
/. Austral. Math. Soc. (Series A) 32 (1982), 399-404

DOUBLY REGULAR TOURNAMENTS OF
SZEKERES TYPE

NOBORUITO

(Received 9 September 1980; revised 2 February 1981)

Communicated by W. D. Wallis

Abstract

The purpose of this note is to determine the automorphism group of the doubly regular tournament
of Szekeres type, and to use it to show that the corresponding skew Hadamard matrix H of order
2(q + 1), where q = 5(mod8) and q > 5, is not equivalent to the skew Hadamard matrix H(2q + 1)
of quadratic residue type when 2q + 1 is a prime power.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 20, 20 B 25.

1. Hadamard 2-design of Szekeres type and the associated tournament

Let q be a prime power such that q = 5(mod 8) and q > 5, p a generator of
GF(q)x and Q = (p4). Further let Qt = Qpj (0 < i < 3), A - Qo U Qx, B - Qo

U g3 and C = Q2 U Q3. Then an Hadamard 2-(2q + 1, q, {{q - 1)) design
D(q) = (P(q), B(q)) of Szekeres type is constructed as follows (Szekeres (1969)).
P(q) is a union of GF(q), its disjoint copy GF(q)' and a further point t, where a
*-* a' is an isomorphism between GF(q) and GF(q)'. B(q) consists of three kinds
of blocks labelled as a(a), a(a)' (a £ GF(q)) and a(t), where

a(a) =A + a U {a'} U B' + a',

a(a') = B + a U {/} U C + a'

and

a(t) - GF(q).
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400 Noboru Ito [2]

Now let D — (P, B) be an Hadamard 2-design, where P and B denote the sets
of points and blocks of D respectively. Then a bijection T from B to P is called a
tournament of D if (i) T(a) & a for every a G B and (ii) T(a) G B if and only if
T(fi) £ a for any distinct a, /? G 5.

Now if we define Tby T(a(a)) = a, T(a(a')) = a' and T(a(t)) = t, then Tis a
tournament of D(q) (Szekeres (1969)). We call (D(q),T) the tournament of
Szekeres type.

An automorphism of D is called a 7-automorphism if it commutes with T. The
set of all r-automorphisms forms a subgroup, the automorphism group of the
tournament, of the automorphism group of D. Obviously the automorphism
group of a tournament has odd order, and hence by the Feit-Thompson theorem
it is solvable.

Now let G(T) denote the automorphism group of (D(q),T). Then G(T)
contains the following permutations onP(^i):

(1) The permutation T corresponding to an element T of GF{q); r(a) = a + T,
T ( 0 = t, and r(a') = a' + r'.

(2) The permutation a corresponding to an element a of Q; o(a) = aa,
a(t) = t, and a(a') = a'a', and

(3) The permutation 6 corresponding to an automorphism 0 of GF(q) and
GF(q)'; 0(a) = a", 6{t) = t, and 0{a') = a'".

Clearly these permutations form a subgroup G(T)* of G(T) of order
\q{q- \)r, where q - pr.

PROPOSITION 1. G(T)* = G(T).

PROOF. For a subgroup X of G(T), and x, y,... points of P(q) Xx^ denotes
the pointwise stabilizer of x, y,... in X. Now the set of all T forms a normal
subgroup A'* of G(T)* = G(T)f of order q. If q = p, a prime, then N* is
minimal normal in G(T)*. U q = pr with r > 1, then, since r̂ = 5(mod8), r is
odd. So by a theorem of Zsygmondy, Satz 4 of Redei (1958), there exists a prime
divisor / of q — 1 such that r is the order of p modulo /. We call such an / an
essential prime divisor of q — 1. Since the order of G(T)* is divisible by /, N* is
minimal normal in G(T)*. Since G(T) is of odd order, G(T)t has GF(q) as a
point orbit on which G(T), induces a faithful primitive permutation group. Let TV
be the minimal normal subgroup of G(T)r Since N n N* is normalized by
G(T)f0, if N # iV*, then N H N* = 1. Now JV has order q and C(W) = TV, where
C denotes the centralizer in G(T) (II.3.2, page 159 of Huppert (1967)). Since N*N
is a normal ^-subgroup of G(T)*N, N n Z(N*N), where Z denotes the center, is
a non-trivial normal subgroup of G(T)*N. As above TV is minimal normal in
G(T)*N. So we have that TV = Z(N*N), which is a contradiction. Thus we have
that TV = TV*.
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The set of all a and 0 forms the subgroup G(T)f0 of order \{q - \)r of
G(T)l0. The powers of a form a normal subgroup S of G(T)f0 of order \{q — 1).
Let M be a minimal normal subgroup of G(T)l0 of order mJ, where m is prime.
Let us consider a subgroup G(T)*M = NMG(T)%. Since C(N) = N, by Sylow's
theorem we have that ^ = l(mod m). If w is an essential prime divisor of q — 1,
then by P. Hall's theorem we may assume that M is contained in S. In particular,
M is cyclic and irreducible as a subgroup of the general linear group GL(r, p). So
by Hilfssatz 2 of Huppert (1957), we have that G{T)* = G(r), .

Now let us assume that for every minimal normal subgroup M of order ms of
G(T)lQ m is not an essential prime divisor of q — 1. Then let us consider a
subgroup NML of G(T)t of order qmsl, where L is a subgroup of S of order /, an
essential prime divisor of q — 1. If C(L) D MN = 1, then NML is a Frobenius
group whose kernel is equal to NM. Then by a theorem of Thompson (V.8.7, page
499 of Huppert (1967)), NM is nilpotent, which contradicts the fact C(N) = N.
Thus A/, = C(L) n A/N ^ 1. Clearly Af, is an w-group and we may assume that
M, C M. If Af, ^ Af, then by a theorem of Maschke (3.1.1, page 66 of Gorenstein
(1968)), M = M, XM2, where A/2 is also normalized by L. Considering NM2L
instead of NML, we get C(L) n M2N ¥= 1, which is a contradiction. So Af = A/,,
and we see that every minimal normal subgroup of G(T)l0 is contained in C(L),
and hence every minimal normal subgroup of G(T)l0 is cyclic. Let F be the
Fitting subgroup of G(T)l0. Then by Fitting's theorem F is not contained in
C{L). So there exists a Sylow w-subgroup F(m) of F such that F(m) is not
contained in C(L). If F(m),is ^belian, then as above we see that fi,(F(w)) C
C(L), where fi, denotes the set of elements of order m, and hence F(m) C C(L)
(IV.5.5, page 435 of Huppert (1967)). So F(m) is non-Abelian. By a theorem of
Thompson (5.3.11, page 185 of Gorenstein (1968)), F{m) contains a characteristic
subgroup M* such that M* has class two and that M* n C(L) C Z(A/*), the
center of M*. Since Z(AP) C C(L), Z(A/*) is cyclic. If fi,(A/*) C C(L), then
M* C (L) (IV.5.5, page 435 of Huppert (1967)). So we may assume that M* -
12i(A/*), namely M* is extra-special.

Now the degree of any complex-valued faithful irreducible character of M*L
equals m", where m2u+' is the order of M* (5.5.5, page 208 of Gorenstein (1968)).

N provides a faithful r-dimensional representation R over GF(p) of M*L.
Since Z(M*L) is the least normal subgroup of order m of M*L, at least one
absolutely irreducible component of R must be faithful for M*L. Since p is
relatively prime to the order of M*L, M*L has a faithful complex-valued
irreducible character of degree at most r (For this see V, Section 5 of Huppert
(1968).) Hence we obtain that r>mu. On the other hand, by Sylow's theorem we
have that m2" = l(mod /). Since / and m are odd, we have that m" > /, and hence
r > I. Since / is an essential prime divisor of q — 1 and q = pr, we have that
/ = l(mod r). This is clearly a contradiction. So we have that G(T), — G(T)*.
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If G(T) - G(T)n then we are done. So we assume that G(T) ¥= G{T)r Since
the point orbits of G{T), are GF(q), GF(q)' and {?}, and since G(T) has odd
order, G(T) is primitive on P(q). So 2q + 1 = k", where k is a prime such that
k = 3(mod4), and a is odd (II.3.2, page 159 of Huppert (1968)). If a = 1, then
2q + 1 is a prime and G(T) is primitive and solvable. So G(T), is cyclic. But
since q > 5, {(# — 1) > 1 and G(T)* is not cyclic. This is a contradiction. So
a > 1. Now /> is an essential prime divisor of k" — 1, and hence p = l(mod a).
On the other hand, 2pr = k" - 1 = (k - 1XA:""1 + • • • +k + 1) implies that
A: - 1 = 2ps and ka~l + • • • +k + 1 = p'. So if A; ^ 3, then k = l(mod p) and
a = 0(mod p), which is a contradiction. So k = 3.

Since an element ( ^ 1) of N fixes only the point /, N n Nx = 1 for N ¥= Nx,
where x G G(T). This implies that N is cyclic and r = 1 (V.8.7, page 499 of
Huppert (1968)). Now by a theorem of Huppert (Hilfssatz 2 of Huppert (1957)),
G(T) is contained in the semi-linear group over GF(3"). In particular, the order
of G(T) divides ^3"(3" - l)a, and so -^(p - 1) divides a. Thus we have that
12a = {l{3a - 3) or a = | / ( 3 a ^ ' - 1). This which implies that a = 3, p = 13.
This case requires a combinatorial analysis, because the automorphism group of
the Hadamard 2-(27, 13, 6) design of quadratic residue type has order 33.13.3
(Theorem 6 of Kantor (1969)).

We notice that GF(13)* = <2>, Qo = {1,3,9}, Ql = {2,5,6}, Q2 = {4,10,12},
and Q3 = {7,8,11}. Further we have that

T(1) = (0,1 12)(0', 1' 12')

and

Moreover these have similar presentations on blocks.
Let p ¥= 1 be an element of the center of the Sylow 3-subgroup of G(T)

containing a. Then we may assume that the cycle structure of p involves (0,0', /).
So p leaves a(0) D a(0') n a(t) invariant. This implies that p leaves {1,3,9},
{2,5,6,7,8,11,7', 8', 11'}, {4,10,12,1', 3', 4', 9', 10', 12'} and {2', 5', 6'} invariant.
So p leaves a(l) n a(3) n a(9), and hence {4', 10', 12'} invariant, too. Then
(o, p) contains a non-identity element fixing at least six points, which is a
contradiction.

2. Hadamard matrix of order 2(q + 1) of quadratic residue type

Let 2q + 1 be a prime power, 2q + 1 — k" with k a prime. Then, since
q = 5(mod 8), k = 3(mod 4) and a is odd. Let x be the quadratic (residue)
character of GF(ka)# with usual convention x(0) = 0. Let C be the matrix of
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order k" whose (b, c)-entry equals x(^ ~ c). (We may choose any linear ordering
of elements of GF{ka) to form the matrix C.) Put

5 =

0 1...1
1

: C

- l

Then, since k" = 3(mod4), S is skew-symmetric. Now H(2{q + 1 )) = - / + S,
where / is the identity matrix of order 2{q + 1), is a skew Hadamard matrix of
order 2(q + 1) of quadratic residue type.

PROPOSITION 2. Let H be a skew Hadamard matrix corresponding to the
Hadamard 2-design of Szekeres type in Section 1. Then H and H(2(q +1 ) ) are
inequivalent, where q > 5.

PROOF. Assume that H and H(2{q + 1)) are equivalent. Then H(2(q + 1)) must
have an associated tournament isomorphic to the tournament of Szekeres type in
Section 1.

To describe (3- and 2-) Hadamard designs associated with H(2(q + 1)) we
adopt a row-block and column-point mode. Since H(2(q + 1)) is equivalent to its
own transpose, Theorem 2.2 of Hall (1962), this does not lose any generality.
Furthermore we label the first column and row by oo. So the block «(oo)
corresponding to the first row consists of oo* and GF(ka), where * indicates the
corresponding entry of H(2(q + 1)) is — 1.

Now the automorphism group G of H(2(q + 1)) is determined by M. Hall, Jr.
and W. Kantor, Theorem 2.1 of Hall (1962) and Theorem 6 of Kantor (1969). G is
transitive on rows of H(2(q + 1)). So all the Hadamard 3-designs associated with
H(2(q + 1)) are isomorphic, and we have only to consider the Hadamard 3-design
H(2(q + l))(a(oo)) at a(oo). Ga(00) has two point orbtis, {oo} and GF(ka). The
contraction of H(2(q + l))(a(oo)) at oo is the usual Hadamard 2-design D of
quadratic residue type. Namely let R be the set of quadratic residues (squares) of
GF(ka)*. Then blocks of D have the form R + x, x £ GF(ka). Furthermore,
T(R + x) — x is a tournament of D, and the automorphism group of (D,T)
coincides with that of D and has order (2q + \)qa. Here we notice that T might
not be the unique tournament of D. On the other hand, the contraction of
H(2(q + l))(a(oo)) at 0 has automorphism group of order qa.

First let us assume that D has a tournament which is isomorphic to the
tournament of Szekeres type in Section 1. Then \{q — \)r divides (2q + \)a.
Then k" - 3 divides %aka. So we may put (8a + b)(ka - 3) = 8aka for some
positive integer b. This implies that b{ka — 3) — 24a. If a — 1, then k = 2q + 1
is a prime. By assumption q = 3(mod8) and q > 5. Since k < 27, we have that
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q = 11 and k = 23. This contradicts b(k — 3) = 24. Thus a > 1. Since a is odd,
a > 3. If k 3= 5, then A:a - 3 > 5a - 3 > 24a. So A: = 3. If a > 5, then 3" - 3 >
24a. So a = 3 and a = 13.

Next we assume that the contraction of H(2(q + l))(a(oo)) at 0 has a tourna-
ment of Szekeres type in Section 1. Then \(q — \)r divides a. Since q > 5, a > 1.
Since a is odd, a s* 3. If k > 5, then \{q - 1) = \{ka -3)> |(5f l - 3) > a. So
fc = 3. If a > 5, then | ( 3 a - 3) > a. So a = 3 and q = 13.

Thus, possibly except for q — 13, H(2(q +1 ) ) has no associated tournament
isomorphic to the tournament of Szekeres type in Section 1. But a tedious hand
checking shows that the above mentioned natural tournament is the only tourna-
ment attached to #(28).
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