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Abstract

Hamilton’s method is a natural and common method to distribute seats proportionally
between states (or parties) in a parliament. In the USA it has been abandoned due to
some drawbacks, in particular the possibility of the Alabama paradox, but it is still in
use in many other countries. In this paper we give, under certain assumptions, a closed
formula for the asymptotic probability, as the number of seats tends to infinity, that the
Alabama paradox occurs given the vector p1, . . . , pm of relative sizes of the states. From
the formula we deduce a number of consequences. For example, the expected number
of states that will suffer from the Alabama paradox is asymptotically bounded above by
1/e and on average approximately 0.123.
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1. Introduction and main result

Proportional representation is desired in various circumstances. One common case is in
elections in many countries, where each party is awarded a number of seats in parliament
proportional to the number of votes. Since the number of seats has to be an integer, it becomes a
mathematical problem to choose these integers in a way that approximates exact proportionality,
and a number of different methods are in use.

In the United States, elections are done differently (with single-member constituencies), but
the same mathematical problem exists for apportionment to the House of Representatives. By
the Constitution, each state has a number of representatives that is proportional to its population.
However, the Constitution does not specify by which method the numbers are to be determined.
(The numbers are determined by Congress every tenth year, after a new census.) Therefore,
the choice of method has been subject to much debate since 1791; see [1] for a detailed history.
(In 1941, a specific method was chosen by law to be used not only for that apportionment but
also for all coming ones. This has eliminated the need for debates and new choices every ten
years, so there is now much less debate. For the current method, see Balinski and Young [1],
who also discussed why the method is slightly biased and could be improved.)

The problem was further complicated by the fact that the Constitution does not specify the
total number of representatives. Thus, when discussing apportionment, the Congress discussed
not only different methods but also different sizes of the House. During the second half of
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the nineteenth century, the favourite method was Hamilton’s method (also called the method
of largest remainder), which can be described as follows. (The method was proposed by
Alexander Hamilton in 1792 for the first apportionment; it was then approved by Congress but
vetoed by President Washington. The method was proposed again by Samuel Vinton in 1850
when it became law and was used, with some fiddling, for the rest of the century; see [1] for
details.)

Hamilton’s Method. Suppose that there are m states with populations P1, . . . , Pm, and n

seats to distribute. Let P = ∑m
i=1 Pi be the total population, and let pi = Pi/P be the relative

population of state i, i.e. its proportion of the total population. Calculate µi = pin; this is
the real number that would give exact proportionality. First round these down and give �µi�
seats to state i. The sum of these numbers is almost always less than n (the exception is when
all the µi happen to be integers), and the remaining seats are given to the states with largest
remainders µi − �µi�. In other words, µi is rounded up for the states with largest remainders,
and the number of states that are rounded up is determined so that the total number of seats
becomes n.

The method is simple and intuitive, and it does not bias against small or large states. However,
in 1881 it was discovered that this method has a surprising and unwelcome behaviour when
the total number of seats is changed. It can happen that some state gets less representatives
when the total number is increased. More precisely, using the population figures from the 1880
census, a total of 299 seats would give eight to Alabama, but a total number of 300 would
give only seven to Alabama; see [1, p. 39] for details. This counterintuitive behaviour became
known as the Alabama paradox, and it eventually led to the abolishment of Hamilton’s method
in favour of others that do not suffer from this defect. (The same problem was actually observed
in 1871, in that case for Rhode Island, but went largely unnoticed [1, p. 38].)

Remark 1.1. Hamilton’s method is still used in parliamentary elections in several countries,
either to distribute seats among multimember constituencies (e.g. Sweden), or to distribute
seats among the parties (e.g. Denmark). There the number of seats is fixed in advance, so
the Alabama paradox is not an obvious problem. However, the paradox may surface and give
strange behaviour in combination with other rules, and in some election systems where the
method is used a party that gains a vote can, in exceptional situations, actually lose a seat in
parliament; see [3]. Germany used Hamilton’s method (there called Hare–Niemeyer’s method)
for federal elections but changed in 2008 for this reason (although the problem partly remains
for other reasons); the method is still used in several German states, however.

The Alabama paradox is mathematically not strange, once it has been noticed. Consider
three states, A, B, and C. If we increase n to n + 1, the number µi = npi is increased by pi . If,
for example, state C is small and states A and B larger, then µC increases less that µA and µB.
Suppose for simplicity that none of these numbers passes an integer, so the integer parts �µi�
remain the same for n and n + 1 for all three states; then their remainders ρi = µi − �µi�
increase by pi , and it may happen that the remainders ρA and ρB are both smaller than ρC when
we distribute n seats, but that both become larger than ρC when we increase n to n + 1. If,
furthermore, C had the smallest remainder that was rounded up, then the result is that C loses
one seat while A and B gain one each. (We assume that no other state interferes.) A simple
numerical example is given in Table 1.

So the Alabama paradox certainly may happen, and it has occurred, but how likely is it?
Of course, the description so far is purely deterministic (except for the necessity to draw lots
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Table 1: The Alabama paradox. Numbers in bold have been rounded up. (Population figures may be in
the thousands or millions, for example.)

10 seats 11 seats

State Population µi Seats State Population µi Seats

A 53 5.30 5 A 53 5.83 6
B 33 3.30 3 B 33 3.63 4
C 14 1.40 2 C 14 1.54 1

Total 100 10.00 10 Total 100 11.00 11

sometimes when there is a tie); the Alabama paradox either occurs or not for given parameters.
Let us, however, assume that the population sizes are given, but choose a random number n of
seats.

• What is the probability that the Alabama paradox occurs if n is increased to n + 1?

By choosing a random number n we mean choosing n uniformly at random from {1, 2, . . . ,

N} for some large integer N , and then taking the limit (assuming that it exists) as N → ∞.
Thus, more formally, let si(n) be the number of seats state i receives when n seats are distributed.
Increase the number of seats n, by one seat at a time, from 1 to N , and let νi(N) be the number
of times that state i suffers from the Alabama paradox, i.e. the number of n < N such that
si(n + 1) < si(n). If νi(N)/N converges to some value qi as N → ∞, we say that the limit
qi is the probability that state i suffers from the Alabama paradox. (This approach, to consider
given sizes but a random number of seats, was also used in [5] where some other properties of
election methods were studied.)

In order to calculate this limit (and show that it exists), we will make one mathematical
simplification. Recall that a set {x1, . . . , xk} of real numbers is linearly independent over Q

if there is no relation a1x1 + · · · + akxk = 0 with all coefficients ai rational and not all 0.
(Equivalently, there is no such relation with integer coefficients ai , not all 0.) We will assume
that the relative population sizes are linearly independent over Q.

Remark 1.2. Mathematically, this assumption is reasonable, since if we choose p1, . . . , pm at
random (uniformly given that their sum is 1), they will almost surely be linearly independent
over Q. However, for the practical problem of apportionment, the assumption is clearly unrea-
sonable since the populations Pi are integers and the pi thus rational numbers. Nevertheless,

a1p1 + · · · + ampm = 0 (1.1)

with small integers a1, . . . , am is a good approximation if the numbers pi have large denomi-
nators and there are no relations. More precisely, it will be shown in Section 7.2 that, for any
ε > 0, there is an A = A(m, ε) such that the value qi in (1.2) or (1.3) below differs from the
exact probability by less than ε for every distribution (pi)

m
1 for which there is no such relation

(1.1) with integers ai and
∑

i |ai | ≤ A; we omit the details.

We leave it as an open problem to extend the result below and find exact formulae for
all p1, . . . , pm, and in particular for rational p1, . . . , pm. (If p1, . . . , pm are rational then the
sequence si(n+1)−si(n) will be periodic, so the limit qi certainly exists; the existence in general
is shown in Section 7.2.) Note that some modifications are required for rational p1, . . . , pm.
For example, with three states and p1 = p2 = 2

5 , p3 = 1
5 , it is easily seen that the Alabama
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paradox never occurs, so the probability is 0 for all three states. See also Proposition 7.1
below, where it is shown that the expected number of states suffering from the paradox could
be arbitrarily close to 1.

We use the standard notation x+ := max {x, 0} and x− := (−x)+ = − min {x, 0}, noting
that x = x+ − x− and |x| = x+ + x−. Let ek(x1, . . . , xn) denote the elementary symmetric
polynomial of degree k in n variables, i.e. ek(x1, . . . , xn) := ∑

1≤i1<···<ik≤n

∏k
j=1 xij . By

Be(p) we denote the Bernoulli distribution; thus, I ∼ Be(p) if P(I = 0) = 1 − p and
P(I = 1) = p. We let p(1) ≥ · · · ≥ p(m) be the population vector p1, . . . , pm rearranged
in increasing order, and let q(1), . . . , q(m) be the corresponding probabilities of the Alabama
paradox, which, by Corollary 2.2 below, is the vector q1, . . . , qm rearranged in increasing order.
For clarity, we will use the notation p(i) and q(i) whenever we consider the states in increasing
order, and pi and qi only when the order is irrelevant.

Theorem 1.1. Suppose that m states have relative sizes p1, . . . , pm, with
∑m

i=1 pi = 1, and
assume that p1, . . . , pm are linearly independent over Q. Then the probability qi that state i

suffers from the Alabama paradox when we increase the total number of seats by one equals

qi := 1

m
E(S−

i − S+
i − 1)+, (1.2)

where

S+
i =

∑
{j : pj <pi }

I
(i)
j and S−

i =
∑

{j : pj >pi }
I

(i)
j

with I
(i)
j ∼ Be(|pi − pj |) and I

(i)
1 , . . . , I

(i)
m independent. More explicitly, if the states are

ordered with p(1) ≥ · · · ≥ p(m), this can be written as

q(i) = 1

m

m−i∑
s=0

i−1∑
k=2

(−1)s+k

(
s + k − 2

s

)
ek(r̄

(i)
1 , . . . , r̄

(i)
i−1)es(r̄

(i)
i+1, . . . , r̄

(i)
m ), (1.3)

where r̄
(i)
j := |p(i) − p(j)|.

In other words, each I
(i)
j ∈ {0, 1} with P(I

(i)
j = 1) = |pi − pj |.

Remark 1.3. If we do not order the states then (1.3) can equivalently be written as

qi = 1

m

m−3∑
s=0

m−s−1∑
k=2

(−1)s+k

(
s + k − 2

s

)
es(r

(i)
1+, . . . , r

(i)
m+)ek(r

(i)
1−, . . . , r

(i)
m−), (1.4)

where r
(i)
j± := (pi − pj )±. Since (1.4) is symmetric under permutations of p1, . . . , pm, we

may assume that p(1) ≥ · · · ≥ p(m). In this case, r(i)
j+ = 0 for j ≤ i and r

(i)
j− = 0 for j ≥ i, and

it is easily seen that the sums in (1.3) and (1.4) are equal.

The proof of Theorem 1.1 is given in Section 4. We first give several consequences of the
main theorem in Sections 2–3; the proofs of these results are given in Sections 5–6.

For simplicity, we have here considered one state at a time. It may happen that the Alabama
paradox occurs for two (or more) states at the same time, although this is less likely; see
Section 7.1.
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2. Further results

In the case of three states, Theorem 1.1 yields the following simple formula.

Corollary 2.1. Suppose that there are three states with relative sizes p(1) ≥ p(2) ≥ p(3) with
p(1) + p(2) + p(3) = 1, and assume that p(1), p(2), and p(3) are linearly independent over Q.
Then only the smallest state can suffer from the Alabama paradox, and the probability of this
is 1

3 (p(1) − p(3))(p(2) − p(3)).

The supremum of this probability over all distributions (p(1), p(2), p(3)) is 1
12 , which is never

attained but is approached in the extreme case when p(3) is very small and p(1) and p(2) are
both close to 1

2 .
In general, the Alabama paradox can affect any state except the two largest, but it is much

more likely to affect small states.

Remark 2.1. Note however that Hamilton’s method is unbiased. On average, state i increases
its number of seats by pi each time n is increased, so if it sometimes suffers from the Alabama
paradox and its representation decreases with frequency qi , this must be compensated for by a
frequency pi + qi of the times when the number of seats increases.

Corollary 2.2. In addition to the assumptions of Theorem 1.1, assume that p(1) ≥ · · · ≥ p(m).
Then q(m) ≥ q(m−1) ≥ · · · ≥ q(3) ≥ q(2) = q(1) = 0. Moreover, the largest probability is

q(m) = 1

m

m−1∏
j=1

(1 − (p(j) − p(m))) − p(m). (2.1)

We have, for any i, the inequalities

1

m

(
e−1 − mp(i) − 1

2

∑
j

p2
j

)
≤ q(i) <

1

m

(
1 − 1

m − 1

)m−1

<
1

m
e−1. (2.2)

If p(m) → 0 and all other p(j) → 1/(m−1), then (2.1) shows that q(m) → (1/m)(1−1/(m−
1))m−1, so this is, for a given m, the least upper bound on the probability of theAlabama paradox
for a specific state in the linearly independent case (but only in that case—see Section 7.2),
which, for large m, approaches 1/me.

Corollary 2.3. Under the assumptions of Theorem 1.1, the expected number of states suffering
from the Alabama paradox each time the number of seats is increased is less than 1/e. This
bound is approached if we let m → ∞ and suppose that m − o(m) of the states are very small,
with pi = o(1/m), and that the remaining states are medium size with pi = o(1).

In this extremal case, the paradox is thus very common. It can be even more common in
the rational case; see Proposition 7.1 below. See also Example 7.2 below, where we show that
the probability of at least one state suffering the Alabama paradox in this case converges to
1 − 2/e ≈ 0.264. We conjecture that this is the upper bound of the probability that at least one
state suffers the paradox (under the assumption of Theorem 1.1); note that Corollary 2.3 shows
that the probability is always less than e−1 ≈ 0.368.

The exact formula in (1.3) is unwieldy when m is large; it may then be attractive to use (1.2)
with a Poisson approximation of S±

i .
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Corollary 2.4. Under the assumptions of Theorem 1.1, let (for a given i)

λ+ :=
∑

{j : pj <pi }
(pi − pj ) and λ− :=

∑
{j : pj >pi }

(pj − pi).

Furthermore, let Ŝ+ ∼ Po(λ+) and Ŝ− ∼ Po(λ−) be independent Poisson random variables,
and define

q̂i := 1

m
E(Ŝ− − Ŝ+ − 1)+ (2.3)

= 1

m

∑
j≥k+2

(j − k − 1)
(λ−)j (λ+)k

j ! k! e−λ−−λ+
(2.4)

= 1

m

∑
j≤k

(k + 1 − j)
(λ−)j (λ+)k

j ! k! e−λ−−λ+ − pi. (2.5)

Then

|qi − q̂i | ≤ 1

m

m∑
j=1

(pj − pi)
2. (2.6)

3. Average probability of the Alabama paradox

We have so far considered the probability of the Alabama paradox for given relative popula-
tion sizes p1, . . . , pm. Let us now instead fix m ≥ 3 and consider the average probability over
all population distributions. In other words, in this section we let (p1, . . . , pm) be random and
uniformly distributed over the simplex

�m :=
{
(p1, . . . , pm) ∈ [0, 1]m :

∑
i

pi = 1

}
,

and take the expectation. Note that then p1, . . . , pm are linearly independent over Q almost
surely (a.s.), so we may in the sequel assume that Theorem 1.1 and its corollaries apply.

As above, p(1) ≥ · · · ≥ p(m) denotes the population vector p1, . . . , pm rearranged in increas-
ing order; note that (p(1), . . . , p(m)) is uniformly distributed over the subset p(1) ≥ · · · ≥ p(m)

of the simplex �m. Similarly, q(1) ≤ · · · ≤ q(m) are the corresponding probabilities of the
Alabama paradox, which, by Corollary 2.2, are q1, . . . , qm rearranged in increasing order. In
particular, q(m) is the probability of the Alabama paradox for the smallest state. Note that
q(1) = q(2) = 0, but, a.s., q(k) > 0 for k ≥ 3. Since qi and q(i) are functions of p1, . . . , pm,
they too are now random variables, and we may ask for their expectations, or other properties
of their distributions. We use the notation ‘

d−→’ and ‘
p−→’ to denote convergence in distribution

and probability, respectively, always as m → ∞.
In the case m = 3, the average of the formula in Corollary 2.1 over all (p(1), p(2), p(3))

is easily found by integration, for example, by the substitution p(1) = 1 − p(3) − p(2) and
integrating over (p(2), p(3)) with the conditions 0 < p(3) < 1

3 and p(3) < p(2) < (1 − p(3))/2;
a calculation yields the probability E q(3) for the Alabama paradox for three states of random
sizes as 1

36 .
We extend this to larger m. First we consider only the smallest state, which is most

likely to experience the paradox. Recall the notation mk := m(m + 1) · · · (m + k − 1) for
the rising factorial.
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Theorem 3.1. With uniformly random relative population sizes, the expected probability E q(m)

that the smallest state among m states will suffer from the Alabama paradox is

E q(m) = 1

m

m−1∑
k=0

(−1)k

(
m−1

k

)
mk

− 1

m2 = 1

m

m−1∑
k=2

(−1)k

(
m−1

k

)
mk

. (3.1)

Hence, as m → ∞,

E q(m) = e−1

m
− 1

m2 + O

(
1

m3

)
. (3.2)

Furthermore, mq(m)
p−→ e−1 as m → ∞.

Hence, for large m, the expected value of the largest probability q(m) is asymptotically equal
to the upper bound e−1/m given in Corollary 2.2, and, furthermore, q(m) is close to e−1/m for
most p1, . . . , pm.

Remark 3.1. The sum in (3.1) is a hypergeometric sum and the result can be written as

E q(m) = 1

m
1F1(1 − m; m; 1) − 1

m2

with a confluent hypergeometric function 1F1 (in this case a polynomial).

For small m, we have the following results.

m 2 3 4 5 6 7 8 9

E q(m) 0 1
36

17
480

61
1680

907
25 920

153 709
4 656 960

855 383
27 675 648

134 964 353
4 670 265 600

For a fixed (or random) state, we obtain a more complicated formula.

Theorem 3.2. With uniformly random relative population sizes, the average probability E qm

that a given state among m states will suffer from the Alabama paradox is

E qm = 1

m

m−3∑
s=0

m−s−1∑
k=2

s∑
i=0

s−i∑
j=0

(−1)k+i+j

(
s + k − 2

s

)

× (m − 1)!2
k! i! (s − i − j)! (m − 1 − k − s)! (m − 1 + k + s)!

× (i + k + 1)−j−1.

For small m, we have the following results.

m 2 3 4 5 6 7 8

E qm 0 1
108

17
1440

523
43 200

2 287 039
195 955 200

100 704 757
9 144 576 000

404 675 341 849
39 230 231 040 000

The average probability E qm in Theorem 3.2 is, of course, always smaller than the average
of the largest probability E q(m) in Theorem 3.1. It is somewhat surprising that it is not much
smaller, the ratio is close to 1

3 , as is shown for some small m by the following (with rounded
values computed in MAPLE®).

m 3 10 20 30 50 100
E qm/ E q(m) 0.333 33 0.333 92 0.334 41 0.334 57 0.334 74 0.334 87
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Indeed, this persists for large m, and E qm is really of order 1/m, since Theorem 3.2 implies
the following asymptotic formula by dominated convergence.

Corollary 3.1. With uniformly random relative population sizes, the expected number of
occurrences of the Alabama paradox among all m states is m E qm which, as m → ∞, has the
limit

m E qm → b :=
m−3∑
s=0

m−s−1∑
k=2

s∑
i=0

s−i∑
j=0

(−1)k+i+j

(
s + k − 2

s

)
(i + k + 1)−j−1

k! i! (s − i − j)! .

Thus, E qm ∼ b/m. We do not know any better closed form for b, but, numerically,
using MAPLE, we obtain b ≈ 0.123 24 and, thus, using Theorem 3.1, E qm/ E q(m) → be ≈
0.335 01, in accordance with the above. (According to the MAPLE calculations, the limit is
not exactly 1

3 , but quite close.)
The formula for b in Corollary 3.1 as an alternating quadruple sum is not very illuminating,

and it is not even easy to see that b > 0 from it, but that at least follows from the alternative
representation in the next theorem, which adds more information on the asymptotic relation
between the size and probability for the Alabama paradox for random populations.

Theorem 3.3. Define, for any λ−, λ+ ≥ 0, with Ŝ± ∼ Po(λ±) independent, similarly to (2.3)–
(2.5),

�(λ−, λ+) := E(Ŝ− − Ŝ+ − 1)+ (3.3)

=
∑

j≥k+2

(j − k − 1)
(λ−)j (λ+)k

j ! k! e−λ−−λ+
(3.4)

=
∑
j≤k

(k + 1 − j)
(λ−)j (λ+)k

j ! k! e−λ−−λ+ + λ− − λ+ − 1 (3.5)

and �(x) := �(e−x, e−x − 1 + x). Then, as m → ∞, with random population sizes,

(mpm, mqm)
d−→ (T , �(T )), (3.6)

where T ∼ Exp(1). In particular,

m E qm → b

= E �(T )

=
∑

j≥k+2

(j − k − 1)

∫ ∞

0

e−jx(e−x − 1 + x)k

j ! k! e−2e−x−2x+1 dx. (3.7)

By Theorem 3.3 and its proof below, we can further say that, assuming random, uniformly
distributed populations, a state with pi = x/m has probability qi ≈ �(x)/m of suffering from
the Alabama paradox. Note that the extreme case in Theorem 3.1 can be seen (informally) as
the limiting case x = 0, since we have mp(m)

p−→ 0 and mq(m) → e−1, and indeed �(0) =
�(1, 0) = e−1, e.g. by (3.5).

We plot the function � in Figure 1.
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Figure 1: The function � in Theorem 3.3.

4. Proof of Theorem 1.1

We analyse the process of successive distributions of seats as follows.
Think of the different states as m runners on a circular track, with state i running at constant

speed pi (laps/time unit). At time n, state i has run a distance npi , and, thus, �npi� full laps,
so the number of seats that it gets is the number of completed laps, plus an additional seat for
each of the states that have come furthest on the next lap; the number of these additional seats
is chosen such that the total number of seats is n.

We reformulate this by moving the finishing line; we mark its position by a flag and count
laps as runners pass the flag. We place the flag by the runner that got the last additional seat,
i.e. the state with the smallest remainder that is rounded up. Then the number of seats a state
gets equals its number of laps for every state. (The assumption that p1, . . . , pm are linearly
independent over Q implies that ties cannot occur, so we do not have to worry at all about ties
in this proof.)

Let us increase the total number of seats from n to n + 1 in two steps. We first increase time
from n to n+1 continuously, letting the runners run, but at the same time we also move the flag,
by letting it be carried by a runner, so that the total number of laps stays at n. This means that
if the runner carrying the flag overtakes another, slower runner, then the flag is passed to the
slower runner and both runners keep the same number of laps. On the other hand, if the runner
carrying the flag is overtaken by a faster runner then the flag is passed to the faster runner, who
gets one lap more, while the former flag holder loses one lap. (Other overtakings do not affect
the flag, nor the number of laps for anyone.)

Finally, at time n+1 we increase the total number of seats by one; this means that the runner
carrying the flag throws it to the next runner behind him/her, who gains another lap.

We count positions, at any given time, relative to the flag and say that position 0 is the runner
carrying the flag, positions −1, −2, . . . are the runners behind the flag-carrying runner, and
positions 1, 2, 3, . . . are the runners in front of him/her. (Since the track is circular, position k

and position k − m are the same, but that does not matter as long as we take a little care.) It
is easy to see that when one runner overtakes another, their positions (which differ by 1) are
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exchanged, while all other positions remain the same; this hold also if one of them carries the
flag.

Consider a specific runner, say runner i. The position of i increases by 1 each time i overtakes
someone else, and it decreases by 1 each time i is overtaken. Furthermore, it increases by 1 at
the final step when the flag is thrown. Thus, if S+ is the number of runners overtaken by i and
S− is the number of runners overtaking i, during the interval [n, n + 1], then the position is
increased by S+ −S− +1. Since the number of laps is changed only when the position changes
between 0 and −1, we see that

(+) state i gains a seat if S+ − S− + 1 > 0 and runner i has at time n one of the positions
−1, −2, . . . ,−(S+ − S− + 1),

(−) state i loses a seat if S+ − S− + 1 < 0 and runner i has at time n one of the positions
0, 1, . . . , |S+ − S− + 1| − 1.

Case (−) is thus when the Alabama paradox occurs for state i. Let L be the position of runner
i relative to the flag at time n, normalized to have L ∈ {0, . . . , m − 1}. Then the Alabama
paradox occurs if and only if

S+ − S− + 1 < −L. (4.1)

Let the indicator I+
j be 1 if i overtakes j during [n, n+1], and 0 otherwise; similarly, let I−

j

be 1 if i is overtaken by j and 0 otherwise. Then S+ = ∑
j I+

j and S− = ∑
j I−

j . (Note that no
runner can overtake another more than once during [n, n + 1].) We let {x} := x − �x� ∈ [0, 1)

denote the fractional part of a real number x. (We will also use {} to denote sets; the meaning
should be clear from the context.) Then

I+
j = 1 ⇐⇒ pi > pj and 0 < {npj − npi} < pi − pj , (4.2)

I−
j = 1 ⇐⇒ pi < pj and 1 − (pj − pi) < {npj − npi} < 1. (4.3)

We calculate the probability of (4.1) by finding the asymptotic joint distribution of L and the
fractional parts {npj − npi}, j 
= i, where again we choose n uniformly at random with
1 ≤ n ≤ N , and then let N → ∞. By the formulae above, this gives the asymptotic joint
distribution of S+, S−, and L, and, thus, the (asymptotic) probability of (4.1).

We say that an infinite sequence (vn)n≥1 ∈ [0, 1)m−1 × {0, . . . , m − 1} is uniformly
distributed if the empirical distributions N−1 ∑N

n=1 δvn converge to the uniform distribution
as N → ∞, where δvn denotes the Dirac measure. This means that if A ⊆ [0, 1)m−1 with
λ(∂A) = 0 and k ∈ {0, . . . , m − 1}, then #{n ≤ N : vn ∈ A × {k}}/N → λ(A)/m. (Here λ

is the usual Lebesgue measure.) This is a simple extension of the standard notion of uniform
distribution for a sequence in [0, 1)m−1. We claim the following. (For notational convenience,
we state the case i = 1 only.)

Lemma 4.1. Suppose that p1, . . . , pm are linearly independent over Q, and let Ln ∈ {0, . . . ,

m − 1} be the position of runner 1 relative to the flag at time n. Then the sequence of vectors
vn = ({n(p2 − p1)}, . . . , {n(pm − p1)}, Ln), n ≥ 1, is uniformly distributed on [0, 1)m−1 ×
{0, . . . , m − 1}.

We postpone the proof and first complete the proof of (1.2).
By (4.2) and (4.3), for each j , at most one of I+

j and I−
j is nonzero, depending on

whether pj < pi or pj > pi . We simplify the notation by letting Ij = I+
j + I−

j ; thus,
S+ = ∑

{j : pj <pi } Ij and S− = ∑
{j : pj >pi } Ij .
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For a given N , these are random variables, and we have, letting PN denote the probability
when n is uniformly chosen with n ≤ N ,

PN(S+ − S− + 1 < −L) =
m−1∑

=0

PN(L = 
 and S− − S+ − 1 > 
). (4.4)

As N → ∞, Lemma 4.1 and (4.2)–(4.3) show that the distribution of L = Ln converges to the
uniform distribution on {0, . . . , m − 1} and the distribution of Ij converges to Be(|pi − pj |)
for all j 
= i; moreover, these are asymptotically independent. Hence, (4.4) yields

PN(S+ − S− + 1 < −L) →
m−1∑

=0

1

m
P(S−

i − S+
i − 1 > 
) = 1

m
E(S−

i − S+
i − 1)+,

where S+
i = ∑

{j : pj <pi } I
(i)
j and S−

i = ∑
{j : pj >pi } I

(i)
j with I

(i)
j ∼ Be(|pi − pj |) indepen-

dent. This is the result stated in (1.2).
We proceed to show Lemma 4.1. First recall a well-known result by Weyl. (The standard

proof is by showing that the Fourier transform (characteristic function)

1

N

N∑
n=1

exp

(
2π i

k∑
j=1

nj {nyj }
)

→ 0 as N → ∞

for any fixed integers n1, . . . , nk , not all 0; see, for example, [4, Exercises 3.4.2 and 3.4.3].)

Lemma 4.2. (Weyl’s theorem.) Suppose that y1, . . . , yk and 1 are linearly independent over Q.
Then the sequence of vectors ({ny1}, . . . , {nyk}) ∈ [0, 1)k is uniformly distributed in [0, 1)k .

We will need the following extension. Let Modm(x) = m{x/m}; this is the remainder when
x is divided by m. Thus, if r is an integer then Modm(r) is the unique integer in {0, . . . , m − 1}
such that Modm(r) ≡ r (mod m).

Lemma 4.3. Suppose that y1, . . . , yk and 1 are linearly independent over Q. Let 
n =
Modm((

∑k
j=1�nyj �) − n) ∈ {0, . . . , m − 1}. Then the sequence of vectors ({ny1}, . . . , {nyk},


n) ∈ [0, 1)k × {0, . . . , m − 1} is uniformly distributed in [0, 1)k × {0, . . . , m − 1}.
Proof. Let zj = yj /m and wn = (wn1, . . . , wnk) with wnj = {nzj }, j = 1, . . . , k. Then

z1, . . . , zk and 1 are linearly independent over Q, and, thus, Lemma 4.2 (Weyl’s theorem) shows
that the sequence (wn)n≥1 is uniformly distributed in [0, 1)k . Furthermore,

nyj − mwnj = mnzj − m{nzj } = m�nzj � ≡ 0 (mod m).

Hence,
{nyj } = {mwnj } and �nyj � ≡ �mwnj � (mod m).

Thus, Modm(�nyj �) = �mwnj �.
Let 
̃nj = Modm(�nyj �) = �mwnj �. If a sequence (un) is uniformly distributed in [0, 1)

then (mun) is uniformly distributed in [0, m) and the vectors ({mun}, �mun�) are uniformly
distributed in [0, 1) × {0, . . . , m − 1}. Using this argument in each coordinate, the fact that
(wn) is uniformly distributed in [0, 1)k implies that the sequence of vectors ({nyj }, 
̃nj )

k
j=1 =

({mwnj }, �mwnj �)kj=1 is uniformly distributed in [0, 1)k × {0, . . . , m − 1}k .
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Let 
̃n = Modm(
∑k

j=1�nyj )�. Then 
̃n = Modm(
∑k

j=1 
̃nj ), and it follows that the
sequence of vectors ({ny1}, . . . , {nyk}, 
̃n) is uniformly distributed in [0, 1)k ×{0, . . . , m − 1}.

This is almost what we claim. To complete the proof, we consider a subsequence of the form
n = mν + n0, ν ≥ 1. Weyl’s theorem holds for such subsequences too, as a consequence of
the version in Lemma 4.2 since {(mν + n0)pj } = {ν(mpj ) + n0pj }, where mp1, . . . , mpk and
1 are linearly independent over Q, and the constant shift by n0pj does not affect the uniform
distribution. Consequently, the argument above shows that ({ny1}, . . . , {nyk}, 
̃n) is uniformly
distributed for each such subsequence. But, along the subsequence, 
n = Modm(
̃n − n0), so
({ny1}, . . . , {nyk}, 
n) is uniformly distributed for each such subsequence, and, thus, for the
entire sequence.

Proof of Lemma 4.1. Suppose that runner 1 carries the flag at time n, i.e. Ln = 0. Then
state 1 gets an additional seat, i.e. its number of seats is rounded up to �np1�, and state j gets

�npj − {np1}� = �npj − np1� + �np1� = �npj − np1� + �np1�
seats. Since the total number of seats is n, we have, still in the case Ln = 0,

n =
m∑

j=2

�npj − np1� + m�np1� ≡
m∑

j=2

�npj − np1� (mod m).

In general, there are Ln additional states whose numbers of seats are rounded up (or −Ln fewer
if Ln < 0); thus,

n ≡ Ln +
m∑

j=2

�npj − np1� (mod m)

and

Ln ≡ n −
m∑

j=2

�n(pj − p1)� (mod m). (4.5)

Let yj = pj − p1, j = 2, . . . , m. Since p1, . . . , pm are linearly independent over Q, it is
easily seen that y2, . . . , ym and

∑m
1 pj = 1 are also linearly independent over Q. (This can be

seen as a change of basis, using a nonsingular integer matrix, in a vector space of dimension
m over Q.) Thus, Lemma 4.1 follows from Lemma 4.3 (with k = m − 1, after renumbering
y2, . . . , ym), since Ln ≡ −
n (mod m) by (4.5).

This completes the proof of (1.2). We proceed to show that this can be evaluated as (1.3).
We may assume that the states are ordered by size, p1 ≥ · · · ≥ pm; thus, pi = p(i).

Consider the ith largest state. Let X− ⊆ [i − 1] and X+ ⊆ {i + 1, . . . , m}, where, as usual,
[n] := {1, . . . , n}. We think of X− and X+ as the indices j for which I

(i)
j = 1. Let P=(X−, X+)

be the probability that {j : I
(i)
j = 1} = X− ∪ X+. Then, clearly, writing r̄j := r̄

(i)
j = |pi −pj |

for simplicity,
P=(X−, X+) =

∏
j∈X−∪X+

r̄j
∏

j∈[m]\(X−∪X+∪{i})
(1 − r̄j ).

Formula (1.2) for the probability that the ith largest state suffers from the Alabama paradox is
thus

mq(i) =
∑

X−⊆[i−1], X+⊆{i+1,...,m}
(|X−| − |X+| − 1)

∏
j∈X−∪X+

r̄j
∏

j∈[m]\(X−∪X+∪{i})
(1 − r̄j ),

where the sum runs over all pairs of subsets such that |X−| ≥ |X+| + 2.
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Now, for any s ≥ 0, k ≥ 2, and any monomial
∏k

µ=1 r̄jµ

∏s
ν=1 r̄lν , where 1 ≤ j1 < · · · <

jk ≤ i − 1 and i + 1 ≤ l1 < · · · < ls ≤ m, we get the coefficient

k∑
h=2

min{h−2,s}∑
u=0

(h − u − 1)

(
k

h

)(
s

u

)
(−1)k−h+s−u =: A(k, s)(−1)k+s .

Now, we only need to prove that A(k, s) = (
s+k−2

s

)
.

For notational convenience, we will prove this statement for k + 1. We start by splitting the
first binomial coefficient, and then substituting h → h + 1 in the second part. We have

A(k + 1, s) =
k+1∑
h=2

(−1)h
((

k

h

)
+

(
k

h − 1

)) h−2∑
u=0

(−1)u
(

s

u

)
(h − u − 1)

= A(k, s) +
k∑

h=1

(−1)h+1
(

k

h

) h−1∑
u=0

(−1)u
(

s

u

)
(h − u)

= A(k, s) +
k∑

h=1

(−1)h+1
(

k

h

) h−2∑
u=0

(−1)u
(

s

u

)
(h − u)

+
k∑

h=1

(−1)h+1
(

k

h

)
(−1)h−1

(
s

h − 1

)

=
k∑

h=2

(−1)h+1
(

k

h

) h−2∑
u=0

(−1)u
(

s

u

)
+

k∑
h=1

(
k

k − h

)(
s

h − 1

)
.

Using Lemma 4.4 below on the first sum and the Vandermonde convolution
∑r

i=0

(
x
i

)(
y

r−i

) =(
x+y

r

)
on the last we obtain

A(k + 1, s) = −
(

s + k − 1

s + 1

)
+

(
s + k

s + 1

)
=

(
s + k − 1

s

)
.

Formula (1.3) follows from the next lemma.

Lemma 4.4. For any integers k ≥ 2 and s ≥ 0, we have

k∑
h=2

(−1)h
(

k

h

) h−2∑
u=0

(−1)u
(

s

u

)
=

(
s + k − 1

s + 1

)
.

Proof. First note that by standard binomial identities we have

h−2∑
u=0

(−1)u
(

s

u

)
=

h−2∑
u=0

(−s + u − 1

u

)
=

(−s + h − 2

h − 2

)
= (−1)h−2

(
s − 1

h − 2

)
.

We may now use the Vandermonde convolution to obtain, with j = h − 2,

k∑
h=2

(−1)h
(

k

h

) h−2∑
u=0

(−1)u
(

s

u

)
=

k−2∑
j=0

(
k

k − 2 − j

)(
s − 1

j

)
=

(
s + k − 1

k − 2

)
.

This completes the proof of Theorem 1.1.
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5. Proofs of corollaries

Proof of Corollary 2.1. When m = 3, the double sum in (1.3) is nonempty only if i = 3; in
this case there is a single term with s = 0 and k = 2 and the result follows immediately.

Alternatively, we can use (1.2): S−
i −S+

i −1 > 0 is possible only with S−
i = 2 and S+

i = 0;
this requires that at least two states are larger than state i so i = 3, and in this case the probability
is

1
3 P(S−

3 − S+
3 = 2) = 1

3 P(I
(3)
1 = I

(3)
2 = 1) = 1

3 (p(1) − p(3))(p(2) − p(3)).

Proof of Corollary 2.2. The fact that q(m) ≥ q(m−1) ≥ · · · follows from (1.2) and a simple
coupling argument. Furthermore, if i ≤ 2 then S−

i ≤ 1 and q(i) = 0. For i = m, (1.3)
simplifies to

mq(m) =
m−1∑
k=2

(−1)kek((p(1) − p(m)), . . . , (p(m−1) − p(m)))

=
m−1∏
j=1

(1 − (p(j) − p(m))) +
m−1∑
j=1

(p(j) − p(m)) − 1

=
m−1∏
j=1

(1 − (p(j) − p(m))) − mp(m), (5.1)

which is (2.1).
Furthermore, it follows from (2.1) (or (1.2)) that q(m) will increase if we decrease p(m) to

0 and simultaneously increase p(1), say. For p(m) = 0, the product in (5.1) is largest when
all the pj for j < m are equal, i.e. p(j) = 1/(m − 1) for j < m; in this case (5.1) yields
(1 − 1/(m − 1))m−1. Hence, for any p(m) > 0 and any i,

q(i) ≤ q(m) <
1

m

(
1 − 1

m − 1

)m−1

<
1

m
e−1.

Finally, for any i,

E(S−
i − S+

i ) =
∑

pj >pi

(pj − pi) −
∑

pj <pi

(pi − pj ) =
∑
j

(pj − pi) = 1 − mpi.

Consequently, using (1.2),
mqi = E(S−

i − S+
i − 1)+

≥ E((S−
i − 1)+ − S+

i )

= E(S−
i − 1 + 1{S−

i = 0}) − E S+
i

= E S−
i − 1 + P(S−

i = 0) − E S+
i

= P(S−
i = 0) − mpi

=
∏

pj >pi

(1 − (pj − pi)) − mpi. (5.2)

If x ∈ [0, 1] then 1 − x ≥ e−x − 1
2x2, and it follows that∏

pj >pi

(1 − (pj − pi)) ≥
∏

pj >pi

e−(pj −pi) − 1

2

∑
pj >pi

(pj − pi)
2 ≥ exp

(
−

∑
j

pj

)
− 1

2

∑
j

p2
j ,

which, by (5.2), yields the lower bound in (2.2).
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Proof of Corollary 2.3. The expected number is
∑

j qj , and (2.2) shows that
∑

j qj <

m/em = e−1.
In the special case, (2.2) shows thatqi ∼ e−1/m for each small state, and, thus,

∑
j qj ∼ e−1.

Proof of Corollary 2.4. It is well known and easy to see that if I ∼ Be(r) and Y ∼ Po(r),
then I and Y may be coupled with E |I −Y | = 2(e−r −1+r) ≤ r2. Couple in this way I

(i)
j with

Yj ∼ Po(|pi − pj |), with the latter independent, and define Ŝ+ = ∑
{j : pj <pi } Yj ∼ Po(λ+)

and Ŝ− = ∑
{j : pj >pi } Yj ∼ Po(λ−). Then, by (1.2), (2.3), and the triangle inequality,

m|qi − q̂i | ≤ E |S−
i − S+

i − (Ŝ− − Ŝ+)|
≤

∑
{j : pj >pi }

E |I (i)
j − Yj | +

∑
{j : pj <pi }

E |I (i)
j − Yj |

≤
∑

{j : pj >pi }
(pj − pi)

2 +
∑

{j : pj <pi }
(pi − pj )

2.

This proves (2.3), which immediately yields (2.4). To obtain (2.5), we observe that the sum is
E(Ŝ+ + 1 − Ŝ−)+ = − E(Ŝ− − Ŝ+ − 1)−, and, thus, the difference between the sums in (2.4)
and (2.5) equals

E(Ŝ− − Ŝ+ − 1)+ + E(Ŝ− − Ŝ+ − 1)−
= E(Ŝ− − Ŝ+ − 1)

=
∑

{j : pj >pi }
(pj − pi) −

∑
{j : pj <pi }

(pi − pj ) − 1

=
m∑

j=1

(pj − pi) − 1

= 1 − mpi − 1

= −mpi.

6. Proofs of results on average probabilities

We let �a
m := {(x1, . . . , xm) ∈ [0, ∞)m : ∑

i xi = a} and �m≤a := {(x1, . . . , xm) ∈
[0, ∞)m : ∑

i xi ≤ a}. When integrating over �a
m, we use the measure dx := dx1 · · · dxm−1;

this is thus the same as integrating over �m−1≤a with Lebesgue measure, keeping xm = 1 −∑m−1
1 xi . Note that the volume of �a

m equals the volume of �m−1≤a , i.e. am−1/(m − 1)!.
Hence, the uniform probability measure on �m = �m

1 is (m − 1)! dx.
More generally, we have the well-known Dirichlet integral∫

�a
m

x
α1−1
1 · · · xαm−1

m dx = aα1+···+αm−1
∏m

i=1 
(αi)


(
∑m

i=1 αi)
(6.1)

for any α1, . . . , αm > 0. (For m = 2, this is the standard beta integral and the general case
follows easily by induction. An alternative, probabilistic, standard proof is to let T1, . . . , Tm be
independent Exp(1) variables and evaluate E(T

α1−1
1 · · · T αm−1

m ) by conditioning on T1 + · · · +
Tm.)

Proof of Theorem 3.1. Recall from Corollary 2.2 that if we assume that pm ≤ pi for all i

and let ri := pi −pm, then qm = (1/m)
∏m−1

i=1 (1 − ri) − pm. Choosing a vector (p1, . . . , pm)
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uniformly from �m
1 , there are m possibilities for the position of the minimum coordinate; by

symmetry, it suffices to consider the case when pm is the minimum (multiplying below by a
factor m). Then the vector (r1, . . . , rm−1) is uniformly distributed in �m−1

1−mpm
and dx = dpm dr .

We thus obtain

E q(m) = m(m − 1)!
∫ 1/m

0

∫
r∈�m−1

1−mpm

(
1

m

m−1∏
i=1

(1 − ri) − pm

)
dr dpm. (6.2)

We treat the two terms in the bracket separately. First, using symmetry and (6.1),

(m − 1)!
∫ 1/m

0

∫
r∈�m−1

1−mpm

m−1∏
i=1

(1 − ri) dr dpm

= (m − 1)!
m−1∑
k=0

(
m − 1

k

)
(−1)k

∫ 1/m

0

∫
r∈�m−1

1−mpm

k∏
i=1

ri dr dpm

=
m−1∑
k=0

(
m − 1

k

)
(−1)k

∫ 1/m

0
(1 − mpm)k+m−2 (m − 1)!


(k + m − 1)
dpm

=
m−1∑
k=0

(
m − 1

k

)
(−1)k

(m − 1)!
m
(k + m)

= 1

m

m−1∑
k=0

(−1)k
(

m − 1

k

)
1

mk
. (6.3)

Similarly, the second term becomes

m(m − 1)!
∫ 1/m

0

∫
r∈�m−1

1−mpm

pm dr dpm = m(m − 1)

∫ 1/m

0
(1 − mpm)m−2pm dpm

= m − 1

m

∫ 1

0
(1 − x)m−2x dx

= 1

m2 . (6.4)

Formula (3.1) follows from (6.3) and (6.4), noting that the first two terms in the first sum equal
1 − (m − 1)/m = 1/m, which cancels the term −1/m2.

The asymptotic expansion (3.2) is easy to deduce from (3.1). (One can also easily obtain
further terms.)

Since q(m) ≤ e−1/m a.s., we have E |e−1 −mq(m)| = E(e−1 −mq(m)) = e−1 −m E q(m) →
0, and, thus, mq(m)

p−→ e−1.

Proof of Theorem 3.2. Take i = m. We take expectations in (1.4) and obtain, by symmetry,

E qm = 1

m

m−3∑
s=0

m−s−1∑
k=2

(−1)s+k

(
s + k − 2

s

)(
m − 1

s, k, m − 1 − s − k

)

× E

( s∏
j=1

(pm − pj )+
k∏

l=1

(ps+l − pm)+
)

. (6.5)
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We use the standard method of generating uniform p1, . . . , pm on �m by taking independent
and identically distributed (i.i.d.) exponential random variables T1, . . . , Tm ∼ Exp(1) and
letting pi := Ti/Sm with Sm := ∑m

i=1 Ti . Recall that then (p1, . . . , pm) and Sm are
independent, and that Sm has a Gamma(m, 1) distribution with E Sα

m = 
(m + α)/
(m)

for α ∈ N. Hence, by conditioning on T = Tm and using independence,

E

( s∏
j=1

(pm − pj )+
k∏

l=1

(ps+l − pm)+
)

= E(
∏s

j=1(Tm − Tj )+
∏k

l=1(Ts+l − Tm)+)

E Ss+k
m

= 
(m)


(m + k + s)
E((E((T − T1)+ | T ))s(E((T2 − T )+ | T ))k). (6.6)

For any t > 0 and j ≥ 1, we have

E(t − Tj )+ =
∫ t

0
(t − x)e−x dx = e−t − 1 + t, (6.7)

E(Tj − t)+ =
∫ ∞

t

(x − t)e−x dx = e−t . (6.8)

Hence, the final expectation in (6.6) equals

E((e−T − 1 + T )se−kT ) =
∫ ∞

0
(e−t − 1 + t)se−(k+1)t dt

=
∫ ∞

0

∑
i+j≤s

(
s

i, j, s − i − j

)
e−it t j (−1)s−i−j e−(k+1)t dt

=
∑

i+j≤s

(−1)s−i−j

(
s

i, j, s − i − j

) ∫ ∞

0
tj e−(i+k+1)t dt

=
∑

i+j≤s

(−1)s−i−j

(
s

i, j, s − i − j

)
j !

(i + k + 1)j+1 . (6.9)

The result now follows from (6.5)–(6.9).

Proof of Theorem 3.3. Note first that the expectation in (3.3) can be evaluated as in (3.4)–
(3.5). For (3.4), this is immediate; for (3.5), it follows from

E(Ŝ− − Ŝ+ − 1)+ − E(Ŝ− − Ŝ+ − 1)− = E(Ŝ− − Ŝ+ − 1) = λ− − λ+ − 1.

We let, as in the proof of Theorem 3.2, pi := Ti/Sm with Ti ∼ Exp(1) i.i.d. and Sm :=∑m
i=1 Ti . Consider state 1 and condition on T1, leaving T2, T3, . . . i.i.d. Exp(1). We define

λ± := ∑
j (p1 − pj )± as in Corollary 2.4 (with i = 1). As m → ∞, the law of large numbers

shows that, a.s., using (6.7)–(6.8),

Sm

m
= T1

m
+

m∑
j=2

Tj

m
→ 0 + E T2 = 1, (6.10)
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λ+ =
m∑

j=2

(T1 − Tj )+
Sm

= m

Sm

m∑
j=2

(T1 − Tj )+
m

→ E((T1 − T2)+ | T1) = e−T1 − 1 + T1,

(6.11)

λ− =
m∑

j=2

(T1 − Tj )−
Sm

= m

Sm

m∑
j=2

(T1 − Tj )−
m

→ E((T1 − T2)− | T1) = e−T1 , (6.12)

m∑
j=1

(pj − p1)
2 = m

S2
m

m∑
j=2

(Tj − T1)
2

m
= O

(
1

m

)
. (6.13)

First, by (6.10),

mp1 = m

Sm

T1 → T1. (6.14)

Next, we apply Corollary 2.4, noting that q̂1 = �(λ−, λ+)/m. Hence, by (2.6) and (6.13),
mq1 − �(λ−, λ+) → 0 a.s. For any λ1, λ2 > 0, we can couple Ŝ1 ∼ Po(λ1) and Ŝ2 ∼ Po(λ2)

such that E |Ŝ1 − Ŝ2| ≤ |λ1 − λ2|, and it follows from (3.3) and the triangle inequality that
|�(λ−

1 , λ+
1 ) − �(λ−

2 , λ+
2 )| ≤ |λ−

1 − λ−
2 | + |λ+

1 − λ+
2 | for any λ−

1 , λ+
1 , λ−

2 , λ+
2 . Hence, (6.11)–

(6.12) imply that �(λ−, λ+) → �(T1) a.s. Consequently, a.s.,

mq1 → �(T1). (6.15)

Limit (3.6) follows from (6.14)–(6.15). Since mq1 ≤ e−1 a.s., by Corollary 2.2, (3.7) follows
by dominated convergence together with (3.4).

7. Further comments

7.1. Several states at once

Several states may suffer from the Alabama paradox at the same time. A simple example is
given in Table 2.

This can be analysed in the same way using the methods in Section 4. The typical case is
when two states i and j are in positions 0 and 1, and both are overtaken by three other runners.
However, other similar configurations are possible, and we leave the details to the reader except
for two simple examples.

Example 7.1. Suppose that there are five states, with p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5 and (pi)

linearly independent over Q. If a double Alabama paradox occurs, it has to be for states 4 and 5,

Table 2: A double Alabama paradox for states D and E. Numbers in bold have been rounded up.

5 seats 6 seats

State Population µi Seats State Population µi Seats

A 28 1.40 1 A 28 1.68 2
B 27 1.35 1 B 27 1.62 2
C 27 1.35 1 C 27 1.62 2
D 9 0.45 1 D 9 0.54 0
E 9 0.45 1 E 9 0.54 0

Total 100 5.00 5 Total 100 6.00 6
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with one of them in position 0, the other in position 1, and the three others overtaking both of
them. Letting x be the distance between runners 4 and 5, we find the probability, using uniform
distribution as before,

1

5

∫ p3−p4

0
(p3 − p4 − x)(p2 − p4 − x)(p1 − p4 − x) dx

+ 1

5

∫ p4−p5

0
(p3 − p4)(p2 − p4)(p1 − p4) dx

+ 1

5

∫ p3−p5

p4−p5

(p3 − p5 − x)(p2 − p5 − x)(p1 − p5 − x) dx.

The integrals are easily evaluated (preferably by computer), but the resulting polynomial in
p1, . . . , p5 does not look particularly nice or illuminating so we omit it. In the extreme case
p1 ≈ p2 ≈ p3 ≈ 1

3 , p4 ≈ p5 ≈ 0, the probability becomes 1
810 .

Example 7.2. Consider the extreme case in Corollary 2.3, with m − o(m) small states and
o(m) medium-size states with the bulk of the population. In this case, the flag is most likely
carried by a small state, say i. The probability that it is overtaken by a large state j is pj −pi ≈
pj , and we can approximate the distributions of the number M of states overtaking it by a
Poisson distribution with mean

∑
j (pj − pi)+ ≈ ∑

j pj = 1. Thus, i loses a seat if M > 1.
Furthermore, since there are very many small states, their runners are very narrowly spaced, and
most likely the runners in positions 1, . . . , M − 2 are also small states, and are also overtaken
by the same M states as i; in this case they all lose a seat.

Consequently, if the random variable Xm is the number of states suffering from the Alabama
paradox when n is increased (from a random value), then, as m → ∞ (in this case), Xm

d−→X :=
(Y − 1)+ with Y ∼ Po(1). Note that P(X > 0) = P(Y > 1) = 1 − 2e−1 and E X =
E(Y − 1 + 1{Y = 0}) = P(Y = 0) = e−1.

7.2. The linearly dependent case

The proof above uses Weyl’s theorem and, thus, requires that p1, . . . , pm are linearly
independent over Q; indeed, as stated in Section 1, simple examples show that Theorem 1.1
does not hold for arbitrary pi . We also note that some of the corollaries might be far from true
in the case of rational relative sizes; see Proposition 7.1 below. Nevertheless, it is possible to
use much of the argument above for the linearly dependent case also. We sketch this below,
leaving many details to the reader.

Note first that in general it may happen that the remainders µi − �µi� happen to be equal
for two or more states, and it may be necessary to round up one or several of these and round
down the others; in this case, the choice is determined by lot. A simple example is given
in Table 3; note that state C may suffer the Alabama paradox either when increasing from
4 to 5 seats or from 5 to 6, but not at both times; the probability is 1

4 each time. For the
asymptotic analysis, this complication is no real problem, however, since it suffices to consider
the expectation E νi(N), i.e. the sum over n ≤ N of the probability of an Alabama paradox at
time n. Indeed, although the example in Table 3 shows that there may be a dependency between
the occurrence of the Alabama paradox for some number n of seats and the next number n + 1,
more distant occurrences are independent, i.e. the random sequence of occurrences of the
paradox is 1-dependent. Hence, the variance of the total number is O(N), and by considering
odd and even n separately, which yields two subsequences of independent random indicators,
it is easily seen that (νi(N) − E νi(N))/N → 0 a.s.
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Table 3: Ties. Numbers in bold should be rounded up; numbers in italic should either be rounded up or
down, as determined by lot.

Number of seats
State Population

1 2 3 4 5 6 7

A 6 0.6 1.2 1.8 2.4 3.0 3.6 4.2
B 3 0.3 0.6 0.9 1.2 1.5 1.8 2.1
C 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Remark 7.1. If two or several states have exactly the same population, it may be necessary to
draw lots between them for both n and n+ 1 seats. If we do this independently then some state
might lose a seat by being unlucky the second time. This obvious consequence of drawing lots
is not an example of the Alabama paradox and should be disregarded. (For example, we may
list the states with the same population in some random order, once and for all, and use this as
a priority list for each n.)

Let p := (p1, . . . , pm). We now use qi for the true probability and q̃i for the value in
(1.2) for any p1, . . . , pm. Consider again, for notational convenience, state 1. The argument in
Section 4 shows that, with Ln given by (4.5) (noting that the actual position may be different
when there are ties), for some functions f , g, and h and with zj = (pj − p1)/m, assuming
that N is a multiple of m for simplicity,

E ν1(N) =
N−1∑
n=0

f ({n(p2 − p1)}, . . . , {n(pm − p1)}, Ln)

=
N−1∑
n=0

g({nz2}, . . . , {nzm}, Modm(n))

=
N/m∑
k=1

mh({k(p2 − p1)}, . . . , {k(pm − p1)}). (7.1)

(To see the last equality, write n = (k − 1)m + l and define h(x2, . . . xm) := ∑m−1
l=0 g({x2 +

(l − m)z2}, . . . , {xm + (l − m)zm}, l)/m.) Lemma 4.2 does not apply when p1, . . . , pm are
linearly dependent over Q, but the proof of it sketched above shows that the sequence ({n(p2 −
p1)}, . . . , {n(pm − p1)}) is uniformly distributed on a subgroup of [0, 1)m−1; more precisely,
the empirical distributions converge to the uniform probability measure µp on this subgroup,
which has Fourier coefficients given by

µ̂p(a2, . . . , am) =
{

1 if
∑m

j=2 aj (pj − p1) ∈ Z,

0 otherwise.
(7.2)

The functions f , g, and h are linear combinations of products of indicators and are almost
everywhere (a.e.) continuous; moreover, h is µp-a.e. continuous. Hence, (7.1) shows that
E ν1(N)/N → ∫

h dµp, showing the existence of the limit q1 = ∫
h dµp in general. Note that

in this notation, the value q̃1 in (1.2) is q̃1 = ∫
h dµ, where µ is the uniform distribution on

[0, 1)m−1.
The functions f , g, and h depend on p, cf. (4.2)–(4.3), but if we write hp then hpk

→ hp

a.e. for any sequence of population distributions (for a fixed number of states) p1, p2, . . . ,
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with pk → p. Let pk = (p1k, . . . , pmk). If further, for every integer vector (a1, . . . , am) 
= 0,
we have

∑m
i=1 aipik 
= 0 for all large k, then it follows from (7.2) that µ̂pk

(a2, . . . , am) → 0
for all (a2, . . . , am) 
= 0, and, thus, µpk

→ µ = µp. It follows, e.g. by [2, Theorem 5.5]
that q1,k = ∫

hpk
dµpk

→ ∫
hp dµp and also

∫
hpk

dµ → ∫
hp dµp so q1,k − ∫

hpk
dµ → 0.

The claim in Remark 1.2 now follows, since otherwise one could, for some ε > 0, find such a
sequence pk of distributions with |q1,k − ∫

hpk
dµ| ≥ ε and (by taking a subsequence) pk → p

for some p; a contradiction.
We end with a couple of counterexamples in the rational case. The upper bound qi < e−1/m

in Corollary 2.2 is not true in general, not even for m = 3. As an easy example one may study
three states with p1 = p2 = 3

7 and p3 = 1
7 , where q3 = 1

7 > 1/3e, since the smallest state
suffers when n increases from 3 to 4 (mod 7).

Moreover, the upper bound 1/e on the expected number of states suffering from the paradox
in Corollary 2.3 is not true in general. Consider the case when p1 = · · · = p6 = 1

7 and p7 =
· · · = p106 = 1

700 . When, e.g. the number of seats changes from 42 to 43, all the six large
states will change from 6 to 7 seats. Thus, five of the small states will suffer from the Alabama
paradox. The paradox will happen 98 times during the period of length 700; 90 of these five
small states will suffer, but the number is smaller close to the beginning and end of the period
(n = 7, 14, 21, 28 or 671, 678, 685, 692 (mod 700)) and the expected number of states to suffer
from the Alabama paradox for a random number of seats is

90 · 5 + 2 · (1 + 2 + 3 + 4)

700
= 47

70
,

which is much larger than 1/e. This can be generalized in the following way.

Proposition 7.1. Let x ≥ 2 and y be positive integers, with x relatively prime to y − 1 and
x2 − 3x < y. Assume that the number of states is m = y + x − 1 with relative sizes
p1 = · · · = px−1 = 1/x and px = · · · = pm = 1/xy. Then the expected number of states
suffering from the Alabama paradox equals

(x − 2)(y − x + 1)

xy
, (7.3)

which in particular can be made arbitrarily close to 1.

Proof. The values of n (mod xy) where the Alabama paradox might occur are, e.g. by
considering runners as in Section 4, ax + b for integers 1 ≤ a ≤ y − 2 and 0 ≤ b ≤ x − 1
such that ax + b > by and ax + b + 1 < (b + 1)y, i.e. b = �ax/(y − 1)�. There are y − 2
such values ax + b, one for each a ∈ {1, . . . , y − 2}.

If x − 2 ≤ a ≤ y − x + 1 then, for n = ax + b, with b as above, the x − 1 large states
will get a seats each and the remaining a + b seats will go to a + b of the small states. For
n = ax +b+1, the larger states will get a +1 seats each and only a +b−x +2 seats are left to
the small states; thus, x−2 small states will suffer from the Alabama paradox. If 1 ≤ a ≤ x−3
then b = 0, and the number of small states receiving a seat will drop from a + b = a to 0 as n

increases from ax + b to ax + b + 1. Finally, if y − x + 2 ≤ a ≤ y − 2 then b = x − 1 and the
number will drop from y to a + b − x + 2 = a + 1, so y − 1 − a states will suffer. Summing
these numbers gives a total of (y − 2x + 4)(x − 2) + 2

∑x−3
i=1 i = (y − x + 1)(x − 2) states

suffering in the period xy.
Taking, e.g. y = x2 and letting x → ∞, the expected number (7.3) tends to 1.
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We thank Warren D. Smith for asking a question that made us produce Proposition 7.1. It
would be interesting to see a proof of 1 being a general upper bound or an example to the
contrary.
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