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Griffiths Groups
of Supersingular Abelian Varieties
B. Brent Gordon and Kirti Joshi

Abstract. The Griffiths group Grr(X) of a smooth projective variety X over an algebraically closed
field is defined to be the group of homologically trivial algebraic cycles of codimension r on X modulo
the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Grif-
fiths group Gr2(Ak̄) of a supersingular abelian variety Ak̄ over the algebraic closure of a finite field of
characteristic p is at most a p-primary torsion group. As a corollary the same conclusion holds for
supersingular Fermat threefolds. In contrast, using methods of C. Schoen it is also shown that if the
Tate conjecture is valid for all smooth projective surfaces and all finite extensions of the finite ground
field k of characteristic p > 2, then the Griffiths group of any ordinary abelian threefold Ak̄ over the
algebraic closure of k is non-trivial; in fact, for all but a finite number of primes ` 6= p it is the case
that Gr2(Ak̄)⊗ Z` 6= 0.

1 Introduction

Let k be a finite field of characteristic p > 0. We fix an algebraic closure k̄ of k. For
any finite extension k ′/k we write Gk ′ for the Galois group of k̄/k ′. Let X/k be a
smooth, projective variety over k. We will write Xk̄ for X ×k k̄. Let Zr(Xk̄) be the
group of codimension r ≥ 0 cycles on Xk̄. Let Zr(Xk̄)rat , Zr(Xk̄)alg and Zr(Xk̄)hom be
the subgroups of codimension r cycles which are rationally, respectively algebraically,
respectively homologically equivalent to zero on Xk̄. We will write CHr(Xk̄)alg ⊂
CHr(Xk̄)hom ⊂ CHr(Xk̄) for the corresponding groups modulo the subgroup of cy-
cles rationally equivalent to zero. Then the quotient CHr(Xk̄)/CHr(Xk̄)hom is finitely
generated modulo torsion, and the Tate conjecture predicts the rank of this group to
be the order of vanishing of a suitable L-function [23].

The quotient CHr(Xk̄)hom/CHr(Xk̄)alg was first investigated by P. Griffiths and is
called the Griffiths group of Xk̄. In every example where the structure of this group is
known, when it is not trivial it is quite subtle. We will write Grr(Xk̄) for the group
CHr(Xk̄)hom/CHr(Xk̄)alg , and refer to it as the Griffiths group of codimension r cy-
cles. Recently, Chad Schoen has investigated the structure of the Griffiths group of
varieties over the algebraic closure of finite fields (see [19], [20]) and has shown that
these groups can be infinite in several interesting situations. This note is inspired by
these papers of Schoen.

Recall that over a algebraically closed field of characteristic p a supersingular abel-
ian variety may be characterized by being isogenous to a product of supersingular
elliptic curves (see [16, Theorem 4.2]), where an elliptic curve is said to be super-
singular if it possesses no geometric points of order exactly p. The purpose of this
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note is to prove that the Griffiths group of any supersingular abelian variety is at
most a p-primary torsion group (see Theorem 5.1). In [19, Theorem 14.4, page 45],
Schoen had proved this assertion for the triple product of the Fermat cubic and p ≡ 2
(mod 3). Our result also applies to all supersingular Fermat threefolds (see Theo-
rem 5.3). One of the key ingredients in our proof is the work of N. Fakhruddin (see
[9]). We hope to study the p-primary torsion in a forthcoming work.

We would like to thank C. Schoen and N. Fakhruddin for correspondence and
comments. We are also grateful to F. Oort and the referee for a very careful reading
and helpful suggestions which have improved the readability of this paper.

2 Beauville’s Conjecture

Suppose A is an abelian variety over k. Then by results of Mukai, Beauville, Deninger-
Murre (see [15], [1] and [6, Theorem 2.19, page 214]), the Chow groups of A when
tensored with Q admit a finite decomposition:

(2.1) CHi(Ak̄)⊗Q =
⊕

j

CHi
j(Ak̄),

where CHi
j(Ak̄) is the subset of CHi(Ak̄)⊗Q on which the flat pull-back of multipli-

cation in Ak̄ by an integer m acts as multiplication by m2i− j .

Remark 2.1 To obtain the decomposition (2.1), it is not necessary to admit Q-
coefficients, but it suffices to invert integers which arise as denominators in the
Riemann-Roch Theorem. In particular such a decomposition is available over a suit-
able localization of Z. From now on we will work with this refined decomposition
over a suitable localisation of Z.

Using the work of Soulé (see [21]), Künnemann (see [13, Theorem 7.1, page 99])
proves that, except possibly for j = 0, all the remaining components of (2.1) are
torsion.

Theorem 2.2 Suppose A is an abelian variety over a finite field k. Then for all i ≥ 0:

(2.2) CHi(Ak̄)⊗Q = CHi
0(Ak̄)

This result is essentially a consequence of the fact that the motive of an abelian variety
is pure in the sense of [21, Definition 3.1.1, page 331]. In particular, all the groups
CHi

j(Ak̄) except possibly CHi
0(Ak̄) must be torsion.

Another version of this result, valid over any algebraically closed field (of positive
characteristic), was proved by N. Fakhruddin (see [9]).

Theorem 2.3 When X is a supersingular abelian variety over an algebraically closed
field of characteristic p, then CHi

j(X) = 0 for j 6= 0, 1.
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3 A Result of Fakhruddin

We will also need the following result of N. Fakhruddin (see [9]).

Theorem 3.1 Suppose A is a supersingular abelian variety over an algebraically closed
field of characteristic p. Then the restriction of the cycle class map to CHd

0(A) induces
an isomorphism:

CHd
0(A)⊗Q`

∼−→ H2d
et

(
A,Q`(d)

)
.

Remark 3.2 In particular, CHi
1(X) is the kernel of the cycle class map when X is a

supersingular abelian variety over any algebraically closed field.

The idea behind the proof of this theorem is that the subgroup Bd(A) of CHd
0(A)

generated by classes of abelian subvarieties of A of codimension d on the one hand
coincides with CHd

0(A) and on the other hand, after tensoring with Q` maps isomor-
phically onto H2d

et

(
A,Q`(d)

)
. See [9] for the details.

4 Abel-Jacobi Maps

In [2], Bloch constructed an Abel-Jacobi mapping

λi : CHi(Xk̄)`-tors → H2i−1
et

(
Xk̄,Q`/Z`(i)

)
We will need the following results about this map.

Theorem 4.1 (see [4, Corollary 4, page 775], [14, Section 8]) Let X/k be any
smooth, projective variety and ` 6= p. Then the map λ2 is injective.

Theorem 4.2 (see [22, Théorème 4.7.1, page 87]) Let A/k be a supersingular abel-
ian variety, and ` 6= p. Then the restriction λ ′i of λi to CHi(Ak̄)alg,`-tors is surjective,
and bijective if i = 1, 2 or dim A.

5 Supersingular Abelian Varieties

We are now in a position to prove the main theorem of this note.

Theorem 5.1 Let Ak̄ be a supersingular abelian variety over the algebraic closure of a
finite field. Then Gr2(Ak̄) is at most a p-primary torsion group.

Proof Under the hypotheses of this theorem, the results in Section 2 together with
Theorem 3.1 imply that

CHi
1(Ak̄) = CHi(Ak̄)hom

is a torsion group. Thus CHi(Ak̄)alg and Gri(Ak̄) are also torsion groups. So to prove
Gr2(Ak̄) has no `-primary torsion for ` 6= p it will suffice to prove that Gr2(Ak̄)⊗Z` =
0, or, equivalently, that

(5.1) CH2(Ak̄)hom ⊗ Z` = CH2(Ak̄)alg ⊗ Z`.
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We use the Bloch-Abel-Jacobi mapping (Section 4) to prove (5.1). Consider the
commutative diagram:

(5.2)

CH2(Ak̄)`-tors
λ2−−−−→ H3

et

(
Ak̄,Q`/Z`(2)

)x xλ ′2

CH2(Ak̄)alg,`-tors CH2(Ak̄)alg,`-tors

where the first vertical arrow is the natural inclusion. Then Theorem 4.1 implies that
λ2 is injective on `-torsion, from which it follows that λ ′2 must also be injective. On
the other hand, Theorem 4.2 tells us that λ ′2 is surjective. It follows that λ ′2, and
indeed, all the arrows in diagram (5.2), must be isomorphisms. Thus the two groups
in (5.1) are equal, and the Griffiths group Gr2(Ak̄) has no `-primary torsion for any
` 6= p. This completes the proof.

Corollary 5.2 We have in the notation of Theorem 5.1:

(5.3) H3
et

(
Ak̄,Q`/Z`(2)

) ∼= CH2
hom (Ak̄)⊗ Z` ∼= N1H3

et

(
Ak̄,Q`/Z`(2)

)
,

where N1 denotes the first step of the coniveau filtration.

Proof The first isomorphism follows from the proof of 5.1, while the second can be
found in [14, Section 18] (also see [5]).

The method of proof of Theorem 5.1 also proves the corresponding result for
supersingular Fermat threefolds over a finite field k. Recall that a smooth, projective
Fermat threefold X ⊂ P4 is said to be supersingular if H3

cris

(
X/W (k)

)
is of slope 3/2

(see [22, Théorème 4.8.1, page 88], [8]).

Theorem 5.3 Let k be a finite field of characteristic p and let k̄ be an algebraic closure
of k. Let X be a supersingular Fermat threefold over k of degree m. Then the Griffiths
group of codimension two cycles on Xk̄ is at most p-primary torsion.

Proof The diagram (5.2) is also valid for a smooth Fermat threefold. As we are over
a finite ground field the result of [21, Théorème 3] applies and so CH2(Xk̄)hom is
torsion and by [22, Théorème 4.8.1, page 88] the map

λ2 : CH2(Xk̄)→ H3
et

(
Xk̄,Q`/Z`(2)

)
is surjective as X is supersingular. Then we are done by 4.1.
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6 Ordinary Abelian Threefolds

In order to provide a contrast to the results in the supersingular case, in this section
we observe that the behaviour of the Griffiths group is controlled by the slope fil-
tration. This idea goes back to Bloch (see [3, Lecture 6, page 6.12]). Our remarks,
which are no doubt well-known to experts, are inspired by the work of Schoen (see
[20]). Recall that an abelian variety over a field k is said to be ordinary if its Hodge
and Newton polygons (for the first crystalline cohomology) coincide. Equivalently
an abelian variety A is ordinary if and only if the group of geometric points of order
p has order pdim(A).

Recall that for any smooth, projective variety X over k there are Abel-Jacobi maps
(see [10], [19])

(6.1) αr : CHr(Xk̄)→ Jr
`(X),

where
Jr
`(X) := lim

k ′/k
H1
(

Gk ′ ,H
2r−1

(
Xk̄,Z`(r)

)
/Tors

)
,

the limit is taken over finite Galois extensions k ′ of k, and the cohomology is the con-
tinuous Galois cohomology (i.e. cocycles are continuous with respect to the topology
on the Galois group and the `-adic topology on the Galois modules). When k is a fi-
nite field Jr

`(X) is a torsion group (see [19, Lemma 1.4, page 4]).
Before we begin, we remind the reader of the following variant of Bloch’s result

(see [3, Lecture 1]). This result is implicit in [3, Lecture 1]—we give a proof here
for completeness (as we don’t know any explicit reference) as it indicates the relation
between the slope filtration and the behaviour of the Chow groups.

Theorem 6.1 Let X/k be a smooth, projective surface over an uncountable algebraic-
ally closed field of characteristic p. Further assume that H2

cris

(
X/W (k)

)
has a non-

trivial slope zero part. Then CH2(Xk) is not representable.

Proof By [3, Lecture 1], it suffices to prove that the hypothesis imply that the group
of transcendental cycles in étale cohomology is non-trivial. Assume, if possible that
it is trivial, that is, the group H2

et

(
X,Q`(1)

)
/ image

(
NS(Xk)

)
Q`

= 0. This says that
the cycle class map is surjective. We may assume that X and a basis for NS(Xk) are
defined over a finitely generated subfield of k. Then by further spreading out to a
finitely generated ring as our base. We can, by shrinking the base if necessary, assume
that all the fibres are smooth. Then see that there is an non-empty zariski open set on
the base where the Newton polygon of the second crystalline cohomology of every
special fibre coincides with the Newton polygon of the generic fibre and hence has
a non-trivial slope zero part (this follows from a theorem of Katz and Grothendieck
[12]). For any such special fibre, which is defined over a finite field. By [11] we
know that over a finite field the characteristic polynomial of frobenius on the `-adic
cohomology coincides with the characteristic polynomial of Frobenius on crystalline
cohomology. Hence the cycle class map from the Neron-Severi group to the second
crystalline cohomology cannot be surjective as the crystalline cohomology has a non-
trivial slope zero part (as the image of Neron-Severi group) is contained in the slope
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1 part of the crystalline cohomology). Thus one has a contradiction as the rank of
Neron-Severi does not decrease under specialization.

Proposition 6.2 Let k be a finite field of characteristic p > 2. Assume that the Tate
conjecture is valid for all smooth projective surfaces and for all finite extensions of k.
Then the Griffiths group of any smooth projective, ordinary abelian threefold A over k̄ is
non-trivial. More precisely, for all but finite number of primes ` 6= p, Gr2(Ak̄)⊗Z` 6= 0.

Proof Suppose A/k is an ordinary abelian threefold. From the work of Soulé (see
[21, Théorème 3]) we know that the Chow group of homologically trivial cycles on
an abelian threefold is torsion. Thus the Griffiths group is torsion as well. Then by
[22, Corollaire 3.4, page 83], as Ak̄ is ordinary the map

(6.2) λ2 : CH2(Ak̄)alg,`-tors → H3
et

(
Ak̄,Q`/Z`(2)

)
cannot be surjective because it has a non-trivial slope zero part in H3

crys

(
Ak̄/W (k̄)

)
.

On the other hand we know from the work of Schoen (see [20, Theorem 0.1,
page 795]) that the Abel-Jacobi map α2 is surjective, for all but finite number of
primes ` 6= p, under the assumption that the Tate conjecture holds for all smooth
projective surfaces. Thus it suffices to verify that the maps λ2 and α2 coincide on
homologically trivial `-power torsion cycles, which in turn follows from the con-
struction of the map λ2 given by Raskind (see [18, Section 2]).

Remark 6.3 We would like to complement the above proposition with the following
example which illustrates that the p-torsion in the Griffiths group may be zero even
when the abelian variety is an ordinary abelian variety over a finite field k of charac-
teristic p > 0. Let E/k be an ordinary elliptic curve. It is standard result of Deuring
that E admits a lifting to an elliptic curve C with complex multiplication defined over
a number field (for a modern proof see [17, page 192]). Let A = E ×k E ×k E. Then
A is an ordinary abelian variety. The entire discussion in [7, Remark 4.3, page 601]
goes through for A, and one has that the p-adic Abel-Jacobi mapping constructed

(6.3) CH2(Ak̄)alg ⊗ Zp → H3
log

(
A,Qp/Zp(2)

)
where the target is the logarithmic cohomology (see [7] for the notation and ter-
minology) is surjective. By [21, Théorème 3] we know that the the kernel of the
crystalline cycle class map is torsion as X is an abelian threefold over a finite field.
Hence we can apply the argument given above to deduce that the Gr2(Ak)⊗ Zp = 0.
Thus p-torsion homologically trivial cycles may fail to carry a non-trivial filtration
even in presence of non-trivial slope filtration.
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[20] , On the image of the `-adic Abel-Jacobi map for a variety over the algebraic closure of a finite

field. J. Amer. Math. Soc. (3) 12(1999), 795–838.
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