The effect of a low carbohydrate high fat diet on apolipoproteins and cardiovascular risk

Deaglan McCullough1,2, Tanja Harrison1, Katie Lane1, Lynne Boddy2, Farzad Amirabdollahian3, Michael Schmidt4, Kevin Enright1, Claire Stewart2 and Ian Davies1
1School of Sport Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, United Kingdom, 2School of Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom, 3School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom and 4Advanced Pattern Analysis and Countermeasures Group, Research Innovation Centre, Fort Collins, USA

Abstract
Apolipoproteins (apo) regulate lipoprotein characteristics and lipid metabolism. ApoC-III is a regulator of triglyceride-rich lipoprotein (TRL) metabolism and apolipoproteins are important biomarkers for cardiovascular disease (CVD) risk prediction. A low carbohydrate high fat (LCHF) diet improves cardiometabolic risk, especially via reduction of TRL. However, few studies have compared a LCHF vs. a high carbohydrate (HC), lower fat diet under ad libitum conditions on apoC-III levels. The objectives of this investigation were to measure the effect of a LCHF vs. a HC diet on apoC-III, apoA1, apoB and apoB/apoA1 in 16 healthy Caucasian adults aged 19–64. Ethical approval: Liverpool John Moores University Research Ethics Committee (16/ELS/029); registered with ClinicalTrials.gov (Ref. NCT03257085). Participants randomly assigned to a HC diet (UK Eatwell guidelines; ≥50% of energy from carbohydrates) (n = 8), or a LCHF diet (consume < 50 g/day of carbohydrates) (n = 8) provided plasma samples at 0, 4 and 8 weeks. ApoA1 and apoB were analysed by an automated chemistry analyser (Daytona, Randox Laboratories Ltd, UK). ApoC-III was analysed via ELISA (Thermo Fisher Ltd, USA). Factorial 2×3 ANOVA and ANCOVA (IBM SPSS 25®) were undertaken to investigate significant differences and to control for variables influenced by baseline measures and visceral adipose tissue (VAT). Results show 0, 4, and 8 weeks respectively: ApoC-III (LCHF: 19.12 ± 9.14, 16.05 ± 7.95, 15.11 ± 3.17 mg/dl; HC: 22.13 ± 8.38, 28.22 ± 13.85, 22.22 ± 7.7 mg/dl) showed no significant (P = 0.319) change. No significant (P = 0.23) change was also observed in ApoB (LCHF: 107.25 ± 20.35, 111.38 ± 24.81, 111.43 ± 19.93 mg/dl; HC: 94.38 ± 20.79, 105.00 ± 20.13, 99.00 ± 29.09 mg/dl). Similarly apoA1 (LCHF: 158.71 ± 14.27, 166.50 ± 23.09, 173.00 ± 29.44 mg/dl; HC: 164.71 ± 32.83 mg/dl) showed no significant change (P = 0.76). This resulted in a relatively unchanged apoB/A1 throughout the study in both diets (P = 0.30). No significant (P > 0.05) differences were found after 4 weeks or between groups also. ANCOVA revealed a trend (P = 0.06) in apoC-III for a difference between groups (LCHF: Δ-6.6 mg/dl vs. HC: Δ1.2 mg/dl) after 8 weeks but no significant (P > 0.05) changes in other apolipoproteins were detected. These preliminary data reveal that a LCHF diet does not improve the apolipoprotein profile; however, when accounting for other metabolic risk factors (i.e. VAT) there was a trend towards lowering apoC-III levels (P = 0.06). Modulation of apoC-III may lead to improved lipid metabolism, but higher-powered studies are warranted before any improvement on CVD risk can be inferred.

Conflict of Interest
There is no conflict of interest.