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Fully Nonlinear Elliptic Equations
on General Domains

Jiguang Bao

Abstract. By means of the Pucci operator, we construct a function u0, which plays an essential role in

our considerations, and give the existence and regularity theorems for the bounded viscosity solutions

of the generalized Dirichlet problems of second order fully nonlinear elliptic equations on the gen-

eral bounded domains, which may be irregular. The approximation method, the accretive operator

technique and the Caffarelli’s perturbation theory are used.

1 Introduction

Let Ω be a general bounded domain in Rn, which may be with irregular boundary
points. A boundary point will be called regular (with respect to the Pucci operator,
see Section 2 below) if there exists a barrier function at that point. In this paper,

we consider the problem of existence and regularity for the viscosity solutions of the
fully nonlinear second order elliptic equations of the form

F(D2u, x) = f (x), in Ω(1)

with zero Dirichlet boundary condition in some weak sense, where D2u is the Hessian
matrix of the function u, F(M, x) and f (x) are the continuous functions in Rn×n×Ω
and Ω respectively. In our results no assumption is made about the domain Ω.

The main impetus for studying the fully nonlinear second order uniformly elliptic
equations arose through the stochastic control problem and the stochastic differential
game theory. The important examples are the Hamilton-Jacobi-Bellman equations

inf
α∈A

{Lαu− fα(x)} = 0,

and the Isaacs equations

sup
β∈B

inf
α∈A

{Lαβu− fαβ(x)} = 0,

where A, B are two index sets. For each α ∈ A, β ∈ B, Lα, Lαβ are linear uni-
formly elliptic operators with bounded measurable coefficients, and fα, fαβ are real
functions. See [CC, Section 2.3] or [CIL, Section 1].

Received by the editors September 18, 2001.
AMS subject classification: Primary: 35D05, 35D10; secondary: 35J60, 35J67.

Keywords: Pucci operator, viscosity solution, existence, C 2,ψ regularity, Dini condition, fully nonlin-
ear equation, general domain, accretive operator, approximation lemma.

c©Canadian Mathematical Society 2002.

1121

https://doi.org/10.4153/CJM-2002-042-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-042-9


1122 Jiguang Bao

The existence of the viscosity solutions for the Dirichlet problems of the equa-
tion (1) with the usual Dirichlet boundary condition

u = 0, on ∂Ω(2)

in regular domains has been treated by several authors, notably Ishii [I] using the
Perron’s method and the uniqueness result for the C0(Ω̄) solutions, Evans [E2] and
Bian [Bi] by the accretive operator methods for the W 2,p(Ω) and W 1,∞(Ω) solutions
respectively, and Trudinger [T] by the continuity methods for the C 2,α(Ω̄) solutions.

However, there seem to be few results in general bounded domains. For an irregular
bounded domain Ω, the boundary condition (2) is too strong a hypothesis. Gener-
ally, one cannot prescribe boundary values of the solutions at every point of ∂Ω.

Berestycki, Nirenberg and Varadhan [BNV] worked with a refined version for the

linear elliptic equations

n
∑

i, j=1

ai j(x)Di j u +

n
∑

i=1

bi(x)Diu + c(x)u = f (x)(3)

in general bounded domains. They introduced a function u0 ∈ W
2,p
loc (Ω) ∩ L∞(Ω)

for all p > 1, satisfying

n
∑

i, j=1

ai j(x)Di j u0 +

n
∑

i=1

bi(x)Diu0 = −1, u0 > 0, in Ω,

and used the notion

u
u0
= 0, on ∂Ω(4)

to describe zero Dirichlet boundary condition in the following weak sense, which

went back to [SV].

Definition 1 (Weak Boundary Condition) For a sequence xl → ∂Ω, we say xl u0→

∂Ω if u0(xl) → 0. Given u ∈ C(Ω), the notation u
u0
= 0 on ∂Ω means: along any

sequence xl u0→ ∂Ω, we have u(xl)→ 0.

In [BNV], the existence of the generalized Dirichlet problems (3), (4) was ob-
tained, by formulating the refined maximum principle. Padilla [P] presented an ex-
tension of their results to the Riemann manifolds. Recently, we give in [B2] the neces-

sary and sufficient conditions for the solvability with positive solutions in W
2,p
loc (Ω)∩

L∞(Ω) of the semilinear elliptic equations

n
∑

i, j=1

ai j(x)Di j u +

n
∑

i=1

bi(x)Diu = f (x, u)

with the boundary conditions (4) on general bounded domains. Our methods are
the refined a priori estimates and the degree theory. See [CJ] for the case of the linear
parabolic equations.
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Since the existence of the viscosity solutions is solved successfully, their regularity
has attracted wide interest. In 1989, Caffarelli [C] developed a general technique

using polynomial approximation for obtaining regularity of the viscosity solutions.
In particular, he proved that if the homogeneous constant coefficient equation

F(D2u, 0) = 0(5)

has C2,ᾱ estimates, and the Ln(Br) averages of f and the oscillation of F in x with
respective to 0 are small compared to rα for α ∈ (0, ᾱ), then any viscosity solution of

(1) in B1 is actually C2,α at x = 0.

In the linear theory, when one considers the C2 solutions of the Poisson equations

∆u = f (x)

with f (x) a Dini continuous function, the modulus of continuity of D2u is well

known, see [Bu] and [K2]. But if f (x) is only continuous, then a counterexample
[GT, Problem 4.9(a)] shows that it is possible for the Poisson equations to have no
C2 solution.

In the fully nonlinear setting, Kovats [K1] considered the C2 solutions of the con-

stant coefficient equation

F(D2u, 0) = f (x)

with the L∞-norm of f (x) being Dini continuous, and proved that D2u has modu-
lus of continuity. He used the methods of polynomial approximation and maximum
principle. In [K2] Kovats applied a result in Dini-Campanto space to discuss the reg-

ularity of the classical solutions for the equations (1) when the Ln averages of f satisfy
the Dini conditions. But he depended on the global C1,1 estimates of the correspond-
ing homogeneous constant coefficient equations (5), which is a key mistake. In fact,
(5) has only the C2,ᾱ interior estimates. Recently, Chen and Zou got Kovats’s results

in the case of parabolic equations, see [CZ].

The main purposes of the present paper are

(a) to extend the study of the existence in [BNV] for the W
2,p
loc (Ω)∩L∞(Ω) strong

solutions of the linear problems (3), (4) to the Cα(Ω) ∩ L∞(Ω) viscosity solutions of
the fully nonlinear elliptic boundary value problems:

F(D2u, x) = f (x), in Ω,(6)

u
u0
= 0, on ∂Ω,(7)

and formulate the related existence theorem in the fully nonlinear case, where we use
the Pucci operator to introduce the function u0, which is totally different from the
linear case;

(b) to generalize the results in [C] for the C2,α(Ω) regularity of the viscosity so-
lutions of the fully nonlinear elliptic equations (6) to the C 2,ψ(Ω) regularity, where
ψ is a modulus of continuity. Not as in [K1], our condition is only that f (x) is Dini
continuous in the weaker Ln sense. Moreover, our conditions are weaker than [K2].
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The space C2,ψ(Ω) is defined in the obvious generalization of the Hölder spaces,
namely the space of all u ∈ C2(Ω) with seminorm

sup
x,y∈Ω

d2
x,yψ(dx,y)

‖D2u(x)− D2u(y)‖

ψ(|x − y|)
< +∞,

where dx,y = min(dx, dy) and dx = dist(x, ∂Ω).

We assume throughout this paper that F is a uniformly elliptic operator, i.e., there
are two positive constants θ andΘ such that for any M ∈ Rn×n and x ∈ Ω

θ‖N‖ ≤ F(M + N, x)− F(M, x) ≤ Θ‖N‖, ∀ N ≥ 0,(8)

where ‖M‖ = sup|x|=1 |Mx|. In following, without loss of generality, we also may
assume

F(0, x) ≡ 0, in Ω.(9)

For otherwise, we may replace F(M, x) and f (x) by F(M, x) − F(0, x) and f (x) −
F(0, x) respectively.

To conclude this section, we give the definition of viscosity solutions, which take

the place that the Dirichlet principle and the concept of variational solution enjoy in
divergence form theory, of the equations (6).

Definition 2 (Viscosity Solution) A continuous function u inΩ is a viscosity subso-
lution (resp. viscosity supersolution) of (6) inΩ, when the following condition holds:
if x0 ∈ Ω, ϕ ∈ C2(Ω) and u − ϕ has a local maximum at x0 then F(D2ϕ(x0), x0) ≥
f (x0) (resp. if u− ϕ has a local minimum at x0 then F

(

D2ϕ(x0), x0

)

≤ f (x0)).

We say that u is a viscosity solution of (6) when it is subsolution and supersolution.

We say that F(D2u, x) ≥ (resp. ≤, =) f (x) in the viscosity sense in Ω whenever u

is a viscosity subsolution (resp. supersolution, solution) of (6) in Ω.

The C2 classical solutions or W 2,q (q > n) strong solutions of (6) are viscosity
solutions. Reversely, the C2 or W 2,q (q > n) viscosity solutions of (6) are also classical

or strong solutions.

The rest part of the paper is organized as follows: In the next section we introduce

u0 by means of the Pucci operator, and prove that this is reasonable. It is shown that

u
u0
= 0 is the same as u = 0 to all boundary points admitting a barrier function.

Section 3 is devoted to the existence theorem of the viscosity solutions to the usual

Dirichlet problems (1), (2) by the m-accretive operator technique, and then to gener-
alized Dirichlet problems (6), (7) by the approximation method. In the last section,
the interior C2,ψ regularity of the viscosity solutions for the equations (6) is obtained,
where the Caffarelli’s perturbation method is used.

From now on, C will denote a positive constant, depending only on the space
dimension n, the ellipticity constants θ, Θ and the diameter of the domain Ω; it may
be different in each inequality or formula.
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2 Construction of u0

For the construction of u0, we introduce the Pucci extremal operator

P+(M) = Θ
∑

ei>0

ei +
θ

n

∑

ei<0

ei ,

where e1, e2, . . . , en are the eigenvalues of M ∈ Rn×n. The usefulness of the Pucci
extremal operator is in avoiding linearization of the equations (6).

It is clear that P+(M) is a uniformly elliptic (with ellipticity constants θ/n, nΘ)
and convex operator since its subadditivity

P+(M1 + M2) ≤ P+(M1) + P+(M2), M1,M2 ∈ Rn×n,

see [CC, Lemma 2.10]. Moreover, the following Alexandroff-Bakelman-Pucci esti-
mate from [CC, Theorem 3.6] holds for P+(M).

Theorem 3 (ABP Estimate) Assume that u ∈ C0(Ω̄) satisfies P+(D2u) ≥ f (x) in the

viscosity sense in Ω, and u ≤ 0 on ∂Ω. Then

sup
Ω

u ≤ C‖ f−‖Ln(Ω),

where f− = max(− f , 0).

We also need the existence theorem of the classical solutions for the homogeneous
constant coefficient equations on the smooth domains, which is easy to obtain from

[CC, Proposition 9.8 and Remark 2].

Theorem 4 (Existence) Let ∂Ω be smooth, G(M) be convex or concave and g ∈
C0(∂Ω). If G satisfies (8), then there exists a unique solution v ∈ C 2,ᾱ(Ω) ∩ C0(Ω̄)

to the Dirichlet problem

G(D2v) = 0, in Ω, v = g(x), on ∂Ω,

and v satisfies

‖v‖∗C2,ᾱ( ¯Br/2) ≤ C̄
(

sup
Br

|v| + r2|G(0)|
)

,

for any ball Br ⊂ Ω, where ᾱ ∈ (0, 1) and C̄ > 0 are the constants depending only on

n, θ andΘ. Here ‖v‖∗
C2,ᾱ(Br)

denotes the adimensional C2,ᾱ(Br) norm:

‖v‖∗
C2,ᾱ(Br)

= sup
Br

|v| + r sup
Br

|Dv| + r2 sup
Br

‖D2v‖

+ r2+ᾱ sup
x,y∈Br

‖D2v(x) − D2v(y)‖

|x − y|ᾱ
.

Now, we begin to construct the function u0 satisfying P+(D2u0) = −1 in Ω and
u0 = 0, in some sense, on ∂Ω.
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Let {Ωk} be a sequence of smooth domains such that

Ωk ⊂ Ωk ⊂ Ωk+1, k = 1, 2, . . . ,

∞
⋃

k=1

Ωk = Ω.(10)

By Theorem 3 and 4, there is a unique solution uk ∈ C2,ᾱ(Ωk) ∩C0(Ωk) of

P+(D2uk) = −1, in Ωk,

uk = 0, on ∂Ωk,

and

0 < uk(x) ≤ C, x ∈ Ωk, ‖uk‖C2,ᾱ(Ω ′) ≤ C(Ω ′), Ω
′ ⊂⊂ Ω,

where ᾱ ∈ (0, 1), and the constant C(Ω ′) > 0 depends only on n, θ, Θ, diam Ω and
dist(Ω ′, ∂Ω). Noting

P+
(

D2(uk − uk+1)
)

≥ P+(D2uk)− P+(D2uk+1) = 0, in Ωk,

uk − uk+1 ≤ 0, on ∂Ωk,

and using Theorem 3 again we find the sequence {uk(x)} is strictly monotone in-
creasing in k. Consequently, uk → u0 in C2(Ω), and u0 ∈ C2,ᾱ(Ω) ∩ L∞(Ω) satisfies

P+(D2u0) = −1, 0 < u0 ≤ C, in Ω.(11)

Next, we shall explain that such definition of u0 is reasonable and natural.

Remark 5 It is easily seen that the function u0 defined above is independent of the

choices of the subdomains Ωk, which implies that u0 depends only on n, θ,Θ and Ω.
In fact, if {Ω ′l } is another sequence of smooth domains such that

Ω
′
l ⊂ Ω

′
l ⊂ Ω

′
l+1, l = 1, 2, . . . ,

∞
⋃

l=1

Ω
′
l = Ω,

and u ′l ∈ C2,ᾱ(Ω ′l ) ∩C0(Ω ′l ) is a unique positive solution of

P+(D2u ′l ) = −1, in Ω ′l ,

u ′l = 0, on ∂Ω ′l ,

and u ′l → u ′0 in C2(Ω), then

P+
(

D2(uk − u ′l )
)

≥ P+(D2uk)− P+(D2u ′l ) = 0, in Ωk,

uk − u ′l ≤ 0, on ∂Ωk,
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when Ωk ⊂ Ω
′
l . Hence we get from Theorem 3 uk ≤ u ′l in Ωk and u0 ≤ u ′0 in Ω.

Similarly, u ′0 ≤ u0 in Ω.

Remark 6 When ∂Ω satisfies the exterior cone condition, u
u0
= 0 on ∂Ω is the same

as u continuous on ∂Ω and u(x) = 0 for each x ∈ ∂Ω.
We recall that ∂Ω satisfies an exterior cone condition at y ∈ ∂Ω if there is a

truncated spherical cone with vertex at y:

C y = {y} ∪ {x ∈ Rn | 0 < |x − y| ≤ r, θ0 ≤ θ(x) ≤ π}

lying outside Ω̄. Here r > 0, θ0 ∈ (π/2, π), and

θ(x) = arccos
(x − y) · η

|x − y|
∈ [0, π], y 6= x,

for some unit vector η ∈ Rn. Michael [M] has shown that such point y admits a

strong barrier function for the linear elliptic operators. In particular, he proved [M,
Theorem 2.1]

Theorem 7 There exists a positive function p ∈ C2[0, π] and constants λ ∈ (0, 1),

ν > 0, K > 0, such that

0 < h(x) = 1− e−K|x−y|λ p(θ(x)) ∈ C2(Rn \C y)

has the property that

n
∑

i, j=1

ai j(x)Di j h ≤ −λ|x − y|λ−2e−K|x−y|λ p(θ(x))

for all x ∈ Rn \C y , and every real symmetric matrix
(

ai j(x)
)

for which

θ

n
|ξ|2 ≤

n
∑

i, j=1

ai j(x)ξiξ j ≤ Θ|ξ|
2, ξ ∈ Rn.

Therefore, it means that in U = Ω∩ Br(y) the above positive function h ∈ C2(U )
satisfies

P+(D2h) = sup
{

n
∑

i, j=1

ai j(x)Di j h
}

≤ −λ|x − y|λ−2e−K|x−y|λ p(θ(x)) ≤ −1,

for r small enough, where the sup is taken over all symmetric matrices
(

ai j(x)
)

whose
eigenvalues belong to [θ/n,Θ], see [CC, (2.5)].

Set Uk = Ωk ∩ Br(y), and

hk(x) = uk(x)− A

(

h(x) +
|x − y|2

4nΘ

)

.
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We may fix A > 0 depending only on n, θ,Θ,Ω and r, so that

P+(D2hk) ≥ P+(D2uk)− A
(

P+(D2h) +
1

2

)

= −1 +
A

2
≥ 0, in Uk,

hk(x) = −A

(

h(x) +
|x − y|2

4nΘ

)

≤ 0, on ∂Ωk ∩ Br(y),

hk(x) = uk(x) − A
(

h(x) +
r2

4nΘ

)

≤ C −
Ar2

4nΘ
≤ 0, on ∂Br(y) ∩ Ωk.

Theorem 3 implies that hk ≤ 0 in Uk, i.e.

0 < uk(x) ≤ A

(

h(x) +
|x − y|2

4nΘ

)

in Uk.

Keeping x fixed and letting k→ +∞, we find

0 < u0(x) ≤ A

(

h(x) +
|x − y|2

4nΘ

)

in U ,

and

u0(x)→ 0, as x→ y.

This remark follows from Definition 1.

3 Existence of Viscosity Solution

The purpose of this section is to prove the existence theorem of the Cα(Ω) ∩ L∞(Ω)
viscosity solutions to the problems (6), (7) in the general domains. There are the

Hölder estimate and the compactness result to be needed, see [CC, Section 4.3].

Theorem 8 (Hölder Continuity) Let u be a viscosity solution of (1). Then for any

Ω ′ ⊂⊂ Ω, we have u ∈ Cα(Ω ′) and

‖u‖Cα(Ω ′) ≤ C(Ω ′)(‖u‖L∞(Ω) + ‖ f ‖Ln(Ω)),

where α ∈ (0, 1), and C(Ω ′) > 0 is a constant depending only on n, θ, Θ and

dist(Ω ′, ∂Ω).

If Ω satisfies a uniform exterior sphere (of radius R) condition and u is a viscosity

solution of (1), (2). Then u ∈ Cα(Ω̄) and

‖u‖Cα(Ω̄) ≤ C,

for some constants α ∈ (0, 1) and C > 0, which depend only on n, θ,Θ, R, Ω, ‖ f ‖Ln(Ω)

and ‖u‖L∞(Ω).
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Theorem 9 (Compactness) Let {Fk}k≥1 be a sequence of uniformly elliptic opera-

tors with ellipticity constants θ and Θ, and {uk}k≥1 be viscosity solutions in Ω of

Fk(D2uk, x) = f (x). Assume that {Fk}k≥1 converges uniformly in compact sets of

Rn×n × Ω to F, and that {uk}k≥1 is uniformly bounded in compact sets of Ω. Then

there exists u ∈ C(Ω) and a subsequence of {uk}k≥1 that converges uniformly to u in

compact sets of Ω. Moreover, F(D2u, x) = f (x) in the viscosity sense in Ω.

First we prove the existence theorem for the usual Dirichlet problems (1), (2) on

the smooth domains by using the accretive operator methods as in [B1]. The basic
facts about accretive operators may be found in [E1, Section 5] or [E2, Section 8].
The book of Barbu [Ba] contains their proofs and more explanation.

Theorem 10 (Existence on Smooth Domain) Let ∂Ω ∈ C3, F ∈ C3(Rn×n × Ω̄),

f ∈ C0(Ω̄), and suppose that F satisfy (8) and

|FMx(M, x)| + |FMxx(M, x)| ≤ F0, (M, x) ∈ Rn×n × Ω̄,

for some positive constant F0. Then the problems (1), (2) have a viscosity solution u ∈
Cα(Ω̄) for some α ∈ (0, 1).

Proof Define

F̄(M, x) = −F(−M, x) −
θ

2
trace(M), (M, x) ∈ Rn×n × Ω,

and define also for each (y, z) ∈ Rn×n × Rn×n

ai j(x; y, z) =

∫ 1

0

F̄Mi j

(

(1− t)y + tz, x
)

dt, x ∈ Ω,

f (x; y, z) = F̄(y, x)−

n
∑

i, j=1

ai j(x; y, z)yi j , x ∈ Ω,

and the linear uniformly elliptic operator

Ly,zu = −
n
∑

i, j=1

ai j(x; y, z)Di j u

for

u ∈ D(Ly,z) = {u ∈W 2,q(Ω) ∩W
1,q
0 (Ω) | Ly,zu ∈ C0(Ω̄)}, q > 2n.

Then the equation (1) can be rewritten into

−
θ

2
4u + F̄(−D2u, x) = − f (x), x ∈ Ω.
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By the quasilinearization representation of F̄ [E2, Lemma 2.2]

F̄(−D2u, x) = max
y∈Rn×n

min
z∈Rn×n

{Ly,zu + f (x; y, z)}.

According to the standard elliptic theory the operator

Ly,z : D(Ly,z) ⊂ C0(Ω̄)→ C0(Ω̄)

is m-accretive in C0(Ω̄). Fix t > 0 and let

J
y,z
t = (I + tLy,z)−1

be the resolvents of Ly,z, and

L
y,z
t =

I − J
y,z
t

t

its Yosida approximations. We know that each L
y,z
t is an everywhere defined, Lips-

chitz, accretive operator on C0(Ω̄).

Next choose T > 1 and select a C1 function βT(s) such that

βT(s) =

{

s, for |s| ≤ T − 1,

T, for |s| ≥ T,
(12)

0 ≤ β ′T(s) ≤ 1, s ∈ R1,

and define

Bt,T(u) = βT

(

max
‖y‖≤1/t

min
z∈Rn×n

(

L
y,z
t u + f (x; y, z)

)

)

.

Then Bt,T is also an everywhere defined, Lipschitz, accretive operator on C 0(Ω̄).

Hence the Perturbation Lemma [E2, Lemma 8.1] implies the existence of a unique

ut,T ∈W 2,q(Ω) ∩W
1,q
0 (Ω) solving

tut,T −
θ

2
4ut,T + Bt,T(ut,T) = − f (x).(13)

By (12) and Lq theory, we have

‖ut,T‖W 2,q(Ω) ≤ C(T), for each q > 2n,

where C(T) = C(n, θ, q,Ω, sup
Ω
| f |,T). Owing to the above estimate there exists a

sequence tk → 0 and a function uT ∈W 2,q(Ω) ∩W
1,q
0 (Ω) such that

utk,T ⇀ uT weakly in W 2,q(Ω),

utk,T → uT in C1(Ω̄).(14)
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Consider now some given ϕ ∈ C4
0(Ω), we claim

Bt,T(ϕ)→ βT

(

F̄(−D2ϕ, x)
)

(15)

uniformly on Ω̄ as t → 0. Indeed, for any y, z ∈ Rn×n,

‖L
y,z
t ϕ− Ly,zϕ‖C0(Ω̄) = ‖ J

y,z
t Ly,zϕ− Ly,zϕ‖C0(Ω̄)

≤ t‖(Ly,z)2ϕ‖C0(Ω̄) ≤ tC‖ϕ‖C4(Ω̄)

for C = C(n,Θ, F0) independent of y, z. In the definition of f (x; y, z), we observe by
substituting y = −D2ϕ,

F̄(−D2ϕ, x) = L−D2ϕ,zϕ + f (x;−D2ϕ, z), z ∈ Rn×n.

Furthermore, we have

F̄(−D2ϕ, x) = min
z∈Rn×n

{L−D2ϕ,zϕ + f (x;−D2ϕ, z)}

≤ max
‖y‖≤1/t

min
z∈Rn×n

{Ly,zϕ + f (x; y, z)} ≤ F̄(−D2ϕ, x)

for 1/t ≥ sup
Ω
|D2ϕ|. Hence

∣

∣Bt,T(ϕ)− βT

(

F̄(−D2ϕ, x)
) ∣

∣ ≤ max
‖y‖≤1/t

min
z∈Rn×n

|L
y,z
t ϕ− Ly,zϕ| ≤ tC‖ϕ‖C4(Ω̄),

and we obtain (15).

We define a kind of “partial inner product” for f , g ∈ C0(Ω̄)

[ f , g]+ = inf
t>0

‖ f + tg‖C0(Ω̄) − ‖ f ‖C0(Ω̄)

t
.

The bracket [ , ]+ has the characterization (see [E2, (8.14)])

[ f , g]+ = max{g(x0) · sgn f (x0) | x0 ∈ Ω̄, | f (x0)| = ‖ f ‖C0(Ω̄)}, f 6≡ 0.(16)

Now it follows from the accretiveness of− θ
2
4 + Bt,T , see [E2, (8.12)]

[

ut,T − ϕ,
(

−
θ

2
4ut,T + Bt,T(ut,T)

)

−
(

−
θ

2
4ϕ + Bt,T(ϕ)

)]

+
≥ 0

for any ϕ ∈ C2
0(Ω). Then (13) implies

[

ut,T − ϕ,−tut,T − f +
θ

2
4ϕ− Bt,T(ϕ)

]

+
≥ 0.

Let t = tk → 0, by (14), (15) and the upper-semicontinuity [E2, (8.11)] of [ , ]+ with
respect to uniform convergence,

[

uT − ϕ,− f +
θ

2
4ϕ− βT

(

F̄(−D2ϕ, x)
)

]

+
≥ 0.
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By (16) and the following technical lemma [E1, Lemma 2.2] or [E2, Lemma 9.1]

Lemma 11 For a.e. x0 ∈ Ω there exists a sequence {ϕk} ⊂ C4
0(Ω), such that

ϕk(x0)→ uT(x0), Dϕk(x0)→ DuT(x0), D2ϕk(x0)→ D2uT(x0),

as k→∞, and

ϕk(x0)− uT(x0) = ‖ϕk − uT‖C0(Ω̄) > ϕk(x)− uT(x),

for x ∈ Ω, x 6= x0, k = 1, 2, . . . .

We have

− f (x0) +
θ

2
4ϕk(x0)− βT

(

F̄(−D2ϕk(x0), x0)
)

≤ 0.

Let k→ 0 to find

− f (x0) +
θ

2
4uT(x0)− βT

(

F̄(−D2uT(x0), x0)
)

≤ 0.

In the same way we can prove the reverse direction inequality. Therefore

θ

2
4uT − βT

(

−F(D2uT , x) +
θ

2
4uT

)

= f (x), a.e. x ∈ Ω.

Denote

FT(M, x) =
θ

2
trace(M)− βT

(

−F(M, x) +
θ

2
trace(M)

)

.

It is clear that the ellipticity constants of FT are θ/2,Θ, and uT ∈W 2,q(Ω) is a solu-
tion of

FT(D2uT , x) = f (x), in Ω, uT = 0, on ∂Ω.

Applying Theorem 3 and the following simple fact [CC, Proposition 2.13] to FT

Lemma 12 Let u satisfy F(D2u, x) ≥ f (x) in the viscosity sense inΩ. Then P+(D2u) ≥
f (x) in Ω.

We get

sup
Ω

|uT | ≤ C.

By Theorem 8 we have
‖uT‖Cα(Ω̄) ≤ C,

where C is independent of T. This estimate implies the existence of a subsequence
(also denoted by uT) and a function u ∈ Cα(Ω̄) such that

uT → u in C0(Ω̄),

as T → ∞. So according to Theorem 9 we know that that u is the viscosity solution
of (1), (2).

Our existence result on the general domains is

Theorem 13 (Existence on General Domain) Assume that f ∈ C0(Ω)∩ L∞(Ω) and

F ∈ C1(Rn×n × Ω). If F satisfies (8), then the Dirichlet problem (6), (7) has a viscosity

solution u ∈ Cα(Ω) ∩ L∞(Ω) for some α ∈ (0, 1).
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Proof Let two C3 sequences {Fk} and { fk} converge uniformly in the compact sets of
Rn×n×Ω andΩ to F and f respectively. There is no loss of generality in assuming that

{Fk} is with ellipticity constants θ,Θ and { fk} is uniformly bounded inΩ. Moreover
we can also suppose that

Fk(M, x) ≡ 0, ‖M‖ + |x| > k.

It follows directly from Theorem 10 that there exists a function uk ∈ Cα(Ωk),

which solves in the viscosity sense

Fk(D2uk, x) = fk(x), in Ωk,(17)

uk
= 0, on ∂Ωk,(18)

where {Ωk} is defined by (10). If we can prove that there is a positive constant C

(independent of k) such that

|uk(x)| ≤ Cu0(x), x ∈ Ωk,(19)

then by Theorem 8 we have
‖uk‖Cα(Ω) ≤ C.

We find a subsequence of {uk} (still denoted by itself), such that uk → u in C(Ω)
and

|u(x)| ≤ Cu0(x), x ∈ Ω.

Applying Theorem 9 and Definition 1, u ∈ Cα(Ω) ∩ L∞(Ω) is a viscosity solution of

(6), (7).
Now we establish the estimate (19). By Lemma 12, we have

P+(D2uk) ≥ fk(x), in Ωk.

We claim that in the viscosity sense

P+
(

D2(uk −Cu0)
)

≥ 0, in Ωk,(20)

for some constant (independent of k) C > 0. It follows immediately from Theorem 3
that uk −Cu0 ≤ 0 in Ωk.

To show (20), we need to prove that if x0 ∈ Ωk, ϕ ∈ C2(Ωk), and uk − Cu0 − ϕ
has a local maximum at x0, then

P+
(

D2ϕ(x0)
)

≥ 0.

In fact, by the definition that uk is a viscosity solution of (17) and Lemma 12, we
get

P+
(

D2(Cu0 + ϕ)(x0)
)

≥ fk(x0),

P+
(

D2ϕ(x0)
)

≥ P+
(

D2(Cu0 + ϕ)(x0)
)

− P+(CD2u0) ≥ fk(x0) + C ≥ 0.

Here we have used (11).

Applying above result to −uk, which satisfies

−Fk

(

−D2(−uk), x
)

= − fk(x),

we obtain −uk − Cu0 ≤ 0 in Ωk. This existence theorem on the general domains is
proved.
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4 C2,ψ Regularity

Introduce the function

βy(x) = sup
M∈Rn×n

|F(M, x)− F(M, y)|

‖M‖ + 1
, x, y ∈ Ω,

which measures the oscillation of F at y respect to x. We shall prove that if the Ln(Br)
averages of f and βy have a modulus of continuity ω, that is,

1

r

(

∫

Br(y)

βn
y (x) dx

)
1
n

+
1

r

(

∫

Br (y)

| f (x)− f (y)|n dx
)

1
n

≤ ω(r),(21)

for any y ∈ Ω, r ∈ (0, 1/2), Br ⊂ Ω, then under certain restrictions on ω, the
viscosity solutions u ∈ C2,ψ(Ω) of the equations (6), where

ψ(r) = ω(r) +

∫ r

0

ω(s)

s
ds.

We require that ω satisfies the Dini condition

∫ 1

0

ω(r)

r
dr < +∞,(22)

and the additional assumptions

lim inf
µ→0+

sup
0<r≤1/2

ω(µr)

ω(r)
= 0,(23)

lim inf
λ→0+

sup
k=0,1,2,...

λᾱω(λk)

ω(λk+1)
= 0,(24)

where ᾱ ∈ (0, 1) is given by Theorem 4.

Remark 14 The conditions (22), (23) and (24) are satisfied by

ω(r) = rα
(

ln
1

r

) τ

, 0 < α < ᾱ, τ ∈ R.

This enables us to generalize the results for Hölder continuous functions in Cα(Ω),
α ∈ (0, ᾱ).

Remark 15 The conditions (23) and (24) are technical restrictions, required only in
our proof of Theorem 16 and Lemma 19 below respectively. (24) is weaker than [(?),
K1] and [(14), K2]:

lim
µ→0+

sup
0<t≤1/2

µᾱ[t ᾱ + ω(t)]

(µt)ᾱ + ω(µt)
= 0.
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In fact, we fix t = 1/2 in Kovats’s condition, and get

lim
µ→0+

µᾱ

ω(µ)
= 0.

So (24) can be derived from the following inequality

λᾱω(λk)

ω(λk+1)
≤

2λᾱω(λk)

λ(k+1)ᾱ + ω(λk+1)
≤

2λᾱ[(λk)ᾱ + ω(λk)]

(λ · λk)ᾱ + ω(λ · λk)
,

if λ is small enough.

Now we state the interior regularity theorem as following:

Theorem 16 (C2,ψ Regularity) Let u ∈ C(Ω) ∩ L∞(Ω) be a viscosity solution of (6)

in Ω, where F, f satisfy (8), (9), (21) and F is a concave function of M, while ω satisfies

(22), (23) and (24). Then u ∈ C2,ψ(Ω).

For simplicity, in proving our results, without loss of generality we can assume
Ω = B1, y = 0, β = β0, f (0) = 0, |u| ≤ 1 in B1 and only prove that u is C2,ψ at 0.

Before starting our proof, we point out that ω(r) has following property.

Lemma 17 For any λ ∈ (0, 1/e], we have

∞
∑

i=k+1

ω(λi−1) ≤ ψ(λk),

for k = 0, 1, 2, . . . .

Proof

∞
∑

i=k+1

ω(λi−1) = ω(λk) +

∞
∑

i=k+2

∫ i−k

i−k−1

ω(λi−1) dx ≤ ω(λk) +

∫ ∞

1

ω(λx+k−1) dx

= ω(λk) +
1

lnλ

∫ 0

λk

ω(s)

s
ds ≤ ψ(λk).

The approximation lemma [C, Lemma 11] is a key ingredient in our proof.

Lemma 18 (Approximation Lemma) Let u be a viscosity solution of the equation (6)

in B1. Then there exists a positive constant γ = γ(n, θ,Θ), such that if ‖β‖Ln(B1) ≤ ε,

then

sup
B1/2

|u− v| ≤ C(εγ + ‖ f ‖Ln(B1)),

where v ∈ C2,ᾱ(B3/4) ∩C(B3/4) is a solution of

F(D2v, 0) = 0, in B3/4, v = u, on ∂B3/4.
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Next, we start proving the following two lemmas that will be used to prove Theo-
rem 16.

Lemma 19 If F is a concave function of M, and

‖β‖Ln(Br) ≤ δrω(r), ‖ f ‖Ln(Br) ≤ δrω(r), r ∈ (0, 1/2).(25)

Then there exist λ, δ ∈ (0, 1/e), depending only on n, θ, Θ, ψ(1) and the behaviour of

ω in the lim inf arising in (24), and a family of second order polynomials

Pk(x) = Ak + Bkx +
1

2
xtCkx

with

F(Ck, 0) = 0,(26)

so that

sup
B
λk

|u− Pk| ≤ λ2kω(λk),(27)

|Ak − Ak−1|, λk−1|Bk − Bk−1|, λ2(k−1)‖Ck −Ck−1‖ ≤ 8C̄λ2(k−1)ω(λk−1),(28)

for k = 0, 1, 2, . . . , where P0 ≡ P−1 ≡ 0, and C̄ is given by Theorem 4.

Proof We prove the lemma by induction. When k = 0, (26), (27) and (28) are
clearly. Suppose now that they are true for 0, 1, 2, . . . , k. We shall prove that (26),
(27) and (28) hold for k + 1.

Let

w(x) =
(u− Pk)(λkx)

λ2kω(λk)
, for x ∈ B1,

then supB1
|w| ≤ 1, and

Fk(D2w, x) = f k(x),

where

Fk(M, x) =
1

ω(λk)

[

F
(

ω(λk)M + Ck, λkx
)

− F(Ck, λkx)
]

,

f k(x) =
1

ω(λk)
[ f k(λkx)− F(Ck, λkx)],
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and

βk(x) = sup
M∈Rn×n

|Fk(M, x)− Fk(M, 0)|

‖M‖ + 1

≤
1

ω(λk)

[

sup
M∈Rn×n

∣

∣F
(

ω(λk)M + Ck, λkx
)

− F
(

ω(λk)M + Ck, 0
)∣

∣

‖M‖ + 1

+ sup
M∈Rn×n

|F(Ck, λkx)− F(Ck, 0)|

‖M‖ + 1

]

≤
β(λkx)

ω(λk)

[

sup
M∈Rn×n

‖ω(λk)M + Ck‖ + 1

‖M‖ + 1
+ sup

M∈Rn×n

‖Ck‖ + 1

‖M‖ + 1

]

≤ C
β(λkx)

ω(λk)
.

Here we have used that

‖Ck‖ ≤

k
∑

i=1

‖C i −C i−1‖ ≤ 8C̄

k
∑

i=1

ω(λi−1) ≤ 8C̄ψ(1)

by the inductive assumption (28) and Lemma 17.

Now, a direct calculation, (25) and (26) yield

‖βk‖Ln(B1) ≤
C

λkω(λk)
‖β‖Ln(B

λk ) ≤
C

λkω(λk)
· δλkω(λk) = Cδ,

‖ f k‖Ln(B1) ≤
1

λkω(λk)
[‖ f ‖Ln(B

λk ) + (1 + ‖Ck‖)‖β‖Ln(B
λk )]

≤ (2 + ‖Ck‖)δ ≤ Cδ.

By Theorem 4 and the Approximation Lemma (Noting Fk satisfies uniformly (8) and
(9)), there is a function v ∈ C2,ᾱ(B3/4) ∩C(B3/4) such that

Fk(D2v, 0) = 0, in B3/4, v = w, on ∂B3/4,(29)

and

sup
B1/2

|w− v| ≤ C
(

(Cδ)γ + ‖ f k‖Ln(B1)

)

≤ Cδγ .

Let

P(x) = v(0) + Dv(0)x +
1

2
xt D2v(0)x,
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then applying the interior estimates in Theorem 4 we have

sup
Bλ

|w − P| ≤ sup
Bλ

|w− v| + sup
Bλ

|v − P|

≤ Cδγ + [v]2,ᾱ,B3/8
· λ2+ᾱ ≤ C(δγ + λ2+ᾱ).

We first choose λ ∈ (0, 1/e) by (24) and then δ, so that

sup
Bλ

|w− P| ≤ λ2ω(λk+1)

ω(λk)
.

Rescaling back, we get

sup
B
λk+1

∣

∣

∣
u(x) − Pk(x)− λ2kω(λk)P

( x

λk

)
∣

∣

∣
≤ λ2(k+1)ω(λk+1).

Denote
Pk+1(x) = Pk(x) + λ2kω(λk)P

( x

λk

)

,

we have by (29), the definition of Fk and (26)

F(Ck+1, 0) = F
(

Ck + ω(λk)D2v(0), 0
)

= F(Ck, 0) = 0,

and

|Ak+1 − Ak|, λk|Bk+1 − Bk|, λ2k‖Ck+1 −Ck‖

≤ λ2kω(λk)
(

|v(0)| + |Dv(0)| + ‖D2v(0)‖
)

≤
( 8

3

) 2

C̄λ2kω(λk).

Hence, Pk+1(x) satisfies the required conditions.

Lemma 20 Under the same conditions as Lemma 19, there exists a second polynomial

P∞(x), such that

sup
Br

|u− P∞| ≤ Cr2ψ(r),

for any r ∈ (0, 1/2).

Proof From (28) and Lemma 17, three series

∞
∑

k=0

|Ak − Ak−1|,
∞
∑

k=0

|Bk − Bk−1|,
∞
∑

k=0

‖Ck −Ck−1‖

are convergent. Hence, Ak,Bk and Ck converge. Let

A = lim
k→∞

Ak, B = lim
k→∞

Bk, C = lim
k→∞

Ck,
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and

P∞(x) = A + Bx +
1

2
xtCx.

Clearly, {Pk} converges uniformly in B1 to P∞.
For k = 0, 1, 2, . . . , we have by (27), (28) and Lemma 17,

sup
B
λk

|u− P∞| ≤ sup
B
λk

|u− Pk| +

∞
∑

i=k+1

sup
B
λk

|Pi − Pi−1|

≤ λ2kω(λk) +

∞
∑

i=k+1

(|Ai − Ai−1| + λk|Bi − Bi−1| + λ2k‖C i −C i−1‖)

≤ λ2kω(λk) + 8C̄

∞
∑

i=k+1

ω(λi−1)(λ2(i−1) + λkλi−1 + λ2k)

≤ (1 + 24C̄)λ2kψ(λk).

For any given r ∈ (0, 1/2), there is some k, such that λk+1 < r ≤ λk. Therefore

sup
Br

|u− P∞| ≤ sup
B
λk

|u− P∞| ≤ Cλ2kψ(λk) ≤ 2Cλ2(k+1)−3ψ(λk+1) ≤
2C

λ3
r2ψ(r).

This completes the proof for Lemma 20.
We can now give the

Proof of Theorem 16 Introduce the function

ū(y) =
u(µy)

Kµ2
, K = µ−2 sup

B1

|u| + δ−1 + 1, µ ∈ (0, 1).

It follows from (6)

F̄(D2ū, y) = f̄ (y), |ū| ≤ 1, y ∈ B1,

where

F̄(M, y) =
1

K
F(KM, µy),

f̄ (y) =
1

K
f (µy),

and

β̄(y) = sup
M∈Rn×n

|F(KM, µy) − F(KM, 0)|

K(‖M‖ + 1)
≤ β(µy),

Using the condition (23), we have

sup
0<r≤1/2

ω(µr)

ω(r)
< δ
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for δ needed in (25) and some small µ ∈ (0, 1), and by (21)

‖β̄‖Ln(Br ) ≤
1

µ
‖β‖Ln(Bµr) ≤

1

µ
· µrω(µr) < δrω(r),

‖ f̄ ‖Ln(Br) ≤
1

Kµ
‖ f ‖Ln(Bµr) ≤

1

Kµ
· µrω(µr) < δrω(r),

for all r ∈ (0, 1/2). Therefore

sup
Br

|u− P∞| ≤ Cr2ψ(r), r ∈ (0, 1/2),(30)

where P∞(x) comes from Lemma 20, and the constant C depends only on n, θ, Θ,

diam Ω, ψ(1) and the behaviour of ω in the lim inf arising in (23), (24). The desired
estimate (30) follows immediately that u is C2,ψ at 0, see [CC, Section 8.1].
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