M_{r}(X)=h C, M_{l}(X)=k C$ for some $h, k \in \operatorname{Proj} Z(C)$, so $h \vee k=: p$ is the unit of $C, C=M_{r}(X)+M_{l}(X)$, and (i) follows from Theorem 6.6, (iii) \Rightarrow (i).

If X and C are as in (i) (or (ii), (iii)), then C contains $M_{r}(X), M_{l}(X)$ as monotone closed two-sided ideals, and hence the last assertion follows.

We can sharpen Proposition 4.3 in the monotone complete C^{*}-situation as follows.

Corollary 6.8 Let B be a monotone complete C^{*}-algebra containing A as a monotone closed C^{*}-subalgebra with the same unit. Then
(i) $A \cdot R N_{B}(A) \cdot A=N_{B}(A)$;
(ii) $x \in B$ is in PI $N_{B}(A)$ if and only if there exist $s \in R N_{B}(A)$, and $u, v \in \operatorname{PI} A$ such that $u^{*} u=s v v^{*} s^{*}, v v^{*}=s^{*} u^{*} u s$, and $x=u s v$.
(iii) For $x \in N_{B}(A), A x A$ is monotone closed in B if and only if there exist $s, s^{\prime} \in$ $N_{B}(A)^{+}, a, a^{\prime} \in A$, and finite $b_{i}, c_{i}, b_{j}{ }^{\prime}, c_{j}{ }^{\prime} \in A$ such that

$$
\begin{aligned}
& s s^{\prime}=0=s^{\prime} s, \quad x=a s+s^{\prime *} a^{\prime *}, \quad a=a s s^{*}, \quad a^{\prime}=a^{\prime} s^{\prime} s^{\prime *} \\
& s s^{*}=\left(\sum_{i} b_{i} a c_{i}\right) s s^{*}, \quad \text { and } \quad s^{\prime} s^{\prime *}=\left(\sum_{j} b_{j}^{\prime} a^{\prime} c_{j}^{\prime}\right) s^{\prime} s^{\prime *}
\end{aligned}
$$

Proof To see (i) and (ii) it suffices, by Proposition 4.3, to show that $N_{B}(A) \subset A$. $R N_{B}(A) \cdot A$. But, if $x \in N_{B}(A)$, then by Proposition 4.2(i) and Corollary 6.7, the monotone closure, $m-\mathrm{cl}_{B} A x A$, of $A x A$ in B equals $A s A$ for some $s \in R N_{B}(A)$. Hence $x \in A s A$, as desired.
(iii) As above, $A x A$ is monotone closed if and only if $A x A=A s A$ for some $s \in$ $R N_{B}(A)$. Since $s=s_{1}+s_{2}$ with $s_{1}=s h=k s, s_{2}=s(1-h)=(1-k) s$ for some $h, k \in$ $\operatorname{Proj} Z(A)$ and $s_{1}, s_{2}^{*} \in N_{B}(A)^{+}$, it suffices to show that $x=x s^{*} s$ and $A x A=A s$ for some $s \in N_{B}(A)^{+}$if and only if the asserted condition holds (with $s^{\prime}=a_{j}^{\prime}=b_{j}^{\prime}=0$). But, if $A x A=A s$, then $a:=x s^{*} \in A x A s^{*}=A s s^{*} \subset A, a=a s s^{*}, x=x s^{*} s=a s$, and $s s^{*} \in A s s^{*}=A x A s^{*}=A a\left(s A s^{*}\right)=A a s s^{*} A s s^{*}=A a A s s^{*}$. Hence $s s^{*}=\left(\sum_{i} b_{i} a c_{i}\right) s s^{*}$ for some $b_{i}, c_{i} \in A$. Conversely, if $x=a s, a=a s s^{*}$, and $s s^{*}=\left(\sum_{i} b_{i} a c_{i}\right) s s^{*}$, then $A x A=A a s A \subset A a A s \subset A s=A\left(\sum_{i} b_{i} a c_{i}\right) s=A\left(\sum_{i} b_{i} a s s^{*} c_{i}\right) s \subset A x s^{*} A s \subset A x A$, and $A x A=A s$.

By Theorem 6.6 each element of $\operatorname{SDINV}(A)$ is represented by an element of RPAut A. But, in order to describe the isomorphism from [SDINV (A)] onto certain equivalence classes of PAut A alluded to before, we need to consider not necessarily regular elements of PAut A and to relate them to regular ones.

Definition 6.9 Let $\theta, \psi \in \operatorname{PAut} A$. Write $\theta \simeq \theta_{1}$ if $\theta_{1}=(\operatorname{Ad} v) \circ \theta \circ(\operatorname{Ad} u)$ for some $u, v \in \operatorname{PI} A$ with $u u^{*}=r(\theta)$ and $v^{*} v=l(\theta) ; \theta \leq \psi$ if $r(\theta) \leq r(\psi) \leq C(r(\theta))$ and $\psi \mid r(\theta) \operatorname{Ar}(\theta)=\theta ; \theta \prec \psi$ if $\theta \simeq \theta_{1} \leq \psi$ for some $\overline{\theta_{1}} \in$ PAut A, or equivalently,

$$
\left\{\begin{array}{l}
\exists u, v \in \operatorname{PI} A \text { such that } \theta=(\operatorname{Ad} v) \circ \psi \circ(\operatorname{Ad} u), \tag{6.1}\\
u^{*} u=r(\theta), \quad u u^{*} \leq r(\psi) \leq C\left(u u^{*}\right), \quad \psi\left(u u^{*}\right)=v^{*} v
\end{array}\right.
$$

and $\theta \sim \psi$ if $\theta \geq \theta_{1} \simeq \psi_{1} \leq \psi$ for some $\theta_{1}, \psi_{1} \in \operatorname{PAut} A$. Call θ_{1} a perturbation of θ if $\theta \simeq \theta_{1}$, and ψ a regularization of θ if ψ is regular and $\theta \prec \psi$.

Remark 6.10 For later use we summarize here the following direct consequences of the definition:
(i) In the set PAut A, \simeq is an equivalence relation; and \leq and \prec are transitive, i.e., $\theta \leq \psi \leq \omega$ (resp., $\theta \prec \psi \prec \omega$) implies $\theta \leq \omega$ (resp., $\theta \prec \omega$). The relations \simeq, \leq, \prec and \sim are compatible with the operations $\theta \mapsto \theta^{-1}$ and $\theta \mapsto k \cdot \theta \cdot h$:

$$
\begin{gather*}
\theta \simeq \psi \Leftrightarrow \theta^{-1} \simeq \psi^{-1} \tag{6.2}\\
\left.\begin{array}{c}
\\
\forall h, k \in \operatorname{Proj} Z(A), \theta \simeq \psi \\
\theta \cdot h \simeq \psi \cdot \theta \cdot h \simeq k \cdot \psi \cdot h ; \\
\text { or } k \cdot \theta \simeq k \cdot \psi \cdot(1-h) \simeq \psi \cdot(1-h) \\
\end{array}\right\} \Longrightarrow \theta \simeq \psi \tag{6.3}
\end{gather*}
$$

and these are true with \leq, \prec, \sim replaced by \simeq. Moreover

$$
\begin{equation*}
\theta \leq \psi \simeq \psi_{1} \Longrightarrow \theta \prec \psi_{1} \tag{6.5}
\end{equation*}
$$

Indeed, suppose that $\theta=\psi \mid r(\theta) \operatorname{Ar}(\theta), r(\theta) \leq r(\psi) \leq C(r(\theta))$ and $\psi_{1}=(\operatorname{Ad} v) \circ$ $\psi \circ(\operatorname{Ad} u)$ for $u, v \in \operatorname{PI} A$ with $u u^{*}=r(\psi)$ and $v^{*} v=l(\psi)$. Set $u_{1}=r(\theta) u$ and $v_{1}=v l(\theta)$. Then $u_{1} u_{1}^{*}=r(\theta), v_{1}^{*} v_{1}=l(\theta)$, and $\theta \simeq\left(\operatorname{Ad} v_{1}\right) \circ \theta \circ\left(\operatorname{Ad} u_{1}\right)=$ $\psi_{1} \mid u^{*} r(\theta) u A u^{*} r(\theta) u, C\left(u^{*} r(\theta) u\right)=C\left(r(\theta) u u^{*} r(\theta)\right)=C(r(\theta)) \geq u^{*} u=r\left(\psi_{1}\right)$, since $u u^{*}=r(\psi) \leq C(r(\theta))$.
We have
(6.6)
$\theta \in \operatorname{PAut} A, u \in \operatorname{PI} A, u^{*} u \leq r(\theta), u u^{*} \leq r(\theta) \quad \Longrightarrow \quad \theta\left|u^{*} u A u^{*} u \simeq \theta\right| u u^{*} A u u^{*}$.
Indeed, $u \in r(\theta) \operatorname{Ar}(\theta)$, and with $\psi:=\theta \mid u^{*} u A u^{*} u$ we have $\theta \mid u u^{*} A u u^{*}=(\operatorname{Ad} \theta(u)) \circ$ $\psi \circ\left(\operatorname{Ad} u^{*}\right) \simeq \psi$.
(ii) The relation \sim is transitive and so it is an equivalence relation. Indeed, suppose that $\theta \sim \psi, \psi \sim \omega$, i.e., $\theta \geq \theta_{1} \simeq \psi_{1} \leq \psi, \psi \geq \psi_{2} \simeq \omega_{1} \leq \omega$ for some θ_{1}, etc. We have $r\left(\psi_{j}\right) \leq r(\psi)$ and $C\left(r\left(\psi_{j}\right)\right)=C(r(\theta)), j=1,2$. By ($\left.\mathrm{GC}^{\prime}\right)$ (see Section 3), $r\left(\psi_{1}\right) \geq u^{*} u, u u^{*} \leq r\left(\psi_{2}\right)$ for some $u \in \operatorname{PI} A$ with $C\left(u^{*} u\right)=C\left(r\left(\psi_{1}\right)\right)=C\left(r\left(\psi_{2}\right)\right)$, and

$$
\psi\left|u^{*} u A u^{*} u \leq \psi_{1} \leq \psi, \quad \psi\right| u u^{*} A u u^{*} \leq \psi_{2} \leq \psi
$$

Hence, by (6.5) and (6.6),

$$
\theta_{1} \geq \theta_{2} \simeq \psi\left|u^{*} u A u^{*} u \simeq \psi\right| u u^{*} A u u^{*} \simeq \omega_{2} \leq \omega_{1}
$$

for some θ_{2}, ω_{2}, and so $\theta \sim \omega$.
(iii) Clearly $\theta \sim \psi$ implies $C(r(\theta))=C(r(\psi)), C(l(\theta))=C(l(\psi))$ and $\bar{\theta}=\bar{\psi}$.
(iv) For inner partial $*$-automorphims $\operatorname{Ad} u, \operatorname{Ad} v$ of A for $u, v \in \operatorname{PI} A$ we have

$$
\operatorname{Ad} u \sim \operatorname{Ad} v \Longleftrightarrow C\left(u^{*} u\right)=C\left(v^{*} v\right)
$$

Indeed, suppose $C\left(u^{*} u\right)=C\left(v^{*} v\right)$. Then, by $\left(\mathrm{GC}^{\prime}\right), u^{*} u \geq w^{*} w, w w^{*} \leq v^{*} v$ for some $w \in \operatorname{PI} A$ with $C\left(w^{*} w\right)=C\left(u^{*} u\right)=C\left(v^{*} v\right)$, and
$\operatorname{Ad} u \geq \operatorname{Ad} u\left|w^{*} w A w^{*} w=: \theta \simeq\left(\operatorname{Ad} v w u^{*}\right) \circ \theta \circ\left(\operatorname{Ad} w^{*}\right)=\operatorname{Ad} v\right| w w^{*} A w w^{*} \leq \operatorname{Ad} v$.
The reverse implication is clear.
For $\theta \in \operatorname{RPAut} A$, denote by $[\theta]$ the isomorphism class in $[\operatorname{SDINV}(A)]$ of $\langle\theta\rangle \in$ $\operatorname{SDINV}(A)$.

Theorem 6.11

(i) Every $\theta \in \operatorname{PAut} A$ has a regularization ψ, which is unique in the sense that $[\psi]=$ [ψ^{\prime}] for another regularization ψ^{\prime}.
(ii) For $\theta_{1}, \theta_{2} \in$ PAut A and their regularizations ψ_{1}, ψ_{2} we have $\theta_{1} \sim \theta_{2}$ if and only if $\left[\psi_{1}\right]=\left[\psi_{2}\right]$, i.e., $\left\langle\psi_{1}\right\rangle \cong\left\langle\psi_{2}\right\rangle$.

The proof of Theorem 6.11 is contained in Lemmas 6.14(ii) and 6.15(ii).
Definition 6.12 Let B be a monotone complete C^{*}-algebra and $f \in \operatorname{Proj} B$ with $C(f)=1$. Consider PAut $f B f \subset$ PAut B canonically. A perturbed restriction of $\omega \in$ PAut B to $f B f$ is an element $\theta \in$ PAut $f B f$ such that $\theta \prec \omega$ in PAut B, (see (6.1)), $\theta=(\operatorname{Ad} v) \circ \omega \circ(\operatorname{Ad} u)$ for some $u, v \in \operatorname{PI} B$ such that

$$
\begin{equation*}
f \geq u^{*} u, \quad u u^{*} \leq r(\omega) \leq C\left(u u^{*}\right), \quad \omega\left(u u^{*}\right)=v^{*} v, \quad v v^{*} \leq f \tag{6.7}
\end{equation*}
$$

Lemma 6.13 Let B, f be as above.
(i) For $\theta_{1}, \theta_{2} \in$ PAut $f B f$ we have $\theta_{1} \simeq \theta_{2}$ (resp., $\left.\theta_{1} \leq \theta_{2}, \theta_{1} \sim \theta_{2}, \theta_{1} \prec \theta_{2}\right)$ in PAut $f B f$ if and only if so are θ_{1} and θ_{2} in PAut B.
(ii) Each $\omega \in$ PAut B has a perturbed restriction to $f B f$. If $\theta_{j} \in$ PAut $f B f$ and $\theta_{j} \prec \omega, j=1,2$, then $\theta_{1} \sim \theta_{2}$ in PAut $f B f$. If $\theta_{j} \in$ PAut $f B f, \theta_{j} \prec \omega, j=1,2$, and $r\left(\theta_{1}\right)=w^{*} w, w w^{*} \leq r\left(\theta_{2}\right)$ for some $w \in \operatorname{PI} B$, then $\theta_{1} \prec \theta_{2}$ in $f B f$.
(iii) If $\omega \in$ PAut B and $C(r(\omega)) f=u^{*} u$, $u u^{*} \leq r(\omega)$ for some $u \in$ PI B, then there exists a perturbed restriction of ω to $f B f$, which is regular in PAut $f B f$.

Proof (i) If $\theta_{1} \simeq \theta_{2}$ in PAut B, i.e., $\theta_{2}=(\operatorname{Ad} v) \circ \theta_{1} \circ(\operatorname{Ad} u)$ for $u, v \in \operatorname{PI} B$ with $u u^{*}=r\left(\theta_{1}\right), v^{*} v=l\left(\theta_{1}\right) \in f B f$, then $u^{*} u=r\left(\theta_{2}\right), v v^{*}=l\left(\theta_{2}\right) \in f B f$ and $u, v \in \operatorname{PI} f B f$. Hence $\theta_{1} \simeq \theta_{2}$ in PAut $f B f$, and the remaining assertions are clear.
(ii) Apply (GC^{\prime}) twice to obtain $u_{1}, v \in$ PI B so that

$$
\begin{gathered}
f \geq u_{1}^{*} u_{1}, \quad u_{1} u_{1}^{*} \leq r(\omega), \quad C\left(u_{1} u_{1}^{*}\right)=C(f) C(r(\omega))=C(r(\omega)), \\
\omega\left(u_{1} u_{1}^{*}\right) \geq v^{*} v, \quad v v^{*} \leq f, \quad C\left(v^{*} v\right)=C\left(\omega\left(u_{1} u_{1}^{*}\right)\right) .
\end{gathered}
$$

Then $u:=\omega^{-1}\left(v^{*} v\right) u_{1}$ and v satisfy (6.7), and $(\operatorname{Ad} v) \circ \omega \circ(\operatorname{Ad} u)$ is a perturbed restriction of ω to $f B f$. Indeed,

$$
u^{*} u \leq u_{1}^{*} u_{1} \leq f, \quad u u^{*}=\omega^{-1}\left(v^{*} v\right) u_{1} u_{1}^{*} \omega^{-1}\left(v^{*} v\right)=\omega^{-1}\left(v^{*} v\right)
$$

Further $C\left(v^{*} v\right)=C\left(\omega\left(u_{1} u_{1}^{*}\right)\right)$ implies

$$
C\left(u u^{*}\right)=C\left(\omega^{-1}\left(v^{*} v\right)\right)=C\left(u_{1} u_{1}^{*}\right)=C(r(\omega))
$$

since the $*$-isomorphism $\omega^{-1}: l(\omega) B l(\omega) \rightarrow r(\omega) \operatorname{Ar}(\omega)$ preserves central covers and since the central cover of $p \in \operatorname{Proj} l(\omega) B l(\omega)$ in $l(\omega) B l(\omega)$ equals $C(p) l(\omega)$, etc.

Suppose $\theta_{j}=\left(\operatorname{Ad} v_{j}\right) \circ \omega \circ\left(\operatorname{Ad} u_{j}\right)$ with u_{j}, v_{j} as in (6.7), $j=1,2$. Then $\theta_{j} \simeq$ $\omega \mid u_{j} u_{j}^{*} B u_{j} u_{j}^{*}$ and $C\left(u_{1} u_{1}^{*}\right)=C(r(\omega))=C\left(u_{2} u_{2}^{*}\right)$. Hence, as in Remark 6.10(ii),

$$
\omega\left|u_{1} u_{1}^{*} B u_{1} u_{1}^{*} \geq \omega\right| w^{*} w B w^{*} w \simeq \omega\left|w w^{*} B w w^{*} \leq \omega\right| u_{2} u_{2}^{*} B u_{2} u_{2}^{*}
$$

for some $w \in$ PI B with $u_{1}^{*} u_{1} \geq w^{*} w, w w^{*} \leq u_{2} u_{2}^{*}$ and $C\left(w^{*} w\right)=C(r(w))$, and so $\theta_{1} \sim \theta_{2}$ in PAut B, and hence in PAut $f B f$ by (i).

If, further, $u_{1}^{*} u_{1}=r\left(\theta_{1}\right)=w^{*} w, w w^{*} \leq r\left(\theta_{2}\right)=u_{2}^{*} u_{2}$ for $w \in$ PI B, then with $w_{1}:=u_{2} w u_{1}^{*}$ we have $u_{1} u_{1}^{*}=w_{1}^{*} w_{1}, w_{1} w_{1}^{*} \leq u_{2} u_{2}^{*}$, and we may take w_{1} as the above w to conclude that $\omega\left|u_{1} u_{1}^{*} B u_{1} u_{1}^{*} \prec \omega\right| u_{2} u_{2}^{*} B u_{2} u_{2}^{*}$ and $\theta_{1} \prec \theta_{2}$.
(iii) By (GC) applied to $\omega\left(u u^{*}\right)$ and f, take $k \in \operatorname{Proj} Z(B)$ and $v_{1}, v_{2} \in \operatorname{PI} B$ so that

$$
k \omega\left(u u^{*}\right)=v_{1}^{*} v_{1}, \quad v_{1} v_{1}^{*} \leq k f, \quad(1-k) \omega\left(u u^{*}\right) \geq v_{2}^{*} v_{2}, \quad v_{2} v_{2}^{*}=(1-k) f
$$

Set $k_{1}:=\omega^{-1}(k l(\omega)) \in \operatorname{Proj} Z(r(\omega) B r(\omega))$, so $k_{1}=h r(\omega)$ with $h:=C\left(k_{1}\right)$, and set $u_{1}:=k_{1} u=h r(\omega) u=h u, u_{2}:=\omega^{-1}\left(v_{2}^{*} v_{2}\right) u \in \operatorname{PI} B$. Then

$$
\begin{gathered}
u_{j} u_{j}^{*} \in \operatorname{PI} r(\omega) \operatorname{Br}(\omega), \quad \omega\left(u_{1} u_{1}^{*}\right)=\omega\left(k_{1} u u^{*}\right)=k \omega\left(u u^{*}\right)=v_{1}^{*} v_{1}, \\
\omega\left(u_{2} u_{2}^{*}\right)=v_{2}^{*} v_{2} \omega\left(u u^{*}\right) v_{2}^{*} v_{2}=v_{2}^{*} v_{2}, \quad u_{1}^{*} u_{1}=h u^{*} u=h C(r(\omega)) f=h f,
\end{gathered}
$$

since $k_{1} \leq r(\omega)$ implies $h=C\left(k_{1}\right) \leq C(r(\omega))$, and

$$
u_{2}^{*} u_{2}=u^{*} \omega^{-1}\left(v_{2}^{*} v_{2}\right) u \leq u^{*}\left(1-k_{1}\right) u u^{*} u=(1-h) u^{*} u=(C(r(\omega))-h) f .
$$

Hence $\psi_{j}:=\left(\operatorname{Ad} v_{j}\right) \circ \omega \circ\left(\operatorname{Ad} u_{j}\right) \in \operatorname{PAut} f B f, j=1,2$, and

$$
\begin{aligned}
r\left(\psi_{1}\right)=u_{1}^{*} u_{1}=h f, & l\left(\psi_{1}\right)=v_{1} v_{1}^{*} \leq k f \\
r\left(\psi_{2}\right)=u_{2}^{*} u_{2} \leq(1-h) f, & l\left(\psi_{2}\right)=v_{2} v_{2}^{*}=(1-k) f
\end{aligned}
$$

So ψ_{1} and ψ_{2} are orthogonal, ψ_{1} (resp., ψ_{2}) is positive (resp., negative) in PAut $f B f$, and $\psi:=\psi_{1} \oplus \psi_{2} \in$ PAut $f B f$ is regular. Then $\psi=(\operatorname{Ad} v) \circ \omega \circ\left(\operatorname{Ad} u^{\prime}\right)$ with $u^{\prime}:=u_{1}+u_{2}$ and $v:=v_{1}+v_{2}$, and u^{\prime} and v satisfy (6.7), i.e., $\psi \prec \omega$. Indeed, $v_{2} v_{2}^{*}=(1-k) f$ implies $C\left(v_{2}^{*} v_{2}\right)=(1-k) C(f)=1-k$, and so $C\left(u_{2} u_{2}^{*}\right)=$ $C\left(\omega^{-1}\left(v_{2}^{*} v_{2}\right)\right)=(1-h) C(r(\omega))=C(r(\omega))-h$ as in (ii). Hence $C\left(u^{\prime *} u^{\prime}\right)=$ $C\left(u_{1}{ }^{*} u_{1}\right)+C\left(u_{2}{ }^{*} u_{2}\right)=h+C(r(\omega))-h=C(r(\omega))$.

Lemma 6.14

(i) If $\theta, \psi \in$ PAut A and $\theta \prec \psi$, then we have $\psi \prec \omega$ in PAut B, where, as in Remark 6.1(ii), for some index set $I, B=A \bar{\otimes} B\left(l^{2}(I)\right), f=1 \otimes e_{0} \in \operatorname{Proj} B$, we identify A with $f B f$, and $\omega=\theta \bar{\otimes} \mathrm{id} \in$ PAut B.
(ii) Each element of PAut A has a regularization in PAut A.

Proof (i) We have $\psi \mid u^{*} u A u^{*} u=(\operatorname{Ad} v) \circ \theta \circ(\operatorname{Ad} u)$ for some $u, v \in \operatorname{PI} A$ with $u u^{*}=r(\theta), v^{*} v=l(\theta)$ and $u^{*} u \leq r(\psi) \leq C\left(u^{*} u\right)=C(r(\theta))$. By (GC) and a maximality argument there is a family $\left\{u_{i}\right\}_{i \in I}$ in PI A such that

$$
\begin{equation*}
r(\psi)=\sum_{i \in I} u_{i}^{*} u_{i}, \quad u_{i} u_{i}^{*} \leq r(\theta), \forall i \in I \tag{6.8}
\end{equation*}
$$

(Hence $\left\{u_{i}^{*} u_{i}\right\}_{i \in I}$ is orthogonal, i.e., $u_{i} u_{j}^{*}=0$ if $i \neq j$.) Then $u_{i}^{*} u_{i}=u_{i}^{*} r(\theta) u_{i}=$ $u_{i}^{*} u u^{*} u_{i}$, and since ψ is normal, for all $a \in r(\psi) \operatorname{Ar}(\psi)$,

$$
\begin{align*}
\psi(a) & =\sum_{i, j \in I} \psi\left(u_{i}^{*} u u^{*} u_{i} a u_{j}^{*} u u^{*} u_{j}\right) \tag{6.9}\\
& =\sum_{i, j \in I} \psi\left(u_{i}^{*} u\right) \psi\left(u^{*} u_{i} a u_{j}^{*} u\right) \psi\left(u^{*} u_{j}\right) \\
& =\sum_{i, j \in I} \psi\left(u_{i}^{*} u\right) v \theta\left(u_{i} a u_{j}^{*}\right) v^{*} \psi\left(u^{*} u_{j}\right) \\
& =\sum_{i, j \in I} v_{i} \theta\left(u_{i} a u_{j}^{*}\right) v_{j}^{*}
\end{align*}
$$

where $v_{i}:=\psi\left(u_{i}^{*} u\right) v \in \operatorname{PI} A$, and

$$
v_{i}^{*} v_{j}=v^{*} \psi\left(u^{*} u_{i} u_{j}^{*} u\right) v=\theta\left(u_{i} u_{j}^{*}\right)
$$

Consider $B=A \bar{\otimes} B\left(l^{2}(I)\right), f=1 \otimes e_{0} \in \operatorname{Proj} B$ as in Remark 6.1(ii), and set $\omega:=\theta \bar{\otimes} \mathrm{id} \in$ PAut $B, U:=\left[\delta_{i_{0} j} u_{i}\right], V:=\left[\delta_{i_{0}} v_{j}\right] \in B$, where $r(\omega)=r(\theta) \otimes 1$, $l(\omega)=l(\theta) \otimes 1$, and $(\theta \overline{\otimes i d})\left(\left[a_{i j}\right]\right)=\left[\theta\left(a_{i j}\right)\right], a_{i j} \in r(\theta) \operatorname{Ar}(\theta)$. Then

$$
\begin{aligned}
& U^{*} U=\left[\delta_{i_{0} i} \delta_{i_{0} j} \sum_{k} u_{k}^{*} u_{k}\right]=r(\psi) \otimes e_{0} \leq f \\
& V V^{*}=\left[\delta_{i_{0} i} \delta_{i_{0} j} \sum_{k} v_{k} v_{k}^{*}\right]=\left[\delta_{i_{0} i} \delta_{i_{0} j} \sum_{k} \psi\left(u_{k}^{*} u_{k}\right)\right]=l(\psi) \otimes e_{0} \leq f,
\end{aligned}
$$

and it follows from (6.6) and (6.7) that

$$
\begin{gathered}
U U^{*}=\left[u_{i} u_{j}^{*}\right]=\left[\delta_{i j} u_{i} u_{i}^{*}\right] \leq r(\theta) \otimes 1=r(\omega), \quad \omega\left(U U^{*}\right)=V^{*} V \\
(\operatorname{Ad} V) \circ \omega \circ(\operatorname{Ad} U)=\psi(\cdot) \otimes e_{0} \text { on }\left(r(\psi) \otimes e_{0}\right) B\left(r(\psi) \otimes e_{0}\right)=r(\psi) \operatorname{Ar}(\psi) \otimes e_{0}
\end{gathered}
$$

Hence, identifying A with $A \otimes e_{0}=f B f$ we obtain the conclusion.
(ii) For $\theta \in$ PAut A take as above a family $\left\{u_{i}\right\}_{i \in I}$ in PI A such that

$$
C(r(\theta))=\sum_{i \in I} u_{i}^{*} u_{i}, \quad u_{i} u_{i}^{*} \leq r(\theta), \forall i \in I
$$

set $B=A \bar{\otimes} B\left(l^{2}(I)\right), f=1 \otimes e_{0}, U=\left[\delta_{i_{j} j} u_{i}\right] \in B$, and $\omega=\theta \bar{\otimes}$ id \in PAut B, so that

$$
\begin{gathered}
C(r(\omega)) f=C\left(r(\theta) \otimes e_{0}\right)\left(1 \otimes e_{0}\right)=C(r(\theta)) \otimes e_{0}=U^{*} U \\
U U^{*}=\left[\delta_{i j} u_{i} u_{i}^{*}\right] \leq r(\theta) \otimes 1=r(\omega)
\end{gathered}
$$

and identify A with $f B f$ and θ with $\omega|f B f=\omega| A$, so that $\theta \prec \omega$. By Lemma 6.13(iii) there is a regular $\psi \in$ PAut A with $\psi \prec \omega$. Let $\psi=\psi_{1} \oplus \psi_{2}$ with ψ_{1} positive and ψ_{2} negative in PAut A. Then $r\left(\psi_{1}\right)=h f$ for some $h \in \operatorname{Proj} Z(A)$, and

$$
\begin{gathered}
\theta \cdot h \prec \omega \cdot h, \quad \psi_{1}=\psi \cdot h \prec \omega \cdot h, \\
h=C\left(r\left(\psi_{1}\right)\right)=C(r(\omega \cdot h)) \geq r(\theta \cdot h), \quad r\left(\psi_{1}\right)=h f \geq r(\theta \cdot h)
\end{gathered}
$$

Hence, by Lemma 6.13(ii), $\theta \cdot h \prec \psi_{1}$. In view of (6.2) it follows similarly that $\theta \cdot(1-h) \prec \psi_{2}$ and hence that $\theta \prec \psi$.

Lemma 6.15

(i) Suppose $\theta \prec \psi_{k}, k=1,2$, for $\theta, \psi_{k} \in$ PAut A.
(1) If ψ_{1} and ψ_{2} are both positive, then $\psi_{2}=(\operatorname{Ad} u) \circ \psi_{1}$ for some $u \in \operatorname{PI} A$ with $u^{*} u=l\left(\psi_{1}\right)$.
(2) If ψ_{1} is positive and ψ_{2} is negative, then $\psi_{2} \mid u^{*} u A u^{*} u=\psi_{1} \circ(\operatorname{Ad} u)$ for some $u \in \operatorname{PI} A$ with $u^{*} u \leq r\left(\psi_{2}\right)$ and $u u^{*}=r\left(\psi_{1}\right)$.
(3) If ψ_{1} and ψ_{2} are regular, then $\left\langle\psi_{1}\right\rangle \cong\left\langle\psi_{2}\right\rangle$.
(ii) For $\theta_{j} \in \operatorname{PAut} A, j=1,2$, and their regularizations ψ_{j} we have $\theta_{1} \sim \theta_{2}$ if and only if $\left\langle\psi_{1}\right\rangle \cong\left\langle\psi_{2}\right\rangle$.

Proof (i) There exists a monotone complete C^{*}-algebra $B, f \in \operatorname{Proj} B$ and $\omega \in$ PAut B so that $C(f)=1, f B f=A$ and $\psi_{k} \prec \omega, k=1,2$. Indeed, as in the proof of Lemma 6.14(i), take families $\left\{u_{k i}\right\}_{i \in I_{k}},\left\{v_{k i}\right\}_{i \in I_{k}}$ in PI $A, k=1,2$, satisfying (6.6) and (6.7) for θ and ψ_{k}. Set $I=I_{1} \cup I_{2}$ (disjoint union), $u_{1 i}=0=v_{1 i}$ for $i \in I_{2}$ and $u_{2 i}=0=v_{2 i}$ for $i \in I_{1}$ and consider, as before, $B=A \bar{\otimes} B\left(l^{2}(I)\right), f=1 \otimes e_{0} \in \operatorname{Proj} B$, $\omega=\theta \bar{\otimes} \mathrm{id} \in$ PAut $B, U_{k}=\left[\delta_{i_{0} j} u_{k i}\right], V_{k}=\left[\delta_{i_{0}} v_{k j}\right] \in B, k=1,2$, where $i_{0} \in I$ is a fixed element and e_{0} is the minimal projection in $B\left(l^{2}(I)\right)$ corresponding to it. Then, identifying A with $f B f$ and ψ_{k} with $\left(\operatorname{Ad} V_{k}\right) \circ \omega \circ\left(\operatorname{Ad} U_{k}\right)$, we obtain the assertion.
(1) Since $\psi_{k} \prec \omega$, we have $C\left(r\left(\psi_{k}\right)\right)=C(r(\omega))$, and since the ψ_{k} are positive in PAut $A=$ PAut $f B f$, we have

$$
r\left(\psi_{k}\right)=C\left(r\left(\psi_{k}\right)\right) f=C(r(\omega)) f, \quad U_{1}^{*} U_{1}=r\left(\psi_{1}\right)=r\left(\psi_{2}\right)=U_{2}^{*} U_{2}
$$

Then $u:=V_{2} \omega\left(U_{2} U_{1}^{*}\right) V_{1}^{*} \in f B f=A, u^{*} u=V_{1} V_{1}^{*}=l\left(\psi_{1}\right)$, and

$$
(\operatorname{Ad} u) \circ \psi_{1}=\left(\operatorname{Ad} u V_{1}\right) \circ \omega \circ\left(\operatorname{Ad} U_{1}\right)=\left(\operatorname{Ad} V_{2}\right) \circ \omega \circ\left(\operatorname{Ad} U_{2}\right)=\psi_{2}
$$

(2) As above, $U_{1}^{*} U_{1}=r\left(\psi_{1}\right)=C(r(\omega)) f$ and $V_{2} V_{2}^{*}=l\left(\psi_{2}\right)=C(l(\omega)) f$. Then $u:=U_{1}^{*} \omega^{-1}\left(V_{1}^{*} V_{2}\right) U_{2} \in A$ satisfies

$$
u u^{*}=U_{1}^{*} U_{1}=r\left(\psi_{1}\right), \quad u^{*} u \leq r\left(\psi_{2}\right), \quad \psi_{1} \circ(\operatorname{Ad} u)=\psi_{2} \mid u^{*} u A u^{*} u
$$

(3) If we consider the positive-negative decompositions of ψ_{k}, then the assertion follows from (1) and (2) by Proposition 3.4 and Remark 6.10(i).
(ii) If $\theta_{1} \sim \theta_{2}$, then $\omega \prec \theta_{1}, \omega \prec \theta_{2}$ for some $\omega \in$ PAut A, and so $\left\langle\psi_{1}\right\rangle \cong\left\langle\psi_{2}\right\rangle$ by (i). Suppose, conversely, that the ψ_{j} are regular, $\theta_{j} \prec \psi_{j}, j=1,2$, and $\left\langle\psi_{1}\right\rangle \cong\left\langle\psi_{2}\right\rangle$. We may assume $\theta_{j} \leq \psi_{j}$, and as above, it suffices to consider separately the two cases: (a) ψ_{1} and ψ_{2} are both positive; (b) ψ_{1} is positive and ψ_{2} is negative. (The case of the ψ_{j} being both negative reduces, by passing to inverses, to case (a).)

Case (a): $\quad \theta_{1} \leq \psi_{1} \simeq \psi_{2}$ by Proposition 3.4(i), so $\theta_{1} \prec \psi_{2}$ by (6.5). Since $\theta_{2} \leq \psi_{2}$ also, $\theta_{1} \sim \theta_{2}$ by Lemma 6.13(ii).

Case (b): By Proposition 3.4(ii), $\psi_{2} \mid u^{*} u A u^{*} u=\psi_{1} \circ(\operatorname{Ad} u)$ for some $u \in \operatorname{PI} A$ with $u^{*} u \leq r\left(\psi_{2}\right) \leq r\left(\psi_{1}\right)=u u^{*}$. Since $r\left(\theta_{1}\right) \leq C\left(r\left(\theta_{1}\right)\right)=r\left(\psi_{1}\right)=u u^{*} \in Z(A)$, $u^{*} r\left(\theta_{1}\right) u \in \operatorname{Proj} A$ and

$$
C\left(u^{*} r\left(\theta_{1}\right) u\right)=C\left(r\left(\theta_{1}\right) u u^{*}\right)=C\left(r\left(\theta_{1}\right)\right) u u^{*}=r\left(\psi_{1}\right)=C\left(r\left(\psi_{2}\right)\right)
$$

and since $\theta_{1} \leq \psi_{1}$ and $r\left(\theta_{1}\right) u\left(r\left(\theta_{1}\right) u\right)^{*}=r\left(\theta_{1}\right)$,

$$
\begin{aligned}
\theta_{1} \simeq \theta_{1} \circ\left(\operatorname{Ad} r\left(\theta_{1}\right) u\right) & =\psi_{1} \circ\left(\operatorname{Ad} r\left(\theta_{1}\right) u\right) \\
& =\psi_{1} \circ\left(\operatorname{Ad} u u^{*} r\left(\theta_{1}\right) u\right)=\psi_{2} \mid u^{*} r\left(\theta_{1}\right) u A u^{*} r\left(\theta_{1}\right) u \prec \psi_{2}
\end{aligned}
$$

Hence $\theta_{1} \sim \theta_{2}$ as in Case (a).

For each $\theta \in \operatorname{PAut} A$ write $\{\theta\},\langle\theta\rangle$, and $[\theta]$, respectively, for the equivalence class in PAut A of θ with respect to \sim, the regular, i.e., self-dual, invertible A-module $\langle\psi\rangle$ associated with a regularization ψ of θ (which is unique up to isomorphism by Theorem 6.11) and the isomorphism class $[\psi]$ in $[\operatorname{SDINV}(A)]$ of such a ψ. Denote by $\{$ PAut $A\}$ the set of all $\{\theta\}, \theta \in \operatorname{PAut} A$. Then Theorem 6.11 yields a bijection $\{\theta\} \mapsto[\theta]$ between $\{$ PAut $A\}$ and $[\operatorname{SDINV}(A)]$.

Now we define a "composition", $\theta \bullet \psi$, of any $\theta, \psi \in$ PAut A extending that in Section 3, so that we have

$$
\begin{equation*}
\langle\theta\rangle \bar{\otimes}_{A}\langle\psi\rangle \cong\langle\theta \bullet \psi\rangle \tag{6.10}
\end{equation*}
$$

Definition 6.16 Let $\theta, \psi \in$ PAut A. If the projections $r(\theta)$ and $l(\psi)$ are comparable in the sense that $h r(\theta) \leq h l(\psi),(1-h) r(\theta) \geq(1-h) l(\psi)$ for some $h \in \operatorname{Proj} Z(A)$, then define the composition, $\theta \circ \psi \in \operatorname{PAut} A$, called canonical, as

$$
\theta \circ \psi \mid(h r(\theta)+(1-h) l(\psi)) A(h r(\theta)+(1-h) l(\psi)) .
$$

(As is readily checked, $h r(\theta)+(1-h) l(\psi)$, and hence $\theta \circ \psi$ also, does not depend on the choice of h.) For general θ, ψ take, by $\left(\mathrm{GC}^{\prime}\right)$, any $u \in \operatorname{PI} A$ so that $u^{*} u \leq l(\psi)$, $u u^{*} \leq r(\theta)$ and $C\left(u^{*} u\right)=C(r(\theta)) C(l(\psi))$, and define the composition, $\theta \bullet u \psi$ or $\theta \bullet \psi$ for short, as $\theta \circ(\operatorname{Ad} u) \circ \psi \mid \psi^{-1}\left(u^{*} u\right) A \psi^{-1}\left(u^{*} u\right)$.

Clearly (PAut $A)^{+}$is a semigroup under the canonical composition, which contains the $*$-automorphism group Aut A as a subgroup. For $S \subset$ PAut A write $\{S\}:=$ $\{\{\theta\}: \theta \in S\} \subset\{$ PAut $A\}$. Note that by identifying each $h \in \operatorname{Proj} Z(A)$ with $^{\operatorname{id}}{ }_{h A}$, the identity map on $h A$, we have

$$
\operatorname{Proj} Z(A)=\{\operatorname{Proj} Z(A)\} \subset\{\text { PAut } A\}
$$

and that the operation $\theta \mapsto k \cdot \theta \cdot h$ for $\theta \in \operatorname{PAut} A$ and $h, k \in \operatorname{Proj} Z(A)$ is viewed as the composition in PAut A, i.e.,

$$
k \cdot \theta \cdot h=\left(\mathrm{id}_{k A}\right) \circ \theta \circ\left(\mathrm{id}_{h A}\right) .
$$

Theorem 6.17

(i) The set $\{\operatorname{PAut} A\}$ is an inverse semigroup with the inverse and product

$$
\{\theta\}^{-1}=\left\{\theta^{-1}\right\}, \quad\{\theta\} \cdot\{\psi\}=\{\theta \bullet \psi\}
$$

the map $\{\theta\} \mapsto[\theta]$ is an isomorphism of $\{\operatorname{PAut} A\}$ onto $[\operatorname{SDINV}(A)]$, and the multiplicative semigroup $\operatorname{Proj} Z(A)$ is its subsemigroup of all idempotents such that

$$
\{\text { PInt } A\}=\operatorname{Proj} Z(A) \subset\{\text { PAut } A\}
$$

(ii) The subsets $\{$ Aut $A\}$ and $\left\{(\operatorname{PAut} A)^{+}\right\}$are respectively a subgroup and a subsemigroup of $\{$ PAut $A\}$; the map Aut $A \rightarrow\{$ Aut $A\}, \theta \mapsto\{\theta\}$, is a group homomorphism with the inner $*$-automorphism group $\operatorname{Int} A$ as the kernel. It induces a group monomorphism Out $A=$ Aut $A / \operatorname{Int} A \rightarrow\{$ PAut $A\}$.

In view of Theorem 6.5, Remark 6.10(iv), Theorem 6.11 and the inverse semigroup structure of [$\operatorname{SDINV}(A)$], the proof of Theorem 6.17(i) is reduced to the proof of (6.10), which is given below, while (ii) follows from Proposition 3.4(i).

The following lemma shows that the isomorphism class of the right-hand side of (6.10) depends only on the equivalence classes $\{\theta\}$ and $\{\psi\}$.

Lemma 6.18 Let θ_{j}, ψ_{j}, and θ be in PAut A.
(i) If $\psi_{1} \sim \psi_{2}$ and $l\left(\psi_{j}\right) \leq r(\theta), j=1,2$, then $\theta \circ \psi_{1} \sim \theta \circ \psi_{2}$.
(ii) If $\psi_{1} \sim \psi_{2}$, then $\theta \bullet \psi_{1} \sim \theta \bullet \psi_{2}$.
(iii) If $\theta_{1} \sim \theta_{2}$ and $\psi_{1} \sim \psi_{2}$, then $\theta_{1} \bullet \psi_{1} \sim \theta_{2} \bullet \psi_{2}$.

Proof (i) We have

$$
\omega_{j} \leq \psi_{j}, j=1,2, \quad \omega_{2}=(\operatorname{Ad} v) \circ \omega_{1} \circ(\operatorname{Ad} u)
$$

for some ω_{j} and $u, v \in \operatorname{PI} A$ with $u u^{*}=r\left(\omega_{1}\right)$ and $v^{*} v=l\left(\omega_{1}\right)$. Then $\theta \circ \omega_{j} \leq \theta \circ \psi_{j}$, since $r\left(\theta \circ \omega_{j}\right)=r\left(\omega_{j}\right)$ and $r\left(\theta \circ \psi_{j}\right)=r\left(\psi_{j}\right)$, and

$$
\theta \circ \omega_{2}=(\operatorname{Ad} \theta(v)) \circ\left(\theta \circ \omega_{1}\right) \circ(\operatorname{Ad} u) \sim \theta \circ \omega_{1}
$$

since $v v^{*}=l\left(\omega_{2}\right) \leq l\left(\psi_{2}\right) \leq r(\theta)$ and $v^{*} v=l\left(\omega_{1}\right) \leq l\left(\psi_{1}\right) \leq r(\theta)$. Hence $\theta \circ \psi_{1} \sim$ $\theta \circ \psi_{2}$.
(ii) We have $\theta \bullet \psi_{j}=\theta \circ\left(\operatorname{Ad} u_{j}\right) \circ \psi_{j}$ for $u_{j} \in \operatorname{PI} A$ with $u_{j}^{*} u_{j} \leq l\left(\psi_{j}\right), u_{j} u_{j}^{*} \leq$ $r(\theta)$ and $C\left(u_{j}^{*} u_{j}\right)=C\left(l\left(\psi_{j}\right)\right) C(r(\theta))$. Since $\psi_{1} \sim \psi_{2}, C\left(l\left(\psi_{1}\right)\right)=C\left(l\left(\psi_{2}\right)\right)$ and so $C\left(u_{1}^{*} u_{1}\right)=C\left(u_{2}^{*} u_{2}\right)=: h$, say. Then

$$
\left(\operatorname{Ad} u_{1}\right) \circ \psi_{1} \prec h \cdot \psi_{1} \sim h \cdot \psi_{2} \succ\left(\operatorname{Ad} u_{2}\right) \circ \psi_{2}
$$

and $\left(\operatorname{Ad} u_{1}\right) \circ \psi_{1} \sim\left(\operatorname{Ad} u_{2}\right) \circ \psi_{2}$. Hence $\theta \bullet \psi_{1} \sim \theta \bullet \psi_{2}$ by (i).
(iii) By (ii) and the fact that $(\theta \bullet \psi)^{-1}=\psi^{-1} \bullet \theta^{-1}$, we have $\theta_{1} \bullet \psi_{1} \sim \theta_{1} \bullet \psi_{2}$, $\theta_{1} \bullet \psi_{2} \sim \theta_{2} \bullet \psi_{2}$, and so $\theta_{1} \bullet \psi_{1} \sim \theta_{2} \bullet \psi_{2}$.

Proof of equation (6.10) By Theorem 6.11 and Lemma 6.18 we may assume that θ and ψ are regular, and then, by taking their positive-negative decompositions we need only to consider the four cases separately: (a) θ and ψ are both positive; (b) θ is positive and ψ is negative; (c) θ is negative and ψ is positive; (d) θ and ψ are both negative.

In cases (a), (c) and (d), by Proposition 3.7(i), (iii), $\langle\theta\rangle \bar{\otimes}_{A}\langle\psi\rangle=\langle\theta\rangle \odot_{A}\langle\psi\rangle \cong\langle\omega\rangle$ for some $\omega \in$ PAut A of the form $\theta \bullet \psi$.

In case (b), by Theorem 6.6, there is an isomorphism $\tau:\langle\theta\rangle \bar{\otimes}_{A}\langle\psi\rangle \rightarrow\langle\omega\rangle$ for some $\omega \in \operatorname{RPAut} A$. Then, by Proposition 3.7(ii), there are $h \in \operatorname{Proj} Z(A)$ and $u_{1}, u_{2} \in \operatorname{PI} A$ such that $\omega_{1}:=\omega \cdot h$ is positive, $\omega_{2}:=\omega \cdot(1-h)$ is negative, the conditions there hold, and monomorphisms τ_{1}, τ_{2} are defined by the equalities there. Then, as noted in the proof of Proposition 3.7(ii), $h r(\theta \circ \psi) \leq r\left(\omega_{1}\right)$, and

$$
\begin{aligned}
\omega_{1} \mid h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi) & =\left(\operatorname{Ad} u_{1}^{*}\right) \circ(\theta \circ \psi) \mid h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi) \\
& \simeq \theta \circ \psi \mid h r(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi),
\end{aligned}
$$

since $\omega_{1}(h r(\theta \circ \psi))=u_{1}^{*} u_{1}$ and $(\theta \circ \psi)(h r(\theta \circ \psi))=u_{1} u_{1}^{*}$. We have

$$
u_{1}^{*} u_{1}=\omega_{1}(h r(\theta \circ \psi)) \leq l\left(\omega_{1}\right) \leq C\left(u_{1}^{*} u_{1}\right)
$$

since the image of τ_{1} is $A u_{1} A l\left(\omega_{1}\right)=A u_{1}^{*} u_{1} A l\left(\omega_{1}\right)$ and this generates $\left\langle\omega_{1}\right\rangle=\operatorname{Al}\left(\omega_{1}\right)$ as a self-dual Hilbert A-module. Hence $\omega_{1} \mid \operatorname{hr}(\theta \circ \psi) \operatorname{Ar}(\theta \circ \psi) \leq \omega_{1}$, and $(\theta \circ \psi) \cdot h \prec \omega_{1}$. Similarly $(\theta \circ \psi) \cdot(1-h) \prec \omega_{2}$, and so $\omega \sim \theta \circ \psi$.

Corollary 6.19 For each $e \in \operatorname{Proj} A$ the inclusion map eAe $\rightarrow C(e) A$ induces the equality $\{$ PAut $e A e\}=\{$ PAut $C(e) A\}$.

Proof Immediate from Lemma 6.13(ii) and Theorem 6.17.

Corollary 6.20

(i) We have $\{$ PAut $Z(A)\}=\operatorname{PAut} Z(A)$, and the map PAut $A \rightarrow \operatorname{PAut} Z(A), \theta \mapsto \bar{\theta}$, induces an inverse semigroup homomorphism $\{$ PAut $A\} \rightarrow \operatorname{PAut} Z(A),\{\theta\} \mapsto \bar{\theta}$, whose restriction to $\operatorname{Proj} Z(A)=\{\operatorname{PInt} A\}$ is the identity map.
(ii) If A is of type I , then the map above is an isomorphism, and $\{$ PAut $A\} \cong$ PAut $Z(A)$.

Proof (i) The first assertion is clear, and the second assertion follows from Remark 6.10(iii) and the definition of the product.
(ii) There is an abelian projection $e \in \operatorname{Proj} A$ with $C(e)=1$, and so $e A e=$ $Z(e A e)=e Z(A) \cong Z(A)$. Hence, by Corollary 6.19 and (i), it suffices to show that for each $\theta \in \operatorname{PAut} A$ its perturbed restriction, θ_{1}, to $e A e$ is recovered from $\bar{\theta} \in \operatorname{PAut} Z(A)$. Let $\theta_{1}=(\operatorname{Ad} v) \circ \theta \circ(\operatorname{Ad} u): u^{*} u A u^{*} u \rightarrow v v^{*} A v v^{*}$ with u, v as in (6.7). Then, since $u^{*} u \leq e$ and $v v^{*} \leq e, u^{*} u A u^{*} u=u^{*} u Z(A), v v^{*} A v v^{*}=v v^{*} Z(A)$, and these are canonically identified with $C\left(u^{*} u\right) Z(A)=C(r(\theta)) Z(A)=r(\bar{\theta}) Z(A)$, $C\left(v v^{*}\right) Z(A)=C(l(\theta)) Z(A)=l(\bar{\theta}) Z(A)$, respectively. If $h u^{*} u \in \operatorname{Proj} u^{*} u Z(A)$ with $h \in \operatorname{Proj} r(\bar{\theta}) Z(A)$, then

$$
\theta_{1}\left(h u^{*} u\right)=v \theta\left(h u u^{*}\right) v^{*}=v \theta(h r(\theta)) \theta\left(u u^{*}\right) v^{*}=v \bar{\theta}(h) l(\theta) v^{*}=\bar{\theta}(h) v v^{*},
$$

and the assertion follows.

7 A Decomposition of $\{$ PAut $A\}$

In this section we continue the study of the inverse semigroup $\{$ PAut $A\}$ for a monotone complete C^{*}-algebra A, assuming that A is totally of the same type (i.e., of type I, II, III, etc.) as an $A W^{*}$-algebra. The relevance of such a restriction and the notions of "globally central", "global factor" defined below is as follows. Let B be a monotone complete C^{*}-algebra which has a coaction of a discrete group with fixed-point subalgebra A. Then B is generated by the normalizer $N_{B}(A)$ as a monotone complete C^{*}-algebra. Hence, irrespective of the coaction, each globally central projection of A is always a central projection of B (see Proposition 7.2), and A is a global factor if B is an $A W^{*}$-factor (see Proposition 7.9).

Definition 7.1 Call $h \in \operatorname{Proj} Z(A)$ globally central if $\theta(h r(\theta))=h l(\theta)$ for all $\theta \in$ $(\text { PAut } A)^{+}$. For $e \in \operatorname{Proj} A$ set

$$
G C(e)=\sup \{l(\theta): \exists \theta \in \text { PAut } A, r(\theta) \leq e\}
$$

the supremum in $\operatorname{Proj} A$, and call this the globally central cover of e.

We have $C(e) \leq G C(e) \in \operatorname{Proj} Z(A)$, since the right-hand side above gives $C(e)$ when the membership of θ is restricted to inner partial $*$-automorphims of A and since $r((\operatorname{Ad} u) \circ \theta)=r(\theta), l((\operatorname{Ad} u) \circ \theta)=u l(\theta) u^{*}$ for $\theta \in \operatorname{PAut} A$ and unitary u in A and so $G C(e)$ commutes with such a u.

Denote by h_{ν} the central projection of A corresponding to the type ν direct summand of $A\left(\nu=\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{I}_{n}\right.$, etc. $)$.

Proposition 7.2

(i) For $h \in \operatorname{Proj} Z(A)$ the following are equivalent:
(1) For each $(X, \theta) \in \operatorname{SDINV}(A)$ and each $x \in X$ we have $h \cdot x=x \theta(h)=x \cdot h$;
(2) h is globally central;
(3) $\theta(h r(\theta))=h l(\theta)$ for all $\theta \in \operatorname{PAut} A$;
(4) $\bar{\theta}(h C(r(\theta)))=h C(l(\theta))$ for all $\theta \in$ PAut A.
(ii) For $e \in \operatorname{Proj} A, G C(e)$ is the smallest globally central projection of A majorizing e.
(iii) The projections $h_{\mathrm{I}}, h_{\text {II }}$ and $h_{\text {III }}$ are globally central, and we have the following direct sum decomposition as an inverse semigroup:

$$
\{\text { PAut } A\}=\left\{\text { PAut } h_{\mathrm{I}} A\right\} \oplus\left\{\text { PAut } h_{\mathrm{II}} A\right\} \oplus\left\{\text { PAut } h_{\mathrm{III}} A\right\}
$$

Proof (i) In view of Theorem 6.6 and the definition of $\langle\theta\rangle,(1) \Leftrightarrow(2)$ is clear, and $(4) \Leftrightarrow(3) \Rightarrow(2)$ is clear by Definition 3.1 and Definition 7.1.
$(2) \Rightarrow(3)$: Each $\theta \in$ PAut A has a regularization ψ, and (2) implies the validity of (3) for ψ and hence that of (4) for ψ. But, since $\bar{\theta}=\bar{\psi}$ (see Remark 6.10(iii)) and
(3) \Leftrightarrow (4) holds for fixed θ, (3) for θ follows.
(ii) Set $h=G C(e)$. For $\theta \in(\text { PAut } A)^{+}$and $\psi \in \operatorname{PAut} A$ with $r(\psi) \leq e$ we have

$$
\theta \circ \psi \in \operatorname{PAut} A, \quad r(\theta \circ \psi) \leq r(\psi) \leq e, \quad \theta(l(\psi) r(\theta))=l(\theta \circ \psi)
$$

This means that $\theta(l(\psi) r(\theta)) \leq h l(\theta)$, so $\theta(h r(\theta)) \leq h l(\theta)$ and hence that $\theta(h r(\theta))=$ $h l(\theta)$ by symmetry. Hence h is globally central. If k is globally central, $e \leq k$, and $\psi \in$ PAut $A, r(\psi) \leq e$, then $l(\psi)=\psi(r(\psi))=\psi(k r(\psi))=k l(\psi)$ by (i), and $l(\psi) \leq k$. Thus $h \leq k$.
(iii) It suffices to show the first assertion. We have $h_{\mathrm{I}}=C(e)$ for some abelian projection e of A. If $\theta \in$ PAut $A, r(\theta) \leq e$, then $l(\theta) A l(\theta)=\theta(r(\theta) \operatorname{Ar}(\theta)) \cong r(\theta) \operatorname{Ar}(\theta)$ and $l(\theta)$ is also abelian. Hence $G C(e) \leq h_{\mathrm{I}}$ and so $h_{\mathrm{I}}=G C(e)$. A similar argument, with e abelian replaced by e finite, shows that $h_{\mathrm{I}}+h_{\text {II }}$ is globally central and so are $h_{\text {II }}=\left(h_{\mathrm{I}}+h_{\mathrm{II}}\right)-h_{\mathrm{I}}$ and $h_{\mathrm{III}}=1-\left(h_{\mathrm{I}}+h_{\mathrm{II}}\right)$.

Remark 7.3 Let $h_{\text {min }}$ be the central projection of A which is the sum of all minimal central projections of A, i.e., $h_{\min } A$ is the largest direct summand of A which is a C^{*}-sum of monotone complete $A W^{*}$-factors. Then $h_{\min }$ is clearly globally central. The central projections $h_{\mathrm{II}_{1}}, h_{\mathrm{II}_{\infty}}$ and $h_{\mathrm{I}_{n}}(n<\infty)$ in $A\left(\mathrm{II}_{1}=\right.$ finite continuous, $\mathrm{II}_{\infty}=$ semifinite, properly infinite, continuous, $\mathrm{I}_{n}=$ homogeneous of order n) need not be globally central. Indeed, if B is a type II_{1} monotone complete $A W^{*}$-algebra and $A=B \oplus B \bar{\otimes} B\left(l^{2}(I)\right)\left(I\right.$ infinite), then $h_{\mathrm{II}_{1}}=1_{B} \oplus 0, h_{\mathrm{II}_{\infty}}=0 \oplus 1_{B \bar{\otimes} B\left(l^{2}(I)\right)}$, but $G C\left(h_{\mathrm{II}_{1}}\right)=G C\left(h_{\mathrm{II}_{\infty}}\right)=1$, since $B \cong B \otimes e=(1 \otimes e)\left(B \bar{\otimes} B\left(l^{2}(I)\right)(1 \otimes e)\right.$ for any minimal projection e of $B\left(l^{2}(I)\right)$. Similarly for $h_{I_{n}}$.

Now we consider the situations in which the equality $\{\operatorname{PAut} A\}=\left\{(\operatorname{PAut} A)^{0}\right\}$ holds.

Proposition 7.4

(i) If A is properly infinite and if every orthogonal family of nonzero equivalent projections in A is countable, then $\{$ PAut $A\}=\left\{(\text { PAut } A)^{0}\right\}$.
(ii) If A is of type $\mathrm{I}_{n}(n<\infty)$, i.e., $A=C(\Omega) \otimes M_{n}$, where Ω is a stonean space and M_{n} is the C^{*}-algebra of all $n \times n$ complex matrices, then we have RPAut $A=(\operatorname{PAut} A)^{0}$, i.e., each $\theta \in(\operatorname{PAut} A)^{+}$is of the form $\theta=(\operatorname{Ad} u) \circ\left(\theta_{1} \otimes \mathrm{id}\right) \in(\text { PAut } A)^{0}$, where $\theta_{1} \in \operatorname{PAut} C(\Omega)$, id is the identity map on M_{n} and $u \in \operatorname{PI} A$ with $u^{*} u=u u^{*}=$ $r\left(\theta_{1}\right) \otimes 1$.

Proof (i) It suffices to show under the assumptions that for every properly infinite $e \in \operatorname{Proj} A$ we have

$$
\begin{equation*}
e \sim C(e) \tag{7.1}
\end{equation*}
$$

Here and henceforth \sim and \prec, used in Definition 6.9, denote also the (Murray-von Neumann) equivalence and partial order for projections. Indeed, we have

$$
\{\text { PAut } A\}=\left\{(\text { PAut } A)^{0}\right\}
$$

if and only if for each $\theta \in(\text { PAut } A)^{+}$there is $\psi \in(\text { PAut } A)^{0}$ with $\theta \sim \psi$, or equivalently, for each $\theta \in(\operatorname{PAut} A)^{+}$there is $u \in \operatorname{PI} A$ such that $u^{*} u=l(\theta)$ and $(\operatorname{Ad} u) \circ \theta \in(\operatorname{PAut} A)^{0}$, i.e., $u^{*} u=l(\theta), u u^{*} \in \operatorname{Proj} Z(A)$ (see Remark 6.10(ii), Proposition 3.4(i)). Moreover, if $0 \neq \theta \in(\operatorname{PAut} A)^{+}$, then $r(\theta)$ is properly infinite, since A is, and so is $l(\theta)$, since $l(\theta) A l(\theta) \cong r(\theta) A$. Hence (7.1) ensures the existence of such a u. The validity of (7.1) under the assumptions would be well known. But, for the sake of completeness, we give the following standard argument (see [30, proof of 2.2.14]). To see (7.1) it suffices to show that if $e \in \operatorname{Proj} A$ is properly infinite, then

$$
h e \sim h \leq C(e)
$$

for some $0 \neq h \in \operatorname{Proj} Z(A)$, since $(1-h) e($ if $\neq 0)$ is also properly infinite and a maximality argument implies that we may take $h=C(e)$. By [1, Theorem 1, p. 103], there is a maximal infinite orthogonal family $\left\{e_{i}\right\}_{i \in I}$ of projections in A such that $e \sim e_{i} \leq e$ for all $i \in I$. Enlarge the family to obtain a maximal orthogonal family $\left\{e_{i}\right\}_{i \in I_{1}}, I \subset I_{1}$, in $C(e) A$ such that $e_{i} \sim e$ for all $i \in I_{1}$. Then, by the second assumption on countability, card $I=$ card $I_{1}=\aleph_{0}$. (The argument that follows uses only card $\left.I=\operatorname{card} I_{1} \geq \aleph_{0}.\right)$ By (GC) take $h \in \operatorname{Proj} Z(A), h \leq C(e)$, such that

$$
\begin{gathered}
\left(C(e)-\sum_{i \in I_{1}} e_{i}\right) h \prec e h \\
\left(C(e)-\sum_{i \in I_{1}} e_{i}\right)(C(e)-h) \succ e(C(e)-h) .
\end{gathered}
$$

By the maximality of $\left\{e_{i}\right\}_{i \in I_{1}}$, eh $\neq 0$ and $h \neq 0$. For a fixed $i_{0} \in I, e_{i_{0}} \sim e$, and $\left(C(e)-\sum_{i \in I_{1}} e_{i}\right) h \prec e_{i_{0}} h$. Adding this with $\left(\sum_{i \in I_{1}} e_{i}\right) h \sim\left(\sum_{i \in I_{\Lambda} \backslash\left\{i_{0}\right\}} e_{i}\right) h$ implies $h \prec\left(\sum_{i \in I_{1}} e_{i}\right) h, h \sim\left(\sum_{i \in I_{1}} e_{i}\right) h$. On the other hand, $\sum_{i \in I_{1}} e_{i} \sim \sum_{i \in I} e_{i}$ implies $h \sim\left(\sum_{i \in I} e_{i}\right) h \leq e h \leq h$, and so $h e \sim h, 0 \neq h \leq C(e)$, as desired.
(ii) If $\theta \in(\text { PAut } A)^{+}$, then $r(\theta)=\chi_{\Omega_{1}} \otimes 1$, where $\chi_{\Omega_{1}} \in C(\Omega)$ is the characteristic function of some clopen (closed and open) subset Ω_{1} of Ω, and $\theta: C\left(\Omega_{1}\right) \otimes M_{n} \rightarrow$ $l(\theta)\left(C(\Omega) \otimes M_{n}\right) l(\theta)$ is a $*$-isomorphism. Regard each element of $A=C(\Omega) \otimes M_{n}$ as a continuous function of Ω into M_{n}. Then for each $t \in \Omega$,

$$
\left\{l(\theta)(t) x(t) l(\theta)(t): x \in C(\Omega) \otimes M_{n}\right\}=\left\{\theta(x)(t): x \in C(\Omega) \otimes M_{n}\right\}
$$

being the image of a $*$-homomorphism of $C\left(\Omega_{1}\right) \otimes M_{n}$ into M_{n}, is M_{n} or $\{0\}$. Hence $l(\theta)(t)=1$ or 0 , so $l(\theta)=\chi_{\Omega_{2}} \otimes 1 \in \operatorname{Proj}(C(\Omega) \otimes 1)=\operatorname{Proj} Z(A)$ for some clopen $\Omega_{2} \subset \Omega$ so that $\theta(a \otimes 1)=\theta_{1}(a) \otimes 1$ for $a \in C\left(\Omega_{1}\right)$, and $\theta \circ\left(\left(\theta_{1}\right)^{-1} \otimes \mathrm{id}\right)$ is a *-automorhism of $C\left(\Omega_{2}\right) \otimes M_{n}$ which fixes the center $C\left(\Omega_{2}\right) \otimes 1$ elementwise. Thus $\theta \circ\left(\left(\theta_{1}\right)^{-1} \otimes \mathrm{id}\right)=\operatorname{Ad} u$ for some unitary $u \in C\left(\Omega_{2}\right) \otimes M_{n}$ and $\theta=(\operatorname{Ad} u) \circ\left(\theta_{1} \otimes \mathrm{id}\right)$.

Remark 7.5

(i) Let A be of type I. Then the assumptions in Proposition 7.4(i) amount to saying that A is homogeneous of order \aleph_{0} and it is not homogeneous of type \aleph for any cardinal $\aleph>\aleph_{0}$, since the proper infiniteness of A implies that it has no nonzero homogeneous summand of finite order and since each nonzero projection of A majorizes a nonzero abelian projection. This fact shows also that the second assumption there is strictly weaker than the condition of A being σ-finite (or countably decomposable). Note here that a type I, non- $W^{*}, A W^{*}$-algebra can be both homogeneous of order κ and of order λ for different infinite cardinals κ and λ (see [23]).
(ii) The above proof of Proposition 7.4(i) uses the following fact, rather than the second assumption: every orthogonal family of "properly infinite" equivalent projections is countable. But, adding "properly infinite" to the statement does not improve Proposition 7.4(i). Indeed, the existence of an uncountable orthogonal family of equivalent, not necessarily properly infinite, nonzero projections $\left\{e_{i}\right\}_{i \in I}$ implies the existence of such a family of properly infinite projections, since I can be partitioned into an uncountable family of countably infinite subsets.
(iii) The assumptions in Proposition 7.4 are best possible (at least under the second assumption in Proposition 7.4(i)) in the following sense.

If A is of type II, but not of type II_{∞}, i.e., $0 \neq h_{\mathrm{II}_{1}} \leq h_{\mathrm{II}}=1$, then the equality $\{$ PAut $A\}=\left\{(\text { PAut } A)^{0}\right\}$ does not necessarily hold. For example, if A is a type II_{1} W^{*}-factor with nontrivial fundamental group in the sense of Murray-von Neumann [21], i.e., there is a $*$-isomorphism $\theta: A \rightarrow e A e$ with $1 \neq e \in \operatorname{Proj} A$, then $\theta \in$ (PAut $A)^{+}$is not equivalent to any element of $(\operatorname{PAut} A)^{0}$, i.e., a $*$-automomorphism of A or 0 .

If A is of type I, but not homogeneous, i.e., $h_{\mathrm{I}_{n}} \neq 0 \neq h_{\mathrm{I}_{m}}$ for some cardinals $n<m$, then RPAut $A=(\text { PAut } A)^{0}$ does not necessarily hold. Indeed, $A=B\left(l^{2}(I)\right) \oplus$ $B\left(l^{2}(J)\right)$ is of type I and not homogeneous, where card $I=n$ and card $J=m$. But
$\theta \in(\text { PAut } A)^{+}$defined by $x \oplus 0 \mapsto 0 \oplus \varphi(x)$ is not equivalent to any element of (PAut $A)^{0}$, where φ is the embedding $B\left(l^{2}(I)\right) \rightarrow B\left(l^{2}(J)\right)$ as a reduced subalgebra.

Definition 7.6 If $\theta \in \operatorname{PAut} A$, then call the largest direct summand of θ which has a positive (resp., central, negative) regularization the positive (resp., central, negative) part of θ, and write it as θ^{+}(resp., θ^{0}, θ^{-}), so that $\theta=\theta^{++} \oplus \theta^{0} \oplus \theta^{--}$, where $\theta^{+}=\theta^{++} \oplus \theta^{0}$ and $\theta^{-}=\theta^{0} \oplus \theta^{--}$. Call θ^{++}(resp., θ^{--}) the purely positive (resp., purely negative) part of θ, and call θ itself weakly positive, weakly central, etc. if $\theta=\theta^{+}$, $\theta=\theta^{0}$, etc., i.e., $\theta \sim \psi$ for some ψ positive, central, etc., or equivalently, if $\langle\theta\rangle$ (defined immediately before Definition 6.16) is positive, central, etc. in the sense of Definition 3.3.

Note that, in PAut A, weak positivity implies positivity if and only if A is abelian, since if A is not abelian and a non-central projection e exists, then $\mathrm{id}_{e A e}=\operatorname{Ad} e$ is weakly positive, but not positive (see Remark 6.10(iv)).

Proposition 7.7 The algebra A is finite if and only if, in RPAut A, weak positivity, etc. imply positivity, etc.

Proof Sufficiency: If A is infinite, i.e., $1=u^{*} u \neq u u^{*}$ for some $u \in \operatorname{PI} A$, then Ad $u \sim \operatorname{id}_{A}, \mathrm{id}_{A}$ is central, (resp., negative), and so $\operatorname{Ad} u$ is weakly central, (resp., weakly negative), but not central, (resp., not negative), since $u u^{*} \notin Z(A)$. Also Ad $u^{*} \sim \operatorname{id}_{A}$, and Ad u^{*} is weakly positive, but not positve.

Necessity: It suffices to show that if $\theta, \psi \in \operatorname{RPAut} A$ and $\theta \sim \psi$ with θ positive and ψ negative, then θ and ψ are both central. (Consider the positive-negative decompositions of θ and ψ.) But, by Theorem 6.11(ii) we have $\langle\theta\rangle \cong\langle\psi\rangle=\left\langle\psi^{-1}\right\rangle^{-1}$, and it follows from Proposition 3.4(ii) that $l(\theta) \leq l(\psi), r(\theta) \leq r(\psi)$ and $\psi^{-1} \mid l(\theta) A l(\theta)=$ ($\operatorname{Ad} u) \circ \theta^{-1}$ for some $u \in \operatorname{PI} A$ with $u^{*} u=r(\theta) \in Z(A)$. Then, since A is finite, $r(\psi) \geq \psi^{-1}(l(\theta))=u u^{*}=u^{*} u=r(\theta), r(\psi)=r(\theta) \in Z(A)$ and ψ is central. Similarly $\theta=\psi \circ(\operatorname{Ad} u)$ is central.

Definition 7.8 Call a monotone complete C^{*}-algebra a global factor if the unit is the only nonzero globally central projection.

By Proposition 7.2(iii) global factors are classified into the cases of types I, II, and III.

Proposition 7.9 Let B be a monotone complete C^{*}-algebra containing A as a monotone closed C^{*}-subalgebra with the same unit. Suppose that B is generated as a monotone complete C^{*}-algebra by the normalizer $N_{B}(A)$ of A in B. Then each globally central projection of A belongs to the center of B. In particular, if B is an $A W^{*}$-factor, then A is a global factor.

Proof By the assumption and Corollary $6.8, B$ is generated by A and $R N_{B}(A)$ as a monotone complete C^{*}-algebra. Hence it suffices to show that if h is a globally central projection of A and $s \in R N_{B}(A)$, then $s h=h s$. But, by Proposition 4.2(vi),

Ad $s \mid s^{*} s A s^{*} s \in \operatorname{RPAut} A$, and so, by Proposition 7.2(i), $s h=s s^{*} s h=s h s^{*} s=h s s^{*} s=$ $h s$, as desired.

Proposition 7.10

(1) If A is a global factor, then so is $Z(A)$. If, further, A is of type I , then the reverse implication holds.
(2) For $e \in \operatorname{Proj} A$ with $C(e)=1, A$ is a global factor if and only if so is $e A e$.

Proof (i) For $h \in \operatorname{Proj} Z(A), h$ is globally central as an element of A if and only if $\bar{\theta}(h r(\bar{\theta}))=h l(\bar{\theta})$ for all $\theta \in$ PAut A by Proposition 7.2(i). Hence h being globally central as an element of $Z(A)$, i.e., $\psi(h r(\psi))=h l(\psi)$ for all $\psi \in \operatorname{PAut} Z(A)$, implies that as an element of A, and the first assertion follows. If A is of type I , then $\{\bar{\theta}: \theta \in$ PAut $A\}=$ PAut $Z(A)$ by Corollary 6.20(ii), and the second assertion follows.
(ii) It suffices to show that for $h \in \operatorname{Proj} Z(A), h$ is globally central in A if and only if so is he in $e A e$. If he is globally central in $e A e$ and $\theta \in \operatorname{PAut} A$, then, by Lemma 6.13(ii) we have $\psi \prec \theta$ for some $\psi \in \operatorname{PAut}(e A e)$. Hence $\bar{\theta}(h C(r(\theta)))=h C(l(\theta))$, since $\bar{\theta}=\bar{\psi}$ by Remark 6.10 (iii), and it follows that h is globally central in A. Similarly for the reverse implication.

If A is a global factor, then the central projection $h_{\min }$ is 1 or 0 (see Remark 7.3). Now we investigate the former case in more detail.

Proposition 7.11 Let A be the C^{*}-sum, $\prod_{i \in I} A_{i}$, of a family of monotone complete AW*-factors $\left\{A_{i}\right\}_{i \in I}$.
(i) If A is of type I, or equivalently, if each A_{i} is a type I W^{*}-factor, then A is a global factor.
(ii) If A is of type II, then A is a global factor if and only if there exist a type I_{1}, monotone complete $A W^{*}$-factor A_{0} and families of index sets $\left\{J_{i}\right\}_{i \in I}$ and of projections $\left\{e_{i}\right\}_{i \in I}$, both parametrized by I, such that $e_{i} \in A_{0} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)$, with $C\left(e_{i}\right)=1$ in $A_{0} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)$, and $A_{i} \cong e_{i}\left(A_{0} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)\right) e_{i}$ for all $i \in I$. If, further, A is of type II_{1}, then we can take each J_{i} to be finite.
(iii) If A is of type III and if each A_{i} is σ-finite, then A is a global factor if and only if $A_{i} \cong A_{j}$ for all $i, j \in I$, or equivalently, $A \cong A_{0} \bar{\otimes} l^{\infty}(I)$ for some type III, monotone complete $A W^{*}$-factor A_{0}.

Proof Observe first that A as above is a global factor if and only if for any $i_{1}, i_{2} \in I$ there are nonzero projections $e_{1} \in A_{i_{1}}, e_{2} \in A_{i_{2}}$ such that $e_{1} A_{i_{1}} e_{1} \cong e_{2} A_{i_{2}} e_{2}$. Indeed, A is a global factor if and only if $G C\left(h_{i}\right)=1$ for all $i \in I$, where $h_{i} \in \operatorname{Proj} Z(A)$ with $h_{i} A=A_{i}$. The latter condition implies that for any $i_{1}, i_{2} \in I$ there is $\theta \in$ PAut A such that $r(\theta) \leq h_{i_{1}}$ and $h_{i_{2}} l(\theta) \neq 0$ and hence that with $e_{2}:=h_{i_{2}} l(\theta)$ and $e_{1}:=\theta^{-1}\left(e_{2}\right)$ we have $e_{1} A_{i_{1}} e_{1} \cong e_{2} A_{i_{2}} e_{2}$. The reverse implication follows similarly.

Part (i) follows from the above argument.
The sufficiency of the conditions in (ii) and (iii) follows from the fact that if $A_{i} \cong$ $e_{i}\left(A_{0} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)\right) e_{i}$ for some monotone complete $A W^{*}$-factor A_{0} and some families of index sets $\left\{J_{i}\right\}_{i \in I}$ and projections $\left\{e_{i}\right\}_{i \in I}$ with $C\left(e_{i}\right)=1$, then A is a global factor.

Indeed, by Proposition 7.10 (ii), we may assume $e_{i}=1$ for all i. Then we may apply the assertion in the first paragraph.

The necessity of (ii): For a fixed $i_{0} \in I$ set $A_{0}=A_{i_{0}}$. By the first paragraph, for each $i \in I$ there are nonzero projections $p_{i} \in A_{0}, q_{i} \in A_{i}$ such that $p_{i} A_{0} p_{i} \cong$ $q_{i} A_{i} q_{i}$. Since A_{i} is a monotone complete $A W^{*}$-factor and the central cover of q_{i} in A_{i} equals h_{i}, a standard argument shows that for some index set J_{i} and some projection $f_{i} \in q_{i} A_{i} q_{i} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)$ we have $A_{i} \cong f_{i}\left(q_{i} A_{i} q_{i} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)\right) f_{i}$, where J_{i} arises as the index set of an orthogonal family $\left\{r_{j}\right\}_{j \in J_{i}}$ of nonzero projections in A_{i} such that $\sum_{j} r_{j}=h_{i}$ and $r_{j} \prec q_{i}$ for all j. Then the assertion follows, since $q_{i} A_{i} q_{i} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)$ $\cong p_{i} A_{0} p_{i} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)=\left(p_{i} \otimes 1\right)\left(A_{0} \bar{\otimes} B\left(l^{2}\left(J_{i}\right)\right)\right)\left(p_{i} \otimes 1\right)$. Suppose further that A is of type II_{1} and hence that each A_{i} is a finite $A W^{*}$-factor of type II. Then A_{i} has a dimension function $D_{i}[1, \mathrm{p} .153]$, which has values in the interval $[0,1]$, and we may take the cardinality of J_{i} to be $\leq 1 / D_{i}\left(q_{i}\right)+1$.

The necessity of (iii): If A satisfies the stated conditions, then, for q_{i}, J_{i} as above we have $p_{i} \sim h_{i_{0}}, q_{i} \sim h_{i}$ [30, 2.2.14], card $J_{i} \leq \aleph_{0}$, etc., and the assertion follows.

8 The Fundamental Homomorphism on a Finite Monotone Complete C^{*}-Algebra

Throughout this section A denotes a finite monotone complete C^{*}-algebra and D denotes the unique dimension function for $A[1, \mathrm{p} .153]$, i.e., D : $\operatorname{Proj} A \rightarrow Z(A)^{+}$ is a unique completely additive function such that $e \sim f$ implies $D(e)=D(f)$ and $D(h)=h$ for $h \in \operatorname{Proj} Z(A)$, where $Z(A)^{+}=\{a \in Z(A): a \geq 0\}$.

Let Ω be the spectrum of the center $Z:=Z(A)$ so that $Z=C(\Omega)$ and Ω is a stonean space, i.e., the closure of any open subset or the interior of any closed subset of Ω is clopen, and use the notation Cl and Int to denote the closure and interior of subsets of Ω. Denote by Z_{∞}^{+}the set of all equivalence classes of functions $a: \Omega \rightarrow \mathbb{R}^{+}:=\{r \in \mathbb{R}: r \geq 0\}$ such that $U_{a}:=\{\omega \in \Omega: a(\omega)>0\}$ is open and $a \mid U_{a}$ is continuous (hence a is lower semicontinuous on Ω), where the equivalence \sim is defined by

$$
a \sim b \Longleftrightarrow \mathrm{Cl} U_{a}=\mathrm{Cl} U_{b}, \quad a=b \quad \text { on } U_{a} \cap U_{b} .
$$

(That \sim is an equivalence relation follows from the obvious fact that if O_{1}, O_{2} are open subsets of Ω and $\mathrm{Cl} O_{1}=\mathrm{Cl} O_{2}$, then $\mathrm{Cl}\left(O_{1} \cap O_{2}\right)=\mathrm{Cl} O_{1}$.) For such a function a define a function a^{-1} and a projection $s(a) \in Z$ by

$$
\begin{gathered}
U_{a^{-1}}=U_{a} \\
a^{-1}(\omega)= \begin{cases}a(\omega)^{-1} & \text { if } \omega \in U_{a} \\
0 & \text { otherwise }\end{cases} \\
s(a)(\omega)= \begin{cases}1 & \text { if } \omega \in \mathrm{Cl} U_{a} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

For two such functions a, b, define the product $a b$ by

$$
\begin{gathered}
U_{a b}=U_{a} \cap U_{b} \\
(a b)(\omega)= \begin{cases}a(\omega) b(\omega) & \text { if } \omega \in U_{a b} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

We have canonically $Z^{+} \subset Z_{\infty}^{+}$, since each bounded lower semicontinuous function on Ω coincides with a unique element of Z except on a meager subset (see [5] or [32, p. 104, 1.7].

For simplicity, we use the same letter to denote both a function and its equivalence class. Then $a a^{-1}=s(a)$ for all $a \in Z_{\infty}^{+}$, and under the inversion and product above, Z_{∞}^{+}is a commutative inverse semigroup with the subsemigroup of idempotents $\operatorname{Proj} Z$. (Note that our later arguments depend only on the fact that the elements of the form $a b^{-1}, a, b \in Z^{+}$, have products and inverses in Z_{∞}^{+}.)

Note for later use that if $a, b, c, d \in Z_{\infty}^{+}$and $s(b)=s(d)$, then

$$
\begin{equation*}
a b^{-1}=c d^{-1} \Longleftrightarrow a d=b c \tag{8.1}
\end{equation*}
$$

Definition 8.1 For $a \in Z^{+}$define $a^{0} \in \operatorname{Proj} Z, a^{+}, a^{++}, a^{-}, a^{--} \in Z^{+}$by

$$
\begin{gathered}
a^{0}(\omega)=1 \text { on } \operatorname{Int}\{\omega \in \Omega: a(\omega)=1\},=0 \text { otherwise; } \\
a^{++}(\omega)=a(\omega) \text { on } \mathrm{Cl}\{\omega \in \Omega: a(\omega)<1\},=0 \text { otherwise; } \\
a^{--}(\omega)=a(\omega) \text { on } \mathrm{Cl}\{\omega \in \Omega: a(\omega)>1\},=0 \text { otherwise; } \\
a^{+}=a^{++}+a^{0}, \quad a^{-}=a^{--}+a^{0}
\end{gathered}
$$

so that

$$
a=a^{++}+a^{0}+a^{--}, \quad s(a)=s\left(a^{++}\right)+a^{0}+s\left(a^{--}\right)
$$

(Note that the above three sets are pairwise disjoint clopen subsets with union Ω and that a^{0}, etc. are of the form $a e$ for some $e \in \operatorname{Proj} Z$.)

Make $Z_{\infty}^{+} \times$PAut Z into an inverse semigroup with the operations:

$$
\begin{equation*}
(a, \rho)^{-1}=\left(\rho^{-1}\left(a^{-1}\right), \rho^{-1}\right), \quad(a, \rho) \cdot(b, \sigma)=(a \rho(b), \rho \circ \sigma) \tag{8.2}
\end{equation*}
$$

Here and henceforth the action of $\rho \in$ PAut Z on elements of Z is naturally extended to that on elements of Z_{∞}^{+}, since ρ induces a homeomorphism between clopen subsets of Ω. Hence, for $\rho \in$ PAut Z and $a \in Z_{\infty}^{+}$,

$$
\begin{equation*}
\rho\left(a^{-1}\right)=\rho(a)^{-1}, \quad s(\rho(a))=\rho(s(a)) \tag{8.3}
\end{equation*}
$$

Lemma 8.2

(i) For $e \in \operatorname{Proj} A$ we have $s(D(e))=C(e)$, and $D(e)^{0}$ is the largest central projection of A such that $D(e)^{0} \leq e$.
(ii) Define a map d: PAut $A \rightarrow Z_{\infty}^{+}$by

$$
\begin{equation*}
d(\theta)=D(l(\theta))[\bar{\theta}(D(r(\theta)))]^{-1} \tag{8.4}
\end{equation*}
$$

Then, for each $\theta \in$ PAut A,

$$
\begin{align*}
D \circ \theta & =d(\theta) \cdot(\bar{\theta} \circ D) \text { on Proj } r(\theta) A r(\theta), \tag{8.5}\\
\theta=\theta_{1} \oplus \theta_{2} & \Rightarrow d(\theta)=d\left(\theta_{1}\right)+d\left(\theta_{2}\right), \quad d\left(\theta_{1}\right) d\left(\theta_{2}\right)=0, \tag{8.6}\\
\theta & \sim \psi \in \text { PAut } A \Rightarrow d(\theta)=d(\psi) . \tag{8.7}
\end{align*}
$$

(iii) For $\theta, \psi \in \operatorname{PAut} A$ we have

$$
\begin{equation*}
d(\theta \bullet \psi)=d(\theta) \bar{\theta}(d(\psi)) \tag{8.8}
\end{equation*}
$$

Proof (i) We have $e=s(D(e)) e$ and $C(e) \leq s(D(e))$, since $D(e) \leq s(D(e))$ and so $D[(1-s(D(e))) e]=(1-s(D(e))) D(e)=0$. Further $D(e) \leq D(C(e))=C(e)$ and $s(D(e)) \leq C(e)$. Since $0 \leq D(e) \leq 1, D\left[D(e)^{0}(1-e)\right]=D(e)^{0}(1-D(e))=0$ and so $D(e)^{0}(1-e)=0, D(e)^{0} \leq e$. Conversely, if $h \in \operatorname{Proj} Z$ and $h \leq e$, then $h=D(h) \leq D(e) \leq 1$ and $h \leq D(e)^{0}$.
(ii) Note first that by (i),

$$
\begin{aligned}
s(D(l(\theta))) & =C(l(\theta))=l(\bar{\theta}), \\
s\left([\bar{\theta}(D(r(\theta)))]^{-1}\right) & =s[\bar{\theta}(D(r(\theta)))]=\bar{\theta}[s(D(r(\theta)))] \\
& =\bar{\theta}(C(r(\theta)))=\bar{\theta}(r(\bar{\theta}))=l(\bar{\theta}), \\
s(d(\theta)) & =l(\bar{\theta})
\end{aligned}
$$

To see (8.5) define two maps $D^{\prime}, D^{\prime \prime}: \operatorname{Proj} r(\theta) \operatorname{Ar}(\theta) \rightarrow Z(r(\theta) \operatorname{Ar}(\theta))=r(\theta) Z$ by

$$
D^{\prime}(e)=r(\theta) D(r(\theta))^{-1} D(e), \quad D^{\prime \prime}(e)=r(\theta)(\bar{\theta})^{-1}\left[D(l(\theta))^{-1} D(\theta(e))\right]
$$

for $e \in \operatorname{Proj} r(\theta) \operatorname{Ar}(\theta)$. (Note that the right-hand sides are bounded and so they give elements of $r(\theta) Z$.) Then both D^{\prime} and $D^{\prime \prime}$ are dimension functions for $r(\theta) A r(\theta)$. Indeed, for example, if $h \in \operatorname{Proj} Z(r(\theta) \operatorname{Ar}(\theta))$, then $h=C(h) r(\theta), \theta(h)=\bar{\theta}(C(h)) l(\theta)$, and

$$
\begin{aligned}
D^{\prime \prime}(h) & =r(\theta)(\bar{\theta})^{-1}\left[D(l(\theta))^{-1} \bar{\theta}(C(h)) D(l(\theta))\right]=r(\theta)(\bar{\theta})^{-1}[\bar{\theta}(C(h)) C(l(\theta))] \\
& =r(\theta)(\bar{\theta})^{-1}[\bar{\theta}(C(h)) l(\bar{\theta})]=r(\theta) C(h)=h
\end{aligned}
$$

by (i), etc. Hence, by the uniqueness of the dimension function, $D^{\prime}=D^{\prime \prime}$, and (8.5) follows from (i), (8.1), (8.3) and (8.9).

The property (8.6) follows from (8.4) and (8.9).

To see (8.7) it suffices to consider the case $\theta \simeq \psi$ or $\theta \leq \psi$. Then $\bar{\theta}=\bar{\psi}$ by Remark 6.10(iii). In the former case, $\psi=(\operatorname{Ad} v) \circ \theta \circ(\operatorname{Ad} u)$ for some $u, v \in \operatorname{PI} A$ with $u u^{*}=r(\theta)$ and $v^{*} v=l(\psi)$, and so $D(r(\theta))=D\left(u u^{*}\right)=D\left(u^{*} u\right)=D(r(\psi))$, etc. imply $d(\theta)=d(\psi)$. In the latter case, $r(\theta) \leq r(\psi) \leq C(r(\theta))$ and $\psi \mid r(\theta) \operatorname{Ar}(\theta)=\theta$. Hence, by (8.5),

$$
\begin{aligned}
D(l(\theta)) & =D(\psi(r(\theta)))=d(\psi) \cdot \bar{\psi}(D(r(\theta))) \\
& =D(l(\psi)) \cdot[\bar{\psi}(D(r(\psi)))]^{-1} \cdot \bar{\theta}(D(r(\theta)))
\end{aligned}
$$

and since $C(r(\psi))=C(r(\theta))$ and so $s[\bar{\psi}(D(r(\psi)))]=s[\bar{\theta}(D(r(\theta)))]$ by (i) and (8.3),

$$
d(\theta)=D(l(\theta))[\bar{\theta}(D(r(\theta)))]^{-1}=D(l(\psi))[\bar{\psi}(D(r(\psi)))]^{-1}=d(\psi)
$$

(iii) If $u \in \operatorname{PI} A$ is as in Definition 6.16, then with $\theta_{1}:=\theta \mid u u^{*} A u u^{*}$ and $\psi_{1}:=$ $(\operatorname{Ad} u) \circ \psi$ we have

$$
\theta_{1} \sim \theta, \quad \psi_{1} \sim \psi, \quad \theta \bullet u \psi=\theta_{1} \circ \psi_{1}, \quad r\left(\theta_{1}\right)=u u^{*}=l\left(\psi_{1}\right)
$$

Hence, by (ii), we may assume that $r(\theta)=l(\psi)$ and $\theta \bullet \psi=\theta \circ \psi$. But, then $l(\theta \circ \psi)=l(\theta), r(\theta \circ \psi)=r(\psi)$, and

$$
\begin{aligned}
d(\theta \circ \psi) & =D(l(\theta))[\overline{\theta \circ \psi}(D(r(\psi)))]^{-1} \\
& =D(l(\theta))[\bar{\theta}(D(r(\theta)))]^{-1} \bar{\theta}(D(l(\psi))) \bar{\theta}\left([\bar{\psi}(D(r(\psi)))]^{-1}\right) \\
& =d(\theta) \bar{\theta}(d(\psi))
\end{aligned}
$$

since

$$
\begin{aligned}
{[\bar{\theta}(D(r(\theta)))]^{-1} \bar{\theta}(D(l(\psi))) } & =\bar{\theta}[s(D(r(\theta)))]=\bar{\theta}(C(r(\theta))) \\
& =l(\bar{\theta})=C(l(\theta)) \geq D(l(\theta))
\end{aligned}
$$

We call the function F defined below the fundamental homomorphism on A.

Proposition 8.3

(i) $\theta \in \operatorname{PAut} A$ is weakly positive, (resp., weakly central, weakly negative) if and only if $d(\theta) \leq C(l(\theta))$, (resp., $d(\theta) \in \operatorname{Proj} Z, d(\theta) \geq C(l(\theta))$), i.e., $d(\theta)=d(\theta)^{+}$, (resp., $d(\theta)=d(\theta)^{0}, d(\theta)=d(\theta)^{-}$). That is, the decomposition $\theta=\theta^{++} \oplus \theta^{0} \oplus \theta^{--}$ in Definition 7.6 corresponds to the decomposition $d(\theta)=d(\theta)^{++}+d(\theta)^{0}+d(\theta)^{--}$.
(ii) The map $F:\{\operatorname{PAut} A\} \rightarrow Z_{\infty}^{+} \times$PAut Z defined by $F(\{\theta\})=(d(\theta), \bar{\theta})$ is a homomorphism between inverse semigroups.
(iii) If, in particular, A is a type $\mathrm{II}_{1} W^{*}$-factor and so $Z_{\infty}^{+} \times$PAut Z is identified with the multiplicative semigroup \mathbb{R}^{+}, then the map $\{\theta\} \mapsto d(\theta)$ from $\{$ PAut $A\} \backslash\{0\}$ to $\mathbb{R}_{*}^{+}=\mathbb{R}^{+} \backslash\{0\}$ is a homomorphism between groups, whose image is the fundamental group $\mathcal{F}(A)$ of A and whose kernel is $\{$ Aut $A\} \cong$ Out A. Hence

$$
(\{\text { PAut } A\} \backslash\{0\}) /\{\text { Aut } A\} \cong \mathcal{F}(A)
$$

Proof (i) Each $\theta \in$ PAut A has a regularization ψ, so that $\theta^{++} \sim \psi^{++}, \theta^{0} \sim \psi^{0}$, etc. with θ^{++}, etc. positive, etc. Hence, in view of (8.7), it suffices to show, assuming θ to be regular, the validity of the assertion with weakly positive, etc. replaced by positive, etc.

If θ is positive, (resp., central, negative), then by (8.4) and (8.9), $d(\theta)=D(l(\theta)) \leq$ $C(l(\theta))$, (resp., $\left.d(\theta)=C(l(\theta)), d(\theta)=[\bar{\theta}(D(r(\theta)))]^{-1} \geq C(l(\theta))\right)$.

To see the reverse implication, take $\theta \in$ RPAut A with $\theta=\theta^{++} \oplus \theta^{0} \oplus \theta^{--}$as in Definition 7.6. Then θ^{++}, θ^{0}, etc. are positive, central, etc. by Proposition 7.7, and it follows from (8.6) and the foregoing that

$$
\begin{gathered}
d(\theta)=d\left(\theta^{++}\right)+d\left(\theta^{0}\right)+d\left(\theta^{--}\right), \quad d(\theta)^{+}=d\left(\theta^{++}\right)+d\left(\theta^{0}\right), \\
d(\theta)^{0}=d\left(\theta^{0}\right), \quad d(\theta)^{-}=d\left(\theta^{0}\right)+d\left(\theta^{--}\right)
\end{gathered}
$$

Hence, if $d(\theta)=d(\theta)^{+}$, (resp., $\left.d(\theta)=d(\theta)^{0}, d(\theta)=d(\theta)^{-}\right)$, then $d\left(\theta^{--}\right)=0$, i.e., $\theta^{--}=0$, (resp., $\theta^{++}=\theta^{--}=0, \theta^{++}=0$), and θ is positive, (resp., central, negative).
(ii) Immediate from Corollary 6.20(i), (8.2) and (8.8).
(iii) In this case, D is (identified with) the restriction to $\operatorname{Proj} A$ of the unique trace tr on A with $\operatorname{tr}(1)=1$, and for $r \in \mathbb{R}_{*}^{+}$we have $r \in \mathcal{F}(A)$ if and only if $r=\operatorname{tr}(l(\theta))=$ $\operatorname{tr}(l(\theta)) / \operatorname{tr}(r(\theta))$ or $r=1 / \operatorname{tr}(l(\theta))=\operatorname{tr}\left(l\left(\theta^{-1}\right)\right) / \operatorname{tr}\left(r\left(\theta^{-1}\right)\right)$ for some $\theta \in$ PAut A with $r(\theta)=1$, i.e., $r=\operatorname{tr}(l(\theta)) / \operatorname{tr}(r(\theta))$ for some $\theta \in$ PAut A with $r(\theta)=1$ or $l(\theta)=1$. Further, by (8.4) and (8.8),

$$
d(\theta)=\operatorname{tr}(l(\theta)) / \operatorname{tr}(r(\theta)) \in \mathbb{R}_{*}^{+}, \quad d(\theta \bullet \psi)=d(\theta) d(\psi)
$$

for $\theta, \psi \in \operatorname{PAut} A \backslash\{0\}$. If $\theta \in \operatorname{PAut} A \backslash\{0\}$ and ψ is its regularization, then $d(\theta)=d(\psi), r(\psi)=1$ or $l(\psi)=1$, and $d(\psi)=\operatorname{tr}(l(\psi))$ or $d(\psi)=1 / \operatorname{tr}(r(\psi))$. Hence $\{d(\theta): \theta \in$ PAut $A \backslash\{0\}\}=\mathcal{F}(A)$.

Finally, by (i), $d(\theta)=1$ if and only if $\theta \sim \psi$ for some central $\psi \neq 0$, i.e., $\theta \sim \psi \in$ Aut A.

9 Normalizers and Partial *-Automorphisms

In this closing section we summarize the consequences of the results in previous sections.

For the moment, let A denote a fixed monotone complete C^{*}-algebra and take another monotone complete C^{*}-algebra B containing A as a monotone closed C^{*}-subalgebra with the same unit. The C^{*}-version of the reasoning that follows holds with obvious modifications, and we shall touch on it later.

We will see how the operations defined in [SDINV A] and $\{$ PAut $A\}$ can be realized concretely as the operations in B.

In the notations $\operatorname{RINV}(A), \operatorname{RINV}_{B}(A) \subset \operatorname{INV}_{B}^{\prime}(A), R N_{B}(A) \subset N_{B}(A), \operatorname{RINV}_{B}(A)$, $\operatorname{SDINV}(A)$, etc. defined as before (see Sections 3, 4, 6) we have by Theorem 6.6 and Proposition 4.2(i),(vi), $\operatorname{RINV}(A)=\operatorname{SDINV}(A)$ and

$$
\operatorname{RINV}_{B}(A)=\left\{A s A: s \in R N_{B}(A)\right\} \subset\left\{A x A: x \in N_{B}(A)\right\} \subset \operatorname{INV}_{B}^{\prime}(A)
$$

By Theorem 6.6 and Corollary 6.7 we may and shall identify $\operatorname{RINV}_{B}(A)$ with the set of all sub- A-bimodules X of B with $X X^{*}+X^{*} X \subset A$, which are also self-dual left Hilbert A-modules or monotone closed in B, and we obtain, by taking the monotone closure, a map reverse to the above inclusion:

$$
\begin{equation*}
\operatorname{INV}_{B}^{\prime}(A) \rightarrow \operatorname{RINV}_{B}(A), \quad X \mapsto m-\mathrm{cl}_{B} X \tag{9.1}
\end{equation*}
$$

Moreover $\operatorname{RINV}_{B}(A)$ is an inverse semigroup with the inverse and product defined by

$$
X^{-1}=X^{*}, \quad X \cdot Y=m-\mathrm{cl}_{B}(X Y)
$$

since for each $X \in \operatorname{RINV}_{B}(A)$ we have $X \cdot X^{-1}=h A, X^{-1} \cdot X=k A$ for some $h, k \in \operatorname{Proj} Z(A)$ (see Proposition 6.4(i)) and the argument in the proof of Theorem 5.2 applies. An inverse semigroup homomorphism is defined as follows:

$$
\begin{equation*}
\operatorname{RINV}_{B}(A) \rightarrow[\operatorname{SDINV}(A)], \quad X \mapsto[X] \tag{9.2}
\end{equation*}
$$

so that we have a commutative diagram

where the lower horizontal maps are as defined above, the upper left horizontal map is an inclusion map, the right vertical map is the isomorphism in Theorem 6.17, and the left vertical, middle vertical and upper right horizontal maps are defined respectively by $x \mapsto A x A, s \mapsto A s A$, and $s \mapsto\{\operatorname{Ad} s\}\left(\operatorname{Ad} s=\operatorname{Ad} s \mid s^{*} s A s^{*} s\right)$. The map (9.1) is also related to the passage from a partial $*$-automorphism of A to its regularization (see Definition 6.9) as follows. If $\theta \in \operatorname{PAut} A$ with $\theta=\operatorname{Ad} s$ for $s \in \operatorname{PI} N_{B}(A)$ and if $m-\mathrm{cl}_{B}(A s A)=A t A$ for some $t \in R N_{B}(A)$, then, as follows immediately, $\operatorname{Ad} t \in \operatorname{RPAut} A$ is a regularization of θ.

The following result shows that there is a large enough B for the map (9.2) or the $\operatorname{map} \operatorname{RINV}_{B}(A) \rightarrow[\operatorname{SDINV}(A)] \cong\{\operatorname{PAut} A\}$ to be surjective, i.e., for every element of $\operatorname{SDINV}(A)$ (resp., PAut A) to be realized as some element of $\operatorname{RINV}_{B}(A)$ (resp., $\operatorname{Ad} s$ for some $\left.s \in \operatorname{PI} N_{B}(A)\right)$.

Proposition 9.1 If $\left\{X_{i}\right\}_{i \in I}$ (resp., $\left\{\theta_{i}\right\}_{i \in I}$) is any subset of $\operatorname{SDINV}(A)$ (resp., PAut A), then there exists a monotone complete C^{*}-algebra B such that A is a monotone closed C^{*}-subalgebra of B containing the unit and each X_{i} is identified with some element of $\operatorname{RINV}_{B}(A)$ (resp., for each i there is an $s_{i} \in \operatorname{PI} N_{B}(A)$ with $\left.\theta_{i}=\operatorname{Ad} s_{i}\right)$ and such that B is generated as a monotone complete C^{*}-algebra by A and the X_{i} 's (resp., s_{i} 's).

Proof For $\left\{X_{i}\right\}_{i \in I}$ as above let F be the free group on card I generators $\left\{w_{i}\right\}_{i \in I}$ and make the algebraic direct sum $\mathcal{B}=\bigoplus_{g \in F} B_{g}$ into an F-graded $*$-algebra as follows. Set

$$
B_{e}=A, \quad B_{g}=X_{i_{1}}^{\epsilon_{1}} \bar{\otimes}_{A} \cdots \bar{\otimes}_{A} X_{i_{n}}^{\epsilon_{n}}
$$

where e is the unit element, $g=w_{i_{1}}^{\epsilon_{1}} \cdots w_{i_{n}}^{\epsilon_{n}}, i_{1}, \ldots, i_{n} \in I$ (possibly duplicated), $\epsilon_{1}, \ldots, \epsilon_{n} \in\{1,-1\}$, and $\bar{\otimes}_{A}$ is the product in $\operatorname{SDINV}(A)$. Write

$$
x^{*}=x_{n}^{*} \otimes \cdots \otimes x_{1}^{*} \in B_{g^{-1}}, \quad x \cdot y=x \otimes y \in B_{g h}
$$

where $x=x_{1} \otimes \cdots \otimes x_{n} \in B_{g}, g=w_{i_{1}}^{\epsilon_{1}} \cdots w_{i_{n}}^{\epsilon_{n}}, x_{k} \in X_{i_{k}}^{\epsilon_{k}}$, and $y=y_{1} \otimes \cdots \otimes y_{m} \in B_{h}$, $h=w_{j_{1}}^{\delta_{1}} \cdots w_{j_{m}}^{\delta_{m}}, y_{k} \in X_{j_{k}}^{\delta_{k}}$. Here, to make the second membership well defined we identify $A \bar{\otimes}_{A} B_{g}\left(\right.$ or $\left.B_{g} \bar{\otimes}_{A} A\right)$ and $X \bar{\otimes}_{A} X^{-1}, X \in \operatorname{SDINV}(A)$, with B_{g} and $z_{r}(X) A$ by the maps $a \otimes\left(x_{1} \otimes \cdots \otimes x_{n}\right) \mapsto a \cdot x_{1} \otimes \cdots \otimes x_{n}\left(\right.$ or $\left.\left(x_{1} \otimes \cdots \otimes x_{n}\right) \otimes a \mapsto x_{1} \otimes \cdots \otimes x_{n} \cdot a\right)$ and $x \otimes y^{*} \mapsto\langle x, y\rangle, x, y \in X$ (see Proposition 6.4(i)), so that for x, y and g, h as above we have

$$
\begin{aligned}
x \otimes y & =\left(x_{1} \otimes \cdots \otimes x_{n}\right) \otimes\left(y_{1} \otimes \cdots \otimes y_{m}\right) \\
& =x_{1} \otimes \cdots \otimes x_{n-1} \otimes\left\langle x_{n}, y_{1}^{*}\right\rangle \cdot y_{2} \otimes \cdots \otimes y_{m}=\cdots
\end{aligned}
$$

etc. if $i_{n}=j_{1}, \epsilon_{n}=-\delta_{1}, \ldots$, etc.
Regard each element of \mathcal{B} as a function $x: F \rightarrow \bigcup_{g \in F} B_{g}$ such that $x(g) \in B_{g}$ for all g and $x(g)=0$ for all but finite g, identify A (resp., X_{i}) with the subset of $x \in \mathcal{B}$ such that $x(g)=0$ for all $g \neq e$ (resp., $x(g)=0$ for all $g \neq w_{i}$), and define the involution and product in \mathcal{B} by

$$
x^{*}(g)=x\left(g^{-1}\right)^{*}, \quad(x y)(g)=\sum_{h \in F} x(h) \cdot y\left(h^{-1} g\right)
$$

for $x, y \in \mathcal{B}$. Then \mathcal{B} is both a $*$-algebra and a pre-Hilbert A-module with the module operation and inner product given by $a \cdot x=a x$ and $\langle x, y\rangle=\left(x y^{*}\right)(e)$, and each Hilbert A-module X_{i} is recovered as a subset of \mathcal{B} via the product in \mathcal{B} as in Remark 2.2(ii). If H is the self-dual completion of the pre-Hibert A-module \mathcal{B}, then a faithful $*$-representation π of \mathcal{B} on H, i.e., an injective $*$-homomorphism $\pi: \mathcal{B} \rightarrow \operatorname{End}_{A}(H)$, is defined by $y \pi(x)=y x$ for $x, y \in \mathcal{B}$, since $\langle y \pi(x), z\rangle=$ $\left(y x z^{*}\right)(e)=\left\langle y, z \pi\left(x^{*}\right)\right\rangle$ and since each $\mathcal{B} \rightarrow \mathcal{B}, y \mapsto y x$, extends uniquely to a bounded linear map $H \rightarrow H$ (see the proof of $[12,3.1]$). Denote by B the monotone closure of $\pi(\mathcal{B})$ in $\operatorname{End}_{A}(H)$. Then $\pi(A) \cong A$ is monotone closed in B, and so are $\pi\left(X_{i}\right), i \in I$, by Corollary 6.7(i) \Leftrightarrow (iii). Hence the assertion as for $\left\{X_{i}\right\}$ follows.

To see the assertion as for $\left\{\theta_{i}\right\}_{i \in I}$ take a regularization ψ_{i} of each θ_{i} (see Definition 6.9, Theorem 6.11) so that $\theta_{i}=\left(\operatorname{Ad} v_{i}\right) \circ \psi_{i} \circ\left(\operatorname{Ad} u_{i}\right)$ for some $u_{i}, v_{i} \in \operatorname{PI} A$ with $u_{i}^{*} u_{i}=r\left(\theta_{i}\right), u_{i} u_{i}^{*} \leq r\left(\psi_{i}\right) \leq C\left(u_{i} u_{i}^{*}\right)$ and $\psi_{i}\left(u_{i} u_{i}^{*}\right)=v_{i}^{*} v_{i}$. If we apply the foregoing to $\left\{\left\langle\psi_{i}\right\rangle\right\}_{i \in I} \subset \operatorname{SDINV}(A)$, then there exist a monotone complete C^{*}-algebra B and $\left\{s_{i}\right\}_{i \in I} \subset R N_{B}(A)$ such that $\left\langle\psi_{i}\right\rangle=A s_{i} A$ and $A d s_{i}=\psi_{i}$, and hence we have $\theta_{i}=\operatorname{Ad}\left(v_{i} s_{i} u_{i}\right)$ with $v_{i} s_{i} u_{i} \in \operatorname{PI} N_{B}(A)$.

Corollary 9.2 For a monotone complete C^{*}-algebra $A, h \in \operatorname{Proj} Z(A)$ is globally central in A if and only if h belongs to the center of each monotone complete C^{*}-algebra B which contains A as a monotone closed C^{*}-subalgebra with the same unit and is generated by the normalizer $N_{B}(A)$ as a monotone complete C^{*}-algebra.

Proof The necessity has been proved in Proposition 7.9, and it remains to show the reverse implication. If h is not globally central, then $\theta(h r(\theta)) \neq h l(\theta)$ for some $\theta \in \operatorname{PAut} A$. By Proposition 9.1 there is a monotone complete C^{*}-algebra B which contains A as a monotone closed C^{*}-subalgebra with the same unit and is generated by A and a partial isometry $s \in N_{B}(A)$ such that $\operatorname{Ad} s \mid s^{*} s A s^{*} s=\theta$. Then $h s \neq s h$ and h is not in the center of B.

Note that via the involution and product in B the sets $N_{B}(A)^{0}$ and $\operatorname{INV}_{B}(A)^{0}$ are inverse semigroups, i.e., $s_{1}, s_{2} \in N_{B}(A)^{0} \Rightarrow s_{1} s_{2} \in N_{B}(A)^{0}, \operatorname{INV}_{B}(A)^{0}=\{A s: s \in$ $\left.N_{B}(A)^{0}\right\}, A s_{1} A s_{2}=A s_{1} s_{2} \in \operatorname{INV}_{B}(A)^{0}$ (see Proposition 4.2(iii)), etc. and the restrictions to $N_{B}(A)^{0}$ of the maps in $(9.2), N_{B}(A)^{0} \rightarrow \operatorname{INV}_{B}(A)^{0}$ and $N_{B}(A)^{0} \rightarrow\{$ PAut $A\}$ are inverse semigroup homomorphisms. Hence, if A is σ-finite and properly infinite and if B is as in Proposition 9.1 with $\left\{\theta_{i}\right\}_{i \in I}=\operatorname{PAut} A$, then $N_{B}(A)^{0} \rightarrow\{$ PAut $A\}$ is a surjective homomorphism by Proposition 7.4(i), and so the inverse semigroup structure of $\{$ PAut $A\}$ is directly described by the product and involution in B. (But the $\operatorname{map} N_{B}(A) \rightarrow \operatorname{INV}_{B}^{\prime}(A), x \mapsto A x A$, in (9.3) is not directly related to the product in B, although $N_{B}(A)$ and $\operatorname{INV}_{B}^{\prime}(A)$ are $*$-semigroups under the operations $x \mapsto x^{*}$, $(x, y) \mapsto x y$, etc.) Even if A is only σ-finite, but not necessarily properly infinite, then this assertion is true to some extent. Indeed, $A \bar{\otimes} B\left(l^{2}\right)$, where l^{2} is the \aleph_{0}-dimensional Hilbert space, is σ-finite and properly infinite, and by Corollary 6.19 and Proposition 7.4(i), $\{\operatorname{PAut} A\} \cong\left\{\left(\operatorname{PAut}\left(A \bar{\otimes} B\left(l^{2}\right)\right)\right)^{0}\right\}$, since $A \cong(1 \otimes e)\left(A \bar{\otimes} B\left(l^{2}\right)\right)(1 \otimes e)$ with $e \in B\left(l^{2}\right)$ a minimal projection.

From now on, let A be a C^{*}-algebra embedded in another C^{*}-algebra B as a C^{*} subalgebra. Then the sets $N_{B}(A)$ and $\operatorname{INV}_{B}^{\prime}(A) \subset \operatorname{INV}^{\prime}(A)$ (where, see Section 2, $\operatorname{INV}^{\prime}(A)$ is the set of all algebraic invertible A-modules and see Remark 2.2(ii) for the inclusion) make sense also for these $A \subset B$, i.e.,

$$
\begin{aligned}
N_{B}(A) & =\left\{x \in B: x A x^{*} \subset A, x^{*} A x \subset A\right\} \\
\operatorname{INV}_{B}^{\prime}(A) & =\left\{X \subset B: \text { sub-A-bimodules }: X X^{*}+X^{*} X \subset A\right\}
\end{aligned}
$$

the set, $\operatorname{INV}_{B}(A)$, of all $X \in \operatorname{INV}_{B}^{\prime}(A)$ which are also norm closed in B is an inverse semigroup with the product $X \cdot Y:=n-\mathrm{cl}_{B}(X Y)$, the norm closure in B of the linear span $X Y$, and the inversion $X^{-1}:=X^{*}$; we have canonically $\operatorname{INV}_{B}(A) \subset \operatorname{INV}(A)$ (see Remark 2.2(ii), Remark 2.4, Definition 5.1); and we have the following canonical maps:

$$
N_{B}(A) \rightarrow \operatorname{INV}_{B}^{\prime}(A) \rightarrow \operatorname{INV}_{B}(A) \rightarrow[\operatorname{INV}(A)]
$$

where the first map is as defined above, the second is defined by $X \mapsto n-\mathrm{cl}_{B} X$, and the third, defined by $X \mapsto[X]$ with the identification $\operatorname{INV}_{B}(A) \subset \operatorname{INV}(A)$, is an inverse semigroup homomorphism. Moreover, a statement similar to the one in Proposition 9.1 holds with $\bar{\otimes}_{A}$ in the construction of B replaced by \otimes_{A}, and the last map
is surjective for some B. Finally, note that the notion of an invertible A-module gives an abstract characterization of an element of $\operatorname{INV}_{B}(A)$ for some B. Indeed, $\operatorname{INV}_{B}(A) \subset \operatorname{INV}(A)$ as seen above, and if $X \in \operatorname{INV}(A)$ and B is as constructed in Proposition 9.1 for $\{X\}$, then we have $X \in \operatorname{INV}_{B}(A)$.

Acknowledgement The author would like to thank the referee for the very careful reading of the manuscript.

References

[1] S. K. Berberian, Baer *-Rings. Grundlehren der Mathematischen Wissenschaften 195, Springer-Verlag, New York, 1972.
[2] B. Blackadar, K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications 5, Springer-Verlag, New York, 1986.
[3] L. G. Brown, P. Green, and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras. Pacific J. Math. 71(1977), no. 2, 349-363.
[4] J. Cuntz, Simple C ${ }^{*}$-algebras generated by isometries. Comm. Math. Phys. 57(1977), no. 2, 173-185.
[5] J. Dixmier, Sur certains espaces considérés par M. H. Stone. Summa Brasil. Math. 2(1951), 151-182.
[6] Sous-anneaux abélian maximaux dans les factuers de type fini. Ann. of Math. 59(1954), 279-286.
[7] R. Exel, Circle actions on C*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. J. Funct. Anal. 122(1994), no. 2, 361-401.
[8] \longrightarrow Twisted partial actions: a classification of regular C^{*}-algebra bundles. Proc. London Math. Soc.(3) 74(1997), no. 2, 417-443.
[9] \longrightarrow Amenability for Fell bundles. J. Reine Angew. Math. 492(1997), 41-73.
[10] M. Hamana, Tensor products for monotone complete C*-algebras. I. Japan. J. Math. (N.S.) 8(1982), no. 2, 259-283.
[11] ——Dynamical systems based on monotone complete C^{*}-algebras. In: Current Topics in Operator Algebras. World Scientific. Publishing, River Edge, NJ, 1991, pp. 282-296.
$[12] \longrightarrow$ Modules over monotone complete C ${ }^{*}$-algebras. Intern. J. Math. 3(1992), no. 2, 185-204.
[13] \longrightarrow Infinite, σ-finite, non- W^{*}, AW*-factors. Internat. J. Math. 12(2001), no. 1, 81-95.
$[14] \longrightarrow$ Coactions of discrete groups on monotone complete C^{*}-algebras, in preparation.
[15] E. Hewitt and K. A. Ross, Abstract harmonic analysis. II. Grundlehren der Mathematischen Wissenschaften 152, Springer-Verlag, New York, 1970.
[16] B. E. Johnson, $A W^{*}$-algebras are $Q W^{*}$-algebras. Pacific J. Math. 23(1967), 97-99.
[17] R. V. Kadison, Operator algebras with a faithful weakly-closed representation. Ann. of Math. 64(1956), 175-181.
[18] R V. Kadison and G. K. Pedersen, Equivalence in operator algebras. Math. Scand. 27(1970), 205-222.
[19] I. Kaplansky, Projections in Banach algebras. Ann. of Math. 53(1951), 235-249.
[20] M. V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries. World Scientific Publishing, River Edge, NJ, 1998.
[21] F. J. Murray and J. von Neumann, Rings of operators. IV. Ann. of Math. 44(1943), 716-808.
[22] Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras. Lecture Notes in Mathematics 731, Springer-Verlag, Berlin, 1979.
[23] M. Ozawa, Nonuniqueness of the cardinality attached to homogeneous $A W^{*}$-algebras. Proc. Amer. Math. Soc. 93(1985), no. 4, 681-684.
[24] A. L. T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Math. 170, Birkhäuser Boston, Boston, MA, 1999.
[25] G. K. Pedersen, C^{*}-Algebras and Their Automorphism Groups. London Mathematical Society Monographs 14, Academic Press, London, 1979.
[26] S. C. Power, Limit Algebras: An Introduction to Subalgebras of C*-Algebras. Pitman Research Notes in Mathematics 278, Longman Scientific and Technical, Harlow, 1992.
[27] G. A. Reid, A generalisation of W^{*}-algebras. Pacific J. Math. 15(1965), 1019-1026.
[28] M. A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner. In: Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York, 1979, pp. 43-82..
[29] K. Saitō and J. D. M. Wright, All AW* -factors are normal. J. London Math. Soc.(2) 44(1991), no. 1, 143-154.
[30] S. Sakai, C^{*}-algebras and W^{*}-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 60, Springer-Verlag, New York, 1971.
[31] M. Takesaki, The structure of a von Neumann algebra with a homogeneous periodic state. Acta Math. 131(1973), 79-121.
[32] , Theory of operator algebras. I. Springer-Verlag, New York, 1979.
[33] J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras. Lecture Notes, University of Copenhagen, 1970.
[34] J. D. M. Wright, On some problems of Kaplansky in the theory of rings of operators. Math. Z. 172(1980), no. 2, 131-141.
[35] M. A. Youngson, Completely contractive projections on C^{*}-algebras. Quart. J. Math. Oxford 34(1983), 507-511.
[36] H. H. Zettl, A characterization of ternary rings of operators. Adv. in Math. 48(1983), no. 2, 117-143.

Department of Mathematics
Faculty of Science
University of Toyama
Toyama 930-8555
Japan
e-mail: hamana@sci.u-toyama.ac.jp

[^0]: Received by the editors June 12, 2003; revised August 23, 2005.
 AMS subject classification: Primary: 46L05, 46L08, 46L40; secondary: 20M18.
 (C)Canadian Mathematical Society 2006.

[^1]: ${ }^{\text {I }}$ Part of the work described here was announced at a conference held at Hokkaido University, Sapporo, November 27-29, 1995.

