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Abstract

This paper concerns two families of Markov decision problem that fall within the family
of (bi-directional) restless bandits, an intractable class of decision processes introduced by
Whittle. The spinning plates problem concerns the optimal management of a portfolio
of reward-generating assets whose yields grow with investment but otherwise tend to
decline. In the model of asset exploitation called the squad system, the yield from an
asset tends to decline when it is used but will recover when the asset is at rest. In all cases,
simply stated conditions are given that guarantee indexability of the problem, together
with conditions necessary and sufficient for its strict indexability. The index heuristics
for asset activation that emerge from the analysis are assessed numerically and found to
perform very strongly.
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1. Introduction

In entertainment shows of a certain vintage, a popular act featured a performer keeping
a large number of plates spinning on the top of flexible poles. The audience would express
dismay when one of the plates started to wobble badly, prompting urgent attention to prevent it
from falling from its stick. The performer’s problem (of keeping the plates spinning) is a vivid
metaphor for that facing a manager responsible for a collection of reward-generating assets,
each of whose (reward) performance is enhanced in time by an active (investment) intervention,
but otherwise tends to deteriorate. The crucial issue arises of how such interventions should be
organized to maximize the overall reward yield from an entire asset portfolio. In Section 2, the
performer’s/manager’s problem is formulated as a Markov decision problem with the average
reward criterion. In honour of the frivolous application cited above, we call this the spinning
plates problem.

In contrast to the above are situations in which a manager has a large number of reward-
generating assets at her disposal, a fixed number of which need to be deployed/exploited at all
times. Deployment of an asset activates its reward stream, but erodes over time its (reward)
performance. Resting (not deploying) an asset allows it to recover. The key issue here concerns
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96 K. D. GLAZEBROOK ET AL.

how assets should be deployed so as to maximize the rewards earned from them over time. In
Section 2 this problem is also formulated as a Markov decision problem with the average reward
criterion. In honour of the similar problem faced by coaches in professional sports, we call
this problem the squad system. To the authors’ knowledge, the spinning plates problem, as
formulated in Section 2, is new and there is no previous literature on it. Whittle (1988) gave
a brief discussion of a particular case of the squad system that had a linear structure for both
rewards and stochastic dynamics. He called this the Ehrenfest project. Niño-Mora (2001a)
discussed a discounted reward version of the squad system using polyhedral methods, but was
not able to employ this analysis to give an account of the system with the average reward
criterion.

The Markov decision processes concerned are formulated and presented in Section 2 and all
fall within the class of so-called restless bandit problems introduced by Whittle (1988). These
form a class of decision process that generalizes the multiarmed bandit of Gittins (1979), (1989)
by allowing passive evolution. Complexity analyses due to Papadimitriou and Tsitsiklis (1999)
imply that restless bandit problems are almost certainly intractable. Whittle (1988) proposed a
class of index heuristics which extend the Gittins index policies that are optimal for multiarmed
bandits. Under Whittle’s proposal, each asset has a calibrating index, which is a function of
its state, and his heuristic activates that asset (or those assets) whose current index value is
largest. However, Whittle’s proposed asset index may not exist (this is the issue of indexability)
and the resulting policy will not in general be optimal, even for indexable problems. That said,
Weber and Weiss (1990), (1991) have demonstrated a form of asymptotic optimality of Whittle’s
heuristic under certain conditions. Furthermore, Glazebrook et al. (2002) have explored the
closeness to optimality of the index policy for a class of discounted restless bandit problems
of simple structure. Applications of Whittle’s ideas to the control of multiclass queueing
systems have provided empirical evidence of outstanding performance of the index heuristics
concerned. See, for example, Ansell et al. (2003) and Glazebrook et al. (2003). In general,
the issue of whether a restless bandit problem is indexable is complex. Niño-Mora (2001b),
(2001a), (2002) has used a polyhedral approach to express conditions on model parameters that
guarantee indexability.

In Sections 3 and 5 we give simple and direct accounts of the index structure of, respectively,
the spinning plates problem and the squad system. In both cases we give simply stated conditions
that guarantee the models’ indexability. Furthermore, we present algorithms that yield the
indices. Strict indexability means that not only is the problem concerned indexable, but also
that all index functions are one-to-one (namely, that distinct states of an asset have distinct index
values). Our analysis yields conditions necessary and sufficient for strict indexability in both
models, together with formulae for the indices in closed form. The authors believe this to be the
first time that simply stated conditions equivalent to strict indexability have been formulated
for any restless bandit model for which strict indexability is not guaranteed. Numerical results
testify to the very strong performance of the index heuristic for both models. In 800 instances
of the spinning plates problem, the index heuristic was never more than 0.024% suboptimal.
Section 4 contains a somewhat shorter discussion of the index structure of a version of the
spinning plates problem with the discounted reward criterion. The equivalent material for the
squad system is to be found at the conclusion of Section 5.

In addition to the intrinsic interest of the theoretical results in Sections 3 and 5, the authors
believe that the approach adopted will be applicable to a wide range of restless bandit problems
with the average reward criterion. Investigation of an asset’s index structure involves study
of the so-called W -subsidy problem. The latter is a decision problem defined for the asset of
interest in which a subsidy W is paid for every unit of time for which the asset is passive.
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Indexability of the asset is related simply to the fact that the value of the W -subsidy problem
is increasing, piecewise linear, and convex in W (see also Niño-Mora (2002)). For strictly
indexable cases the number of pieces in the piecewise-linear function is greater by 1 than the
number of asset states.

2. Two families of bi-directional restless bandit

Each of the families of restless bandit considered here is a class of Markov decision process
with the average reward criterion. In each case, J projects (assets) are available for invest-
ment/exploitation. Resource constraints mean that only M assets (1 ≤ M < J ) may be
active at any time. The decision problem concerns how assets should be optimally chosen for
activation at each decision epoch of the system to maximize the reward rate earned over an
infinite horizon.

Definition 1. (Family 1: Spinning plates (investment in assets).) A typical member of this
family is as follows.

(i) Each of the assets evolves stochastically through time t ∈ R
+. We write Xj(t) for the

state of the asset j at time t ∈ R
+, 1 ≤ j ≤ J , and X(t) = {X1(t), X2(t), . . . , XJ (t)}

for the corresponding system state. The state of asset j is an integer in the range
[Kj ,Kj ] ≡ {Kj ,Kj + 1, . . . , Kj }, and for most of the development (and until stated
otherwise) we shall suppose that −∞ < Kj < Kj < ∞, 1 ≤ j ≤ J .

(ii) Time 0 together with the times of every state transition of the process constitute the set
of decision epochs for the system. In each system state there are

(
J
M

)
possible actions,

one corresponding to each subset of {1, 2, . . . , J } of sizeM . If S is one such subset, then
A(S) denotes the action that chooses both an active regime (the active action, denoted
a) for the assets whose identifiers are in S, and an inactive regime (the passive action,
denoted b) for the remaining assets. Under action A(S) applied in state x, the time to
the next system transition is exponentially distributed with rate∑

j∈S
λj (xj )+

∑
j /∈S

µj (xj ) =: �(S, x).

If �(S, x) > 0 then the state immediately following this transition will be x + ej ,
j ∈ S, with probability λj (xj ){�(S, x)}−1, and will be x − ej , j /∈ S, with probability
µj (xj ){�(S, x)}−1. Note that ej is a J -vector whose j th component is 1, with 0s
elsewhere. Equivalently, the J assets evolve independently under the action applied (a
or b). If project j should be active (a) then it evolves from state xj to xj + 1 at rate
λj (xj ), while under the passive action (b) it evolves from state xj to xj − 1 at rate
µj (xj ), xj ∈ [Kj ,Kj ], 1 ≤ j ≤ J . The transition rates λj and µj , 1 ≤ j ≤ J , satisfy

λj (Kj ) = µj (Kj ) = 0

but are otherwise strictly positive. If �(S, x) = 0 then the state x is absorbing under
action A(S).

(iii) The system earns rewards at rate
∑
j Rj (xj ) while in state x. Each reward rate function

Rj : [Kj ,Kj ] → R
+ is (weak-sense) increasing. The goal of the analysis is to determine

a policy (a rule for taking actions) that maximizes the average system reward rate earned
over an infinite horizon, or comes close to doing so.
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Definition 2. (Family 2: The squad system (exploitation of assets).) A typical member of this
family is as follows.

(i) The states of the system are as in Definition 1(i).

(ii) The available actions in each state are as in Definition 1(ii). Now, however, under action
A(S) applied in state x, the time to the next system transition is exponential with rate∑

j∈S
νj (xj )+

∑
j /∈S

ρj (xj ) =: ϒ(S, x).

If ϒ(S, x) > 0 then the state immediately following this transition will be x − ej ,
j ∈ S, with probability νj (xj ){ϒ(S, x)}−1, and will be x + ej , j /∈ S, with probability
ρj (xj ){ϒ(S, x)}−1. Equivalently, the J assets evolve independently under the action
applied (a or b). If project j should be active (a) then it evolves from xj to xj − 1
at rate νj (xj ), while under the passive action (b) it evolves from xj to xj + 1 at rate
ρj (xj ), xj ∈ [Kj ,Kj ], 1 ≤ j ≤ J . The transition rates satisfy νj (Kj ) = ρj (Kj ) = 0,
1 ≤ j ≤ J , but are otherwise strictly positive. Ifϒ(s, x) = 0 then the state x is absorbing
under action A(S).

(iii) If the system is in state x and actionA(S) is current, then the system earns rewards at rate∑
j∈S Rj (xj ), where each function Rj : [Kj ,Kj ] → R

+ is (weak-sense) increasing.
The goal of the analysis is to determine a policy that maximizes the average system
reward rate earned over an infinite horizon, or comes close to doing so.

Remarks 1. 1. In family 1, the active action applied to an asset enhances its reward-earning
capacity. Hence, plant and machinery are maintained and updated, employees are trained, and
products are improved and/or advertised – in short, activity represents a positive investment
decision taken with regard to an asset. In the absence of such investment decisions (i.e. under
the passive action) the reward-earning capacity of an asset tends to decline. Note from
Definition 1(iii) that in family 1 assets earn rewards (at a higher or lower rate) all the time
and not only when in receipt of investment.

2. In family 2, the active action represents the use or exploitation of an asset. As the asset is
used it becomes ‘tired’ or depleted and loses some of its reward-earning capacity. Under the
passive action the asset recovers its potential to earn high returns. Note from Definition 2(iii)
that in family 2 assets only earn rewards when they are used (i.e. under the active action).

3. The reward structures in Definitions 1(iii) and 2(iii) are natural to the envisaged applications.
Note that the modification of family 1 in which assets only earn rewards under the active
action has a trivial solution: always apply the active action to those M assets with the largest
associated values of Rj (Kj ), 1 ≤ j ≤ J . Also, the version of family 2 in which assets earn
rewards whether activated or not is of little interest. No policy can do better in reward rate
terms than an application of the passive action to all assets always.

4. In both cases, the theory of stochastic dynamic programming guarantees the existence of an
optimal policy that is stationary, deterministic, and Markov (Puterman (1994, pp. 353–361)).
The above families fall within the class of intractable restless bandit problem, introduced by
Whittle (1988) and demonstrated to be PSPACE-hard by Papadimitriou and Tsitsiklis (1999).
Whittle (1988) advocated the deployment of index heuristics, such policies emerging from the
formulation and solution of Lagrangian relaxations of the original optimization problem. We
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sketch the essentials of this approach before exploring its implications for the above families
in detail in the following sections.

Write U for the class of stationary, deterministic, Markov policies for an identified member
of either family 1 or family 2, and u ∈ U for an individual policy. We use rj (u) for the average
reward rate earned by asset j under policy u. The optimization problem of interest is expressed
as

ropt = max
u∈U

{ J∑
j=1

rj (u)

}
. (1)

We now relax the optimization problem in (1) by considering schemes that activate any number
of assets at each decision epoch (i.e. any number between 0 and J , not necessarily M) and
use U′ to denote the class of policies that do this in a stationary, deterministic, Markov way.
Our interest will reside in those members of U′ that activate M assets (or, equivalently, fail to
activate J − M assets) on average over an infinite horizon. To formulate the corresponding
optimization problem, write Ij (u) for the proportion of time for which asset j is passive under
u ∈ U′. Hence, we relax (1) to

r̄opt = max
u∈U′

{ J∑
j=1

rj (u)

}
(2)

subject to J∑
j=1

Ij (u) = J −M. (3)

Plainly, the relaxation yields increased optimal rewards (compared to the original problem),
and, hence, r̄opt ≥ ropt.

We now incorporate constraint (3) in a Lagrangian fashion. We write

r(W) = max
u∈U′

{ J∑
j=1

{rj (u)+WIj (u)} −W(J −M)

}
(4)

=
J∑
j=1

[
max
uj∈U′

j

{rj (u)+WIj (u)}
]

−W(J −M), (5)

where in (4) and (5) W is a Lagrange multiplier that has an economic interpretation as a
subsidy for passivity. The additive nature of the objective in (4) together with the character of
policy set U′ means that the optimal activation scheme for the entire set of assets is achieved by
concatenating optimal activation schemes for the individual assets. The additive decomposition
in expression (5) is the consequence. In (5), U′

j is the set of stationary, deterministic, Markov
policies that choose between actions a and b for asset j (alone), 1 ≤ j ≤ J . The optimization
problem

rj (W) = max
uj∈U′

j

{rj (u)+WIj (u)} (6)

is called the W -subsidy problem for asset j and aims to choose a policy for activating j
to maximize its overall return from rewards earned and passive subsidies received. Since
expressions (2) and (4) are equal when constraint (3) is satisfied, it is plain that r(W) ≥ r̄opt ≥
ropt for all W .
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An issue that arises in consideration of the W -subsidy problem in (6) is possible non-
uniqueness of the policy or policies achieving the maximum. We resolve any such non-
uniqueness in two steps. First, we demonstrate (see Lemmas 1 and 3) that for both families 1
and 2 there exist optimal policies for theW -subsidy problems of interest which have monotone
structure. Hence, we restrict the analysis to policies from the appropriate monotone classes
in each case. Second, should more than one monotone policy achieve the maximum in (6),
then we choose the policy with the largest passive set (i.e. the largest set of states in which the
corresponding policy chooses the passive action). Use πj (W) to denote the resulting policy,
bj (W) to denote its passive set, and π(W) to denote the policy for the entire system that applies
πj (W) to each asset j, 1 ≤ j ≤ J . Policy π(W) solves the optimization problem (4). The
following definition expresses a natural requirement on (optimal) policy structure.

Definition 3. Asset j is indexable if there existWj andWj such that −∞ < Wj < Wj < ∞,

bj (W) = ∅ for W < Wj , and bj (W) = [Kj ,Kj ] for W ≥ Wj , with bj : [Wj,Wj ] →
2[Kj ,Kj ] increasing.

The above decision problems are indexable when all constituent projects are.

Should an asset be indexable then a natural calibration in the form of a fair subsidy for
passivity may be defined.

Definition 4. If asset j is indexable then its index Wj : [Kj ,Kj ] → R is defined by

Wj(x) = inf{W, x ∈ bj (W)}, x ∈ [Kj ,Kj ].
It now follows that π(W) will choose to activate in system state x those assets for which

Wj(xj ) > W , and apply the passive action to the remainder. Furthermore, if there exists aW ∗
such that π(W ∗) satisfies (3) then it must follow that

r(W ∗) = inf
W
r(W) = r̄opt ≥ ropt

and π(W ∗) solves the relaxed optimization problem in (2) and (3). A natural index heuristic for
the original optimization problem emerges from the above discussion. The heuristic chooses in
state x to activateM assets with maximal index valuesWj(xj ), 1 ≤ j ≤ J , with ties resolved
in some arbitrary manner.

In Sections 3 and 5 we shall study families 1 and 2 in turn. In each case we shall give
conditions sufficient for the indexability of the decision problems together with algorithms
that yield the resulting indices. We further give conditions necessary and sufficient for the
strict indexability of each asset, namely that the index function be one-to-one. Under strict
indexability, the indices are available in closed form. Section 4 contains a discussion of the
index structure of the spinning plates problem with the discounted reward criterion.

3. Family 1 (spinning plates): a model for optimal investment in assets

We now drop the asset suffix and consider the W -subsidy problem in (6) for a single asset
drawn from a decision problem in family 1 whose associated parameters are K , K , λ(·), µ(·),
andR(·). From Definitions 1(ii) and 1(iii), recall that, under the application of the active action
a in state x, the asset evolves to state x + 1 at rate λ(x) and earns rewards at rate R(x) while
doing so. Under application of the passive action b in state x, the asset evolves to state x − 1
at rate µ(x) and (in the W -subsidy problem) earns rewards at rate R(x) +W while doing so.
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The intermediate goal of our analysis is the identification of policies that maximize the average
reward rate earned by the asset over an infinite horizon.

Without loss of generality, we restrict to the class of stationary, deterministic, Markov policies
π : [K,K] → {a, b} and highlight the class B of monotone policies for which

π(x) = b ⇔ x ≥ y for some y ∈ [K,K + 1]. (7)

We shall denote the policy in (7) by (y), y ∈ [K,K + 1]. Note that (K+1) chooses the active
action a in all states while (K) chooses the passive action b in all states.

Lemma 1. For all W ∈ R there exists an optimal policy for the W -subsidy problem in B.

Proof. Fix a W and an initial asset state x̂. Consider asset evolution under a general
stationary, deterministic, Markov policy π . The average reward rate earned under π will
always be matched by that earned by some member of B from any initial state.

Suppose, for example, that π(x̂) = a and that π(x) = b for some x, K ≥ x > x̂. Write

x̄ = min{x : x > x̂ and π(x) = b}.
Under π , the asset reaches state x̄ in finite time almost surely, and thereafter has alternating
sojourns in states x̄ and x̄ − 1. The associated average reward rate for the W -subsidy problem
is

[{W + R(x̄)}λ(x̄ − 1)+ R(x̄ − 1)µ(x̄)]{λ(x̄ − 1)+ µ(x̄)}−1.

This is also the average reward rate achieved by policy (x̄) from any initial state. The remaining
cases, that is,

• π(x) = a, K ≥ x ≥ x̂,

• π(x) = b, x̂ ≥ x ≥ K ,

• π(x̂) = b and π(x) = a for some x̂ > x ≥ K ,

are dealt with similarly. The required result follows.

From Lemma 1, policy (x(W)), where

x(W) ∈ argmax
K≤x≤K+1

{[{W + R(x)}λ(x − 1)+ R(x − 1)µ(x)]{λ(x − 1)+ µ(x)}−1}, (8)

solves the W -subsidy problem. Note that in the event of more than a single x-value achieving
the maximum on the right-hand side of (8), x(W) is taken to be the smallest such value. Also
note that, in (8), λ(K − 1) and µ(K + 1) are assigned arbitrary positive values.

From Definition 3, in order to establish the asset’s indexability it will be enough to show
that there exist finite W and W , W < W , such that x(W) = K + 1 for W < W , x(W) = K

forW ≥ W , and x(·) : [W,W ] → [K,K + 1] is decreasing. For an indexable asset, the index
in state x will be given by

W(x) = inf{W : x(W) ≤ x}, K ≤ x ≤ K. (9)

We now introduce the function φ : [K,K + 1] → [0, 1], defined by

φ(x) = λ(x − 1){λ(x − 1)+ µ(x)}−1, K ≤ x ≤ K + 1.
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Note that φ(K + 1) = 0 and φ(K) = 1, and observe that, from (8), the average reward rate
achieved by policy (x) for the W -subsidy problem is written

{W + R(x)}φ(x)+ R(x − 1){1 − φ(x)}, K ≤ x ≤ K + 1.

Theorem 1. If φ is decreasing then the asset is indexable.

Proof. Define, for W ≥ 0,

V (W) = max
K≤x≤K+1

{{W + R(x)}φ(x)+ R(x − 1){1 − φ(x)}}. (10)

From the discussion following (8), x(W) is the smallest maximizer of the right-hand side of
(10). It is straightforward to show that, since 0 < φ(x) < 1 for K + 1 ≤ x ≤ K , we have

x(W) = K + 1, W < 0, (11)

and
x(W) = K, W ≥ Ŵ , (12)

for some sufficiently large Ŵ . Furthermore, if the subset {x1, x1 + 1, . . . , x2} ⊆ [K,K + 1]
is such that φ(x1) = φ(x1 + 1) = · · · = φ(x2), and is maximal in this regard, then it is
straightforward to show that the range of x(W) contains at most a single value from this subset.

By standard theory, V : R
+ → R

+ is convex and piecewise linear, and is easily seen to be
increasing. Suppose now that 0 ≤ W1 < W2. Since clearly φ(x(W)) is the right gradient of
V for every W ≥ 0, it immediately follows from the convexity of V , the hypothesis of the
theorem, and the foregoing discussion that

x(W1) ≥ x(W2). (13)

The result now follows from (10)–(13) and the discussion around (8).

We now seek to understand the asset’s index structure under the hypothesis of Theorem 1.
Suppose that there are L ≥ 0 points at which the gradient of V is discontinuous. List the
corresponding W -values as

0 < W 1 < · · · < WL,

where plainlyWL ≤ Ŵ , from (12). WriteW 0 = 0. We use xl, 0 ≤ l ≤ L− 1, for the integers
for which x(W) = xl, W ∈ (W l,W l+1), and which satisfy

φ(xl) = {V (Wl+1)− V (Wl)}(W l+1 −Wl)−1, 0 ≤ l ≤ L− 1.

Also, write xL = K . The convexity of V and the decreasing nature of φ imply that

K + 1 ≥ x0 > x1 > · · · > xL = K.

We now complete the description of x(·) as follows:

x(W) =

⎧⎪⎨
⎪⎩
K + 1, W < 0,

xl, W ∈ [Wl,Wl+1), 0 ≤ l ≤ L− 1,

K, W ≥ WL.

(14)

Our next result is an immediate consequence of (9) and (14).
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Theorem 2. If φ is decreasing then the index W : [K,K] → R
+ is given by

W(x) =
{

0, x0 ≤ x ≤ K,

Wl, xl ≤ x < xl−1, 1 ≤ l ≤ L.

Remarks 2. 1. Note from Theorem 2 that the index is decreasing in the state. Hence, in the
spinning plates problem it is assets which are achieving low returns (wobbly plates) that are a
high priority for activation.

2. Also note that the sufficient condition of Theorems 1 and 2 – that φ be decreasing – is
equivalent to the requirement that the ratio between the active and passive rates for moving
between x − 1 and x, i.e. λ(x − 1)/µ(x), be decreasing in x.

Lemma 2 gives an inductive specification of the key integers {xl, 0 ≤ l ≤ L} and the reals
{Wl, 0 ≤ l ≤ L}. To state the result we require additional notation. Suppose x to be an integer
such that K < x ≤ K + 1. We write

m(x) = max{y ∈ Z : K ≤ y < x and φ(y) > φ(x)}.
Lemma 2. The collections {xl, 0 ≤ l ≤ L} and {Wl, 0 ≤ l ≤ L} are as follows.

(i) The initial values are x0 = x(0) and W 0 = 0.

(ii) If k ∈ N and xk > K then

Wk+1 = min
K≤x≤m(xk)

{{[R(xk)φ(xk)+ R(xk − 1){1 − φ(xk)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(xk)}−1}, (15)

with xk+1 the smallest minimizer in (15). If xk+1 = K then L = k + 1.

Proof. Part (i) is immediate from the above. For part (ii), note that, from (14), if xk > K

then Wk+1 can be characterized as

Wk+1 = inf{W > Wk : x(W) < xk}.
If W ∈ (Wk,Wk+1) then xk is the smallest maximizer of V (W) and, in particular, attains a
value strictly greater than that attained by any x for which x ≤ m(xk). Hence,

{W + R(x)}φ(x)+ R(x − 1){1 − φ(x)}
< {W + R(xk)}φ(xk)+ R(xk − 1){1 − φ(xk)}, K ≤ x ≤ m(xk),

from which we deduce that

W < {[R(xk)φ(xk)+ R(xk − 1){1 − φ(xk)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(xk)}−1, K ≤ x ≤ m(xk).

(16)

It immediately follows from (16) that

Wk+1 ≤ min
K≤x≤m(xk)

{{[R(xk)φ(xk)+ R(xk − 1){1 − φ(xk)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(xk)}−1}. (17)
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However, the fact that x(Wk+1) < xk must mean that x(Wk+1) ≤ m(xk) and, hence, that there
are maximizers of V (Wk+1) in the range K ≤ x ≤ m(xk). For any such maximizer, x̂ say, we
have

{Wk+1 + R(x̂)}φ(x̂)+ R(x̂ − 1){1 − φ(x̂)}
≥ {Wk+1 + R(xk)}φ(xk)+ R(xk − 1){1 − φ(xk)}

and, hence,

Wk+1 ≥ {[R(xk)φ(xk)+ R(xk − 1){1 − φ(xk)}]
− [R(x̂)φ(x̂)+ R(x̂ − 1){1 − φ(x̂)}]}{φ(x̂)− φ(xk)}−1

≥ min
K≤x≤m(xk)

{{[R(xk)φ(xk)+ R(xk − 1){1 − φ(xk)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(xk)}−1}. (18)

Equation (15) follows from (17) and (18).
By a modest extension of the above calculations, it follows that the minimizers on the right-

hand side of (15) are precisely the maximizers of V (Wk+1). By definition, x(Wk+1) = xk+1

is the smallest of these. This completes the proof.

Important special cases occur in which all of the states in an indexable asset have distinct
indices. When this happens we say that the asset is strictly indexable. The next result gives a
condition necessary and sufficient for strict indexability.

Theorem 3. (i) The following assertions are equivalent.

(a) The asset is strictly indexable.

(b) Both φ(x) and

W(x) := {[R(x + 1)φ(x + 1)+ R(x){1 − φ(x + 1)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(x + 1)}−1 (19)

are strictly decreasing over the range K ≤ x ≤ K .

(ii) Under the conditions of part (i)(b) we have W(x) = W(x), K ≤ x ≤ K , and the index is
strictly decreasing in the state.

Proof. (i) To prove that assertion (a) follows from assertion (b), note that if the hypotheses of
(b) hold then it is straightforward to show that the minimum in (15) will be attained uniquely by
xk+1 = xk − 1. We will then haveWk+1 = W(xk − 1), and the inference of strict indexability
will follow simply from Theorem 2.

Now assume that assertion (a) holds. If the asset is strictly indexable, it must follow that
there exists a function W̃ (x), K ≤ x ≤ K , strictly decreasing in x, such that

x(W) =

⎧⎪⎨
⎪⎩
K + 1, W < W̃(K),

x, W ∈ [W̃ (x), W̃ (x − 1)), K + 1 ≤ x ≤ K,

K, W ≥ W̃ (K).
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Plainly, when W = W̃ (x), K ≤ x ≤ K , both x and x + 1 attain the maximum in V (W). It
follows that

{W̃ (x)+ R(x)}φ(x)+ R(x − 1){1 − φ(x)}
= {W̃ (x)+ R(x + 1)}φ(x + 1)+ R(x){1 − φ(x + 1)}. (20)

Moreover, if W ∈ [W̃ (x + 1), W̃ (x)) then x(W) = x + 1 and, so, (x + 1) must strictly
outperform (x) in this range. Hence, for W ∈ [W̃ (x + 1), W̃ (x)),

{W + R(x)}φ(x)+ R(x − 1){1 − φ(x)}
< {W + R(x + 1)}φ(x + 1)+ R(x){1 − φ(x + 1)}. (21)

It must then follow from (20) and (21) that φ(x) > φ(x + 1), K ≤ x ≤ K − 1, and, hence,
that φ(x) is strictly decreasing for K ≤ x ≤ K . Furthermore, from (20),

W̃ (x) = {[R(x + 1)φ(x + 1)+ R(x){1 − φ(x + 1)}]
− [R(x)φ(x)+ R(x − 1){1 − φ(x)}]}{φ(x)− φ(x + 1)}−1

= W(x), K ≤ x ≤ K.

We conclude thatW(x) is strictly decreasing in x forK ≤ x ≤ K . This concludes the proof of
part (i).

Part (ii) follows trivially from the above analysis.

Remark 3. The reader should note that the index for state x in (19) involves quantities evaluated
at x − 1, x, and x + 1. The index may be understood as a quantity that weighs the benefits of
the positive reward enhancement achieved by the active action taken in x (the positive term)
against the effects of reward deterioration experienced when the asset is passive (the negative
term).

Example 1. Suppose that the reward rate is linear in the state in such a way that

R(x) = r(x −K), K ≤ x ≤ K,

for some r > 0. The function W in (19) then becomes

W(x) = r[1 − {φ(x)− φ(x + 1)}]{φ(x)− φ(x + 1)}−1, K ≤ x ≤ K, (22)

and will be strictly decreasing when φ(x) − φ(x + 1) is strictly increasing over the range
x ∈ [K,K], i.e. when φ is (strictly) decreasing concave there. From Theorem 3, (22) gives the
index in this case.

Example 2. It is in fact possible, by natural extension of the above material, to develop
indexable assets with semi-infinite state spaces of the form (−∞,K]. Consider such an example
for which K = 0. We suppose that the reward rates are given by

R(x) = reηx, x ≤ 0,

where r > 0 and η > 0. Furthermore, suppose that

φ(x) = 1 − eθ(x−1), x ≤ 0,
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where θ > 0 guarantees that φ is strictly decreasing. The function W in (19) then becomes

W(x) = r(eη − 1)(1 − e−θ )−1{e(η−θ)x − eηx(1 − e−ηe−θ )}, x ≤ 0, (23)

and will be strictly decreasing when 0 < η < θ . From a suitable extension of Theorem 3, (23)
gives the index in this case.

3.1. Numerical results

In Table 1 we present some results of an extensive numerical investigation into the quality
of performance of the index heuristics developed in this section. Each problem studied has
J = 4 andM = 1; that is, at each decision epoch one of four possible assets must be chosen for
activation. Each constituent asset is structured as in Example 1 above, with K = 0, K = 10,
and

φ(x) = 1 −
(
x

11

)α
, 0 ≤ x ≤ 10,

for some α > 1. The function φ is indeed decreasing concave and results from the choices

λ(x) = {(11)α − (x + 1)α}(x + 1)−α+1

and µ(x) = x, 0 ≤ x ≤ 10. In this model, each of the four assets is characterized by the
parameter pair (r, α). In all cases the αs are chosen by sampling from a continuous uniform
distribution. The rs are chosen either from a uniform(0, 5) distribution or from a uniform(5, 10)
distribution. Table 1 presents results for 800(= 4 × 2 × 100) randomly generated problems.

Four policies were applied to each problem generated. These are as follows.

• OPT: An optimal policy and its corresponding average reward rate ropt were computed
by dynamic programming value iteration. See, for example, Tijms (1994).

• IND: This is the index policy developed in the current section. At every decision epoch
it activates the asset with currently maximal index.

• MYO: This is a myopic heuristic that attaches the index rλ(x) to an asset in state x and
activates the asset of largest index. This index may be understood as the rate at which
the asset’s reward-earning capacity may be enhanced by activation.

• SMA: This is the policy that always activates the asset of smallest state, with ties broken
at random.

For each problem generated the average reward rates r ind, rmyo, and rsma were computed by
dynamic programming value iteration, yielding the percentage suboptimalities

�(H) := 100(ropt − rH )(ropt)−1, H = ind, myo, sma.

Table 1 summarizes the collections of percentage suboptimalities (each collection of size 100)
arising from the application of each of the IND, MYO, and SMA policies to each of the
eight problem configurations. Each collection is summarized by the order statistics MIN
(minimum), LQ (lower quartile), MED (median), UQ (upper quartile), and MAX (maximum).
For example, from the top left-hand corner of Table 1, we see that when MYO is applied to
the 100 problems with α ∼ uniform(1.1, 1.4) and r ∼ uniform(0, 5) we obtain a median
percentage suboptimality of 3.097 and a worst case which is 15.674% suboptimal.

The dominant feature of Table 1 is the outstanding performance of the index policy. In
its worst performance in the 800 randomly generated problems analysed, it was just 0.024%
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Table 1: Comparative performance of the index policy (IND), a myopic heuristic (MYO), and the
‘smallest state’ policy (SMA) for problems structured as in Example 1. First section: r ∼ uniform(0, 5)
and α ∼ uniform(1.1, 1.4) (left), α ∼ uniform(1.4, 1.7) (right); second section: r ∼ uniform(5, 10)
and α ∼ uniform(1.1, 1.4) (left), α ∼ uniform(1.4, 1.7) (right); third section: r ∼ uniform(0, 5) and
α ∼ uniform(1.7, 2.0) (left), α ∼ uniform(1.01, 1.31) (right); fourth section: r ∼ uniform(5, 10) and

α ∼ uniform(1.7, 2.0) (left), α ∼ uniform(1.01, 1.31) (right).

IND MYO SMA IND MYO SMA

MIN 0.000 0.099 1.015 0.000 0.021 0.462
LQ 0.000 1.572 13.677 0.000 0.655 8.143

MED 0.000 3.097 21.459 0.001 1.353 14.003
UQ 0.004 6.732 30.166 0.004 2.830 20.745

MAX 0.018 15.674 50.783 0.022 9.173 37.961

MIN 0.000 0.128 0.280 0.000 0.005 0.226
LQ 0.000 0.818 2.264 0.000 0.232 1.016

MED 0.002 1.407 4.387 0.001 0.484 2.134
UQ 0.004 2.382 6.100 0.003 0.721 3.115

MAX 0.024 7.784 13.899 0.010 2.236 6.210

MIN 0.000 0.035 0.404 0.000 0.325 2.112
LQ 0.000 0.370 5.635 0.000 2.451 17.224

MED 0.001 0.873 10.612 0.000 4.891 25.204
UQ 0.004 1.732 15.590 0.000 9.531 34.495

MAX 0.015 5.823 31.341 0.019 19.318 56.117

MIN 0.000 0.005 0.182 0.000 0.179 0.384
LQ 0.000 0.117 0.660 0.000 1.386 3.440

MED 0.000 0.224 1.490 0.000 2.333 6.369
UQ 0.001 0.351 2.068 0.003 4.676 8.800

MAX 0.007 0.948 4.251 0.019 14.593 20.683

suboptimal. For each of the other heuristics (MYO and SMA) problematic instances arose
in which they performed poorly. In particular, there is clear evidence of a deterioration of
performance of both as the generated αs approach 1 from above.

4. The spinning plates problem with discounted rewards

Now consider discounted reward versions of the Markov decision processes introduced in
Section 2. Family 1 is defined as in Definitions 1(i) and 1(ii), but here rewards are accumulated at
rate e−αt ∑

j Rj (Xj (t)) at time t ∈ R
+, where α > 0. Family 2 is defined as in Definitions 2(i)

and 2(ii), but now if action A(S) is operative at time t ∈ R
+, rewards are then accumulated at

rate e−αt ∑
j∈S Rj (Xj (t)). An appropriate version of the development of (1)–(6) above again

yields a decomposition of a Lagrangian relaxation of the optimization problem into a collection
of J W -subsidy problems, one for each asset. Under given conditions it will emerge for both
families that there exist optimal policies for theW -subsidy problems which are monotone, as in
(7) above. We continue to use the convention established prior to Definition 3 that, in the event
of more than one monotone policy being optimal, we choose the one with the largest passive
set. We have indexability when this passive set is increasing in W . The corresponding indices
are as in Definition 4.

For the remainder of this section, we focus on family 1 and writeVα(·,W) : [K,K] → R for
the value function of theW -subsidy problem defined for an asset whose associated parameters
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are K,K, λ(·), µ(·), and R(·). Hence, Vα(x,W) is the total expected reward earned over
an infinite horizon when an optimal policy is applied and x is the state of the asset at time
0. Standard theory (see, for example, Puterman (1994, pp. 142–156)) guarantees the exis-
tence of a stationary, deterministic, Markov policy whose value function satisfies the dynamic
programming optimality equations. In the case of family 1 these are

Vα(K,W) = max{[R(K)+ λ(K)Vα(K + 1,W)]{λ(K)+ α}−1, [W + R(K)]α−1},
Vα(x,W) = max{[R(x)+ λ(x)Vα(x + 1,W)]{λ(x)+ α}−1,

[W + R(x)+ µ(x)Vα(x − 1,W)]{µ(x)+ α}−1}, (24)

K + 1 ≤ x ≤ K − 1,

Vα(K,W) = max{R(K)α−1, [W + R(K)+ µ(K)Vα(K − 1,W)]{µ(K)+ α}−1}.

Throughout (24), the first quantity on the right-hand side is the total expected reward earned
when choosing action a in the current state and thereafter proceeding optimally. The second
quantity is the total expected reward earned when choosing action b in the current state and
then proceeding optimally.

We introduce V xα (x̂,W) as the value function for monotone policy (x) evaluated at initial
state x̂ ∈ [K,K] (see (7)). By direct calculation we have

V xα (x̂,W) =
x̂−x−1∑
y=0

[y−1∏
u=0

µ(x̂ − u){µ(x̂ − u)+ α}−1
]
{W + R(x̂ − y)}{µ(x̂ − y)+ α}−1

+
[x̂−x−1∏
y=0

µ(x̂ − y){µ(x̂ − y)+ α}−1
]
V xα (x,W), K ≤ x ≤ x̂,

V xα (x̂,W) =
x−x̂−1∑
y=0

[y−1∏
u=0

λ(x̂ + u){λ(x̂ + u)+ α}−1
]
R(x̂ + y){λ(x̂ + y)+ α}−1

(25)
+

[x−x̂−1∏
y=0

λ(x̂ + y){λ(x̂ + y)+ α}−1
]
V xα (x,W), x̂ < x ≤ K,

V K+1
α (x̂,W) =

K−x̂−1∑
y=0

[ y∏
u=0

λ(x̂ + u){λ(x̂ + u)+ α}−1
]
R(x̂ + y){λ(x̂ + y)+ α}−1

+
[K−x̂−1∏

y=0

λ(x̂ + y){λ(x̂ + y)+ α}−1
]
R(K)α−1.

We also observe that if X(0) = x, K + 1 ≤ x ≤ K , then, under policy (x), the asset has an
initial passive sojourn in x followed by an active sojourn in x − 1 that is terminated by a return
to x. It then follows that

V xα (x,W) = {W + R(x)}{µ(x)+ α}−1 + R(x − 1)µ(x){µ(x)+ α}−1{λ(x − 1)+ α}−1

+ µ(x)λ(x − 1){µ(x)+ α}−1{λ(x − 1)+ α}−1V xα (x,W),
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from which we infer that

V xα (x,W) = [{W +R(x)}{λ(x− 1)+α}+R(x− 1)µ(x)]{αλ(x− 1)+αµ(x)+α2}−1,

K ≤ x ≤ K. (26)

We are now ready to proceed to our main result.

Theorem 4. (Family 1: discounted rewards.) If

{λ(x − 1)+ α}{µ(x + 1)+ α} > λ(x)µ(x), x ∈ [K,K], (27)

and

Wα(x) := [R(x + 1)λ(x){λ(x − 1)+ µ(x)+ α}
+ R(x)[µ(x){µ(x + 1)+ α} − λ(x){λ(x − 1)+ α}]
− R(x − 1)µ(x){λ(x)+ µ(x + 1)+ α}]

× [{λ(x − 1)+ α}{µ(x + 1)+ α} − λ(x)µ(x)]−1 (28)

is strictly decreasing forK ≤ x ≤ K , then the asset is strictly indexable andWα(x) is the index
for state x ∈ [K,K].

Proof. Fix an initial state x̂. By an argument akin to that in the proof of Lemma 1,
the expected total reward earned by the asset over an infinite horizon under any stationary,
deterministic, Markov policy from x̂ will be exactly matched by that earned by some member
ofB. It follows that the value function for theW -subsidy problem evaluated at x̂ is the expected
reward achieved by the best monotone policy from this class.

From (25)–(27) we deduce the following (in)equalities via straightforward algebra:

V xα (x̂,W) > V x+1
α (x̂,W), W > Wα(x), x ∈ [K,K], (29)

V xα (x̂,W) = V x+1
α (x̂,W), W = Wα(x), x ∈ [K,K], (30)

V xα (x̂,W) < V x+1
α (x̂,W), W < Wα(x), x ∈ [K,K]. (31)

Using the fact that Wα(x) is strictly decreasing we can now infer from (29)–(31) that

max
K≤y≤K+1

V yα (x̂,W)

is achieved at y = K + 1 forW < Wα(K), at y = x forW ∈ [Wα(x),Wα(x − 1)), K + 1 ≤
x ≤ K , and at y = K for W ≥ Wα(K). We thus deduce that

Vα(x̂,W) =

⎧⎪⎨
⎪⎩
VK+1
α (x̂,W), W < Wα(K),

V xα (x̂,W), W ∈ [Wα(x),Wα(x − 1)), K + 1 ≤ x ≤ K,

V
K
α (x̂,W), W ≥ Wα(K).

(32)

However, the initial state x̂ was chosen arbitrarily in the above. We thus infer from (32)
that, for all initial states, monotone policy (K + 1) is optimal for the W -subsidy problem for
W < Wα(K), policy (x) is optimal for Wα(x) ≤ W < Wα(x − 1), K + 1 ≤ x ≤ K , and
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policy (K) is optimal for W ≥ Wα(K). Denoting by b(W) the maximal optimal passive set,
we infer that

b(W) =

⎧⎪⎨
⎪⎩

∅, W < Wα(K),

[x,K], W ∈ [Wα(x),Wα(x − 1)),

[K,K], W ≥ Wα(K).

(33)

From Definitions 3 and 4, (strict) indexability follows from (33), and Wα(x) is the index for
state x ∈ [K,K]. This concludes the proof.

Remarks 4. 1. If we set α = 0 in (27) and (28), we recover the conditions expressed in
Theorem 3(i)(b). It follows that any asset which meets the (necessary and sufficient) conditions
of Theorem 3 will also meet the conditions of Theorem 4 for sufficiently small α.

2. It is not difficult to show that, if an a priori restriction to monotone policies for theW -subsidy
problem is imposed, then the conditions expressed in (27) and (28) are necessary and sufficient
for strict indexability.

5. Family 2 (the squad system): a model for the optimal exploitation of assets

We now consider family 2 with the average reward criterion, as described in Section 2. Since
there are points of similarity between the theoretical development of the indexability analysis
for family 2 and that for family 1, given in Section 3, we highlight the main features of the
former only and omit proofs. Further details are available from the authors.

The asset suffix is again dropped and the W -subsidy problem considered for a single asset
with associated parameters K,K, ν(·), ρ(·), and R(·). From Definitions 2(ii) and 2(iii) recall
that, under the application of active action a in state x, the asset evolves to state x − 1 at rate
ν(x) and earns rewards at rate R(x) while doing so. Under application of the passive action b
in state x, the asset evolves to state x + 1 at rate ρ(x) and (in the W -subsidy problem) earns
rewards at rate W while doing so. The intermediate goal of our analysis is to identify policies
that maximize the average reward rate earned over an infinite horizon.

We identify the class A of monotone policies for which

π(x) = a ⇔ x ≥ y for some y ∈ [K,K + 1], (34)

and write [y] for the policy in (34). Hence, policy [K + 1] chooses action b in all states while
policy [K] chooses action a in all states.

Lemma 3. For all W ∈ R there exists an optimal policy for the W -subsidy problem in A.

The proof of Lemma 3 follows along lines similar to that of Lemma 1.
The average reward rate for the W -subsidy problem under policy [y] is given by

Wψ(y)+ R(y){1 − ψ(y)},
where

ψ(y) = ν(y){ν(y)+ ρ(y − 1)}−1, K ≤ y ≤ K + 1.

Note that ψ(K + 1) = 1 and ψ(K) = 0. Now write [y(W)] for the policy with maximal
passive set solving the the W -subsidy problem. From the above, we have

y(W) ∈ argmax
K≤y≤K+1

{Wψ(y)+ R(y){1 − ψ(y)}}. (35)
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Should more than a single y-value attain the maximum on the right-hand side of (35) then y(W)
is chosen to be the largest.

From Definition 3, in order to establish the asset’s indexability it will be enough to show that
there exist finite real numbers W and W , W < W , such that y(W) = K for W < W, y(W) =
K + 1 forW ≥ W , and y(·) : [W,W ] → [K,K + 1] is increasing. For an indexable asset, the
index in state y will be given by

W(y) = inf{W : y(W) ≥ y + 1}. (36)

Theorem 5. If ψ is increasing then the asset is indexable.

The proof of Theorem 5 is similar to that of Theorem 1.
In order to describe the asset’s index structure, we develop a collection consisting of a

positive integer L, a set of L+ 1 integers {yl, 0 ≤ l ≤ L} such that

K = y0 < y1 < · · · < yL = K + 1,

and an accompanying set of L reals {Wl, 1 ≤ l ≤ L} such that

−∞ < W 1 < · · · < WL < ∞.

To initiate the inductive specification of these we require additional notation. Suppose y to be
an integer such that K ≤ y ≤ K . We write

n(y) = min{x ∈ Z : K + 1 ≥ x > y and ψ(x) > ψ(y)}.
We now define

W 1 = min
K+1≤y≤K+1

{[R(K)− R(y){1 − ψ(y)}]{ψ(y)}−1} (37)

and denote by y1 the largest minimizer in (37). If y1 = K + 1 then we set L = 1 and stop. If
y1 < K + 1 then we define

W 2 = min
n(y1)≤y≤K+1

{[R(y1){1 − ψ(y1)} − R(y){1 − ψ(y)}]{ψ(y)− ψ(y1)}−1} (38)

and denote by y2 the largest minimizer in (38). In general, if yk < K + 1 then we define

Wk+1 = min
n(yk)≤y≤K+1

{[R(yk){1 − ψ(yk)} − R(y){1 − ψ(y)}]{ψ(y)− ψ(yk)}−1} (39)

and denote by yk+1 the largest minimizer in (39). This continues until we find K + 1 as the
largest minimizer. Should this happen at step k + 1 (i.e. in the calculation of Wk+1) we have
L = k + 1.

From a discussion along the lines of the previous section, we find that ifψ is increasing then

y(W) =

⎧⎪⎨
⎪⎩
K, W < W 1,

yk, W ∈ [Wk,Wk+1), 1 ≤ k ≤ L− 1,

K + 1, W ≥ WL.

(40)

The index structure of the asset now follows from (36) and (40) and is described in Theorem 6,
as follows.
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Theorem 6. If ψ is increasing then the index W : [K,K] → R is given by

W(y) = Wk, yk−1 ≤ y ≤ yk − 1, 1 ≤ k ≤ L.

Remark 5. Note from Theorem 6 that the index is increasing in the state. Hence, in the squad
system it is assets which are achieving high rewards that are a high priority for activation. Note
also that, unlike in the spinning plates problem, indices can now be negative. This raises the
question of whether idling may be preferable to asset deployment.

As before, important special cases occur in which all states have distinct indices. Theorem 7
gives a condition necessary and sufficient for strict indexability.

Theorem 7. (i) The following assertions are equivalent.

(a) The asset is strictly indexable.

(b) Both ψ(y) and

W(y) = [R(y){1 − ψ(y)} − R(y + 1){1 − ψ(y + 1)}]{ψ(y + 1)− ψ(y)}−1 (41)

are strictly increasing over the range K ≤ y ≤ K .

(ii) Under the conditions in part (i)(b), we have W(y) = W(y), K ≤ y ≤ K , and the index is
strictly increasing in the state.

Example 3. Suppose that the reward is linear in the state and, hence, that

R(y) = r(y −K), K ≤ y ≤ K.

Moreover, suppose that the transition rates are also linear, i.e.

ν(y) = ν(y −K), K ≤ y ≤ K, (42)

ρ(y) = ρ(K − y), K ≤ y ≤ K, (43)

where r, ν, and ρ are all positive constants. It follows trivially from (42) and (43) that ψ is
strictly increasing. By direct computation we find from (41) that, in this case,

W(y) = r

{
(y −K)(y + 1 −K)− ρ̄

ν̄
(K − y)(K − y + 1)

}
(K −K + 1)−1,

K ≤ y ≤ K, (44)

which is strictly increasing. From Theorem 7, (44) gives the index in this case. This is the
example referred to by Whittle (1988) as the Ehrenfest project. He used a heuristic argument
to develop an index which approximates that in (44).

Example 4. It is possible to develop indexable assets with semi-infinite state spaces of the
form [K,∞). Consider such an example for which K = 0. We suppose that reward rates are
given by

R(y) = r[1 − (y + 1)−α], y ≥ 0, (45)

and, furthermore, that

ψ(y) = 1 − (y + 1)−β, y ≥ 0. (46)
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In (45) and (46), r, α, and β are positive constants. The function in (41) now becomes

W(y) = r

(
1 − (y + 1)−(α+β) − (y + 2)−(α+β)

(y + 1)−β − (y + 2)−β

)
, y ≥ 0, (47)

which is strictly increasing. From a suitable extension of Theorem 7, (47) gives the index in
this case.

Example 5. We can generalize Example 4 as follows. Let ξ : N → [1,∞) be a strictly
increasing function with ξ(0) = 1 and ξ(y) → ∞ as y → ∞, and let r , α, and β be positive
constants. We suppose thatR(y) = r[1−{ξ(y)}−α], y ≥ 0, and thatψ(y) = 1−ξ(y)−β, y ≥
0. The function in (41) then becomes

W(y) = r

(
1 − ξ(y)−(α+β) − ξ(y + 1)−(α+β)

ξ(y)−β − ξ(y + 1)−β

)
, y ≥ 0, (48)

which is strictly increasing. From a suitable extension of Theorem 7, (48) gives the index in
this case.

5.1. Numerical results

In Table 2 we present some results derived from an extensive, numerically based assessment
of the quality of performance of the index heuristics developed in this section. For the cases
in the first and third sections of Table 2, we have J = 4 and M = 1. In the second and fourth
sections these cases are embellished by the inclusion of an idling option, to be thought of as
a zero-reward asset whose state space is a singleton. Such an asset is trivially indexable, with
index always zero. In all cases, the remaining constituent assets are structured as in Example 4
above with the function ψ(y) = 1 − (y + 1)−β, y ≥ 0, which arises from the choices

ν(y) = 1(y ≥ 1) (49)

and
ρ(y) = {1 − (y + 2)−β}−1 − 1, y ≥ 0.

In (49), 1(·) is the indicator function. In this model each of the four assets (excepting the idling
option in the second and fourth sections) is characterized by the parameter triple (r, α, β). In all
cases the αs are chosen by sampling from a continuous uniform(0.5, 1.0) distribution and the rs
are drawn from uniform(2, 4). The βs are also chosen by sampling from uniform distributions,
as indicated in the caption of Table 2. Table 2 presents results for 800(= 4×2×100) randomly
generated problems.

Four policies were applied to each problem generated. Policies OPT and IND are equivalent
to the corresponding ones described in the numerical study in Section 3. Note now, however, that
when it is present the idling option will be taken by IND only when all four of the conventional
assets have negative indices. The remaining two policies are as follows.

• MYO: This is a myopic heuristic that activates an asset with largest current reward rate
r(y).

• LAR: This is the policy that always activates whichever of the four conventional assets
is in the largest state. Ties are broken at random.

Note that MYO and LAR never choose the idling option (when it is available).
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Table 2: Comparative performance of the index policy, a myopic heuristic, and the ‘largest state’policy for
problems structured as in Example 4. First section: J = 4,M = 1, and β ∼ uniform(0.5, 1.0) (left), β ∼
uniform(1.0, 2.0) (right); second section: J = 4,M = 1 (plus idling option), and β ∼ uniform(0.5, 1.0)
(left), β ∼ uniform(1.0, 2.0) (right); third section: J = 4,M = 1, and β ∼ uniform(2.0, 3.0) (left), β ∼
uniform(0.5, 3.0) (right); fourth section: J = 4, M = 1 (plus idling option), and β ∼ uniform(2.0, 3.0)

(left), β ∼ uniform(0.5, 3.0) (right).

IND MYO LAR IND MYO LAR

MIN 0.006 0.191 0.046 0.028 0.073 0.171
LQ 0.056 1.349 1.105 0.165 0.411 1.657

MED 0.101 2.519 1.993 0.357 0.702 2.672
UQ 0.227 3.675 2.961 0.635 1.152 4.432

MAX 1.199 7.874 9.128 1.049 3.175 7.951

MIN 0.007 0.191 0.046 0.026 0.116 0.311
LQ 0.056 1.349 1.105 0.135 0.944 2.149

MED 0.101 2.519 1.994 0.257 1.230 3.418
UQ 0.227 3.675 2.961 0.464 1.944 5.037

MAX 1.199 7.874 9.128 0.795 4.802 8.912

MIN 0.070 0.070 0.627 0.010 0.086 0.347
LQ 0.265 0.685 2.510 0.202 1.244 2.262

MED 0.409 3.301 4.189 0.355 1.881 3.708
UQ 0.552 4.958 6.628 0.662 3.565 6.300

MAX 1.031 16.650 17.032 1.114 16.209 16.974

MIN 0.061 4.670 6.330 0.012 0.510 0.395
LQ 0.217 8.233 9.606 0.191 1.887 2.824

MED 0.337 9.704 10.794 0.357 2.955 5.094
UQ 0.446 12.121 13.008 0.601 5.608 8.128

MAX 0.889 21.827 22.185 1.052 20.239 20.967

As in the previous numerical study, percentage suboptimalities are presented in Table 2
for the heuristics IND, MYO, and LAR for collections containing 100 problems of common
structure. The index policy continues to perform strongly, with a worst case of 1.199%
suboptimality among the 800 problems generated. There is evidence of modestly enhanced
performance following inclusion of the idling option. For each of the other heuristics (MYO
and LAR) problematic instances arose in which they performed poorly. There is clear evidence
of deterioration in the performance of these policies as the βs increase.

We conclude by remarking that an analysis of a discounted reward version of the squad
system, similar to that given in Section 4 for family 1, yields the following theorem. Similar
comments to those following Theorem 4 apply.

Theorem 8. (Family 2: discounted rewards.) If

{ν(y + 1)+ α}{ρ(y − 1)+ α} > ν(y)ρ(y), y ∈ [K,K],
and

Wα(y) := [R(y){ν(y + 1)+ ρ(y)+ α}{ρ(y − 1)+ α}
− R(y + 1)ρ(y){ν(y)+ ρ(y − 1)+ α}]

× [{ν(y + 1)+ α}{ρ(y − 1)+ α} − ν(y)ρ(y)]−1

is strictly increasing over the rangeK ≤ y ≤ K , then the asset is strictly indexable andWα(y)

is the index for state y ∈ [K,K].
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