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SOME PROPERTIES OF SIMILAR PAIRS
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Abstract

In a given set, the elements are compared pairwise. The number W of
similar pairs is studied, that is, the number of pairs with a certain property
in common. Under certain conditions, W has, approximately, a Poisson
distribution. Examples are considered connected with the birthday problem
and with a circle problem involving DNA breakages.

BIRTHDAY PROBLEM; DISSOCIATED STATISTICS; DNA BREAKAGES,
MULTINOMIAL DISTRIBUTION; POISSON APPROXIMATION

1. Introduction and summary

Let {A;, A, -+, A,} be a set of elements. The elements A; and A; are said to form.a
similar pair if they are related in a given way; more briefly, they are then said to be similar.
For example, the A’s may be coloured balls which are called similar if they have the same
colour.

Introduce the indicator random variables I;, where I; = 1 if A; and A, are similar, and I; =0
otherwise. We are interested in the total number of similar pairs

W= 1,

i<j

. n
The sum consists of M = ( ) terms.

2
The elements are assumed to be generated by some chance mechanism. We shall consider
the following situation:

(a) The indicator random variables [; have common mean p.

(b) If the random variables I; and I,, have no indices in common, they are independent.
(c) If I, and I, have exactly one index in common then Cov (I, ;) = c.

Hence the random variables I; are dissociated; cf. Barbour and Eagleson (1984).

Let X be a random variable assuming integer values 0,1, - - - . Set
Var (X)
Ay=———"-1
¥ EWX)

This quantity can be positive, negative or zero. If Ay is near zero, X can often be
approximated by a Poisson distribution. Such cases will be encountered in this paper.

In Section 2, we derive the mean and variance of W and prove our main theorem which
concerns the variational distance between W and a Poisson random variable Z with the same
mean as W. In Section 3, examples are given concerning the uniform distribution and the
multinomial distribution. As special cases we consider a birthday problem and a problem
concerning DNA breakages.
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2. Properties of W
It follows from the assumptions (a)—(c) that the mean and variance of W are given by
(1) E(W)=Mp; Var (W) =Mp(1 —p) +2M(n - 2)c.
Hence we obtain
) Aw =2(n—2)c/p —p.
Consider the variational distance

dW,zZ)= Sl;p |P(W € B) — P(Z € B)|

between W and Z, where Z ~ Poisson(Mp).
Theorem 1. The variational distance satisfies the inequality
d(W, Z)<(1—e ™) (A +4np).

Proof. Consider a sum W of dissociated Bernoulli random variables I;, 1=i<j=n,
identically distributed or not. Set p; = P(I; = 1). According to Theorem 1 in Barbour and
Eagleson (1984) and Lemma 4 in Barbour and Eagleson (1983) we have

d(W, z)sﬂ S pi+S b, '
’ = E(W) Dij Pq'Pkl"'Z E(IiiIkl) .

Here ¥ denotes summation over 1=i<j=n and Y’ summation over all pairs of indices
(@i, j), (k, I) with exactly one index in common.

Since
E(W)= 2 Dij

Var (W) = Z pi(1—py) + E, E(I;1,) — 2’ DijPu

we can rewrite the right-hand side of the inequality in the form
(1—e *™)[Ay +R],
where
R= 2(2 pi+ 2 PiiPkl)/E(W)~
Note that Ay, may be negative, but Ay, + R is positive.
In our case, X p;=Mp?, ¥’ p;pu=2M(n —2)p>, E(W) = Mp, and hence R reduces to
R =2(2n - 3)p <4np.
Hence the theorem is proved.

As a consequence of Theorem 1, the distribution of W can be approximated by a Poisson
distribution if Ay and np are both close enough to zero.
Now assume that there is a A >0 such that

© E(W)—4; Var (W)— A as n goes to infinity.

As seen from (1) this requires that p goes to zero as 1/n* and ¢ goes to zero faster than 1/n°
as n— . Condition (C) is equivalent to

) (n*/2)P(I,=1)—>A; n’P(l,=1;=1)—0.
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As a consequence of (C), or (C'), we have Ay —0 and np — 0 as n— . Hence Theorem 1
yields the following.

Corollary. If Condition (C), or Condition (C’), holds then W has, in the limit, a Poisson
distribution with mean A.

3. Examples

Example 1. Uniform distribution over the integers 1 to N. Let {4;, A,,---,A,} be a
random sample of n values from a uniform distribution over the integers 1,2, - - - , N. We find

successively
p=E(l;)=P(,=1)=1/N,
E(112113) =P(l,=I3=1)= 1/N2,
c¢=Cov (I, I;5) =0,
E(W)=M/N,
Var (W)= (M/N)(1-1/N).
Since

Aw=—1/N; np =n/N

we conclude from Theorem 1 that the distribution of W has, approximately, a Poisson
distribution with mean M/N if N is large and n/N is small. Further, we infer from the
Corollary that, when n and N go to infinity in such a way that M/N— A, then W has, in the
limit, a Poisson distribution with mean A.

For example, consider 200 random numbers from the set 0000, 0001, - --,9999. Then
n =200, N=10* and so E(W)=(%")/10°=2-0. As N is large and n/N = 0-02 is small, we
may expect that the distribution of W can be approximated by a Poisson distribution with
mean 2-0. In fact, we have from Theorem 1 that d(W, Z) <0-07, where Z ~ Poisson (2-0).

We can also formulate a special case of Example 1 as a birthday problem. Consider the
birthdays of n persons. Two persons are said to be similar if they have the same birthday.
Assuming the N = 365 days equally likely as a birthday, the number W of similar pairs among
the n persons has mean (3)/365. If n/365 is small, it follows from Theorem 1 that the
distribution of W can be approximated by a Poisson distribution. For example, take n =23
which is an often quoted value since P(W = 1) is then slightly greater than 1/2 (in fact, it is
equal to 0-5073). Then E(W)=0-69 and Theorem 1 yields d(W, Z) <0-12; this is not very
informative. Hence we cannot decide in this way whether the Poisson approximation is good
or not. Note, however, that when n =23 the Poisson approximation yields P(Z = 1) = 0-5000
which is a good approximation of the correct value 0-5073; cf. Schwartz (1988). Remember
that the variational distance gives an upper bound for the error of the Poisson approximation
of the probability of any event {W € B}.

Example 2. Non-uniform distribution. Consider again a distribution over 1 to N, where k
now occurs with probability p,, k=1,2,---, N, ¥ p, =1. Setting p =Y, pz, r = Y, pi, we find
E(W)=Mp;  Var(W)=Mp(1-p)+2M(n—2)(r - p?),

Aw=2(n-2)(r/p —p) —p-

By Theorem 1 we can use the Poisson approximation if Ay, and np are small. Condition (C')
becomes in this case (n*/2)p — A, n’r— 0. If these limiting relations are satisfied, it follows
from the Corollary that W has, in the limit, a Poisson distribution with mean A.

Example 3. DNA breakages. In Cowan et al. (1987), a model for studying damage to
circular DNA is studied. The mathematical model can be described as follows. Let a circle
have a circumference of length 1. On the circumference n points are independently plotted
using a uniform distribution. Each point is marked 0 or 1, independently by flipping a fair
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coin. If two points with different marks are too close, the circle breaks. We seek the
probability of this event.

To be more precise, suppose that elements A; = (P,, X;, U;) are generated in the following
way: the points, P, - - -, P,, are taken from a uniform distribution on the circumference, the
critical distances, X, - - -, X,,, are i.i.d. random variables and the marks, U,, - - -, U,, are
Bernoulli(3) random variables. The P’s, X’s and U’s are all independent. Let D, be the
arc-length distance between P. and P, and define I;=1 if U, and U, are different and
D; <min(X;, X;), and [; = 0 otherwise. When I; = 1 the elements A, and A; are said to form a
similar pair. The event, ‘no breakage occurs’, is equivalent to the event W = ¥,_; I, = 0. Thus
we have P(no breakage) = P(W =0).

The indicators [; have the structure described in Section 1. Conditional on X,, X, the event
I, = 1 happens with probability

(2 min (X, X5)) - (1/2) = min (X,, X>).
Further, the event I, = I;; = 1 occurs with probability

min (X, X,) min (X, X3).
Hence we have to take

p = E[min (X, X,)]
c¢= Cov (min (X, X,), min (X,, X5)]

in (1).
If Ay given by (2) and np are small, Theorem 1 shows that the distribution of W can be
approximated by a Poisson distribution. As a consequence we obtain

P(W=0)~ exp[ - (;)E(min(X,, Xz)].

For example, if the X’s are uniformly distributed over the interval (0, b), it is found that
E(X,)=b/2 and E[min(X,, X,)] =b/3. Also it is seen after some calculation that ¢ = b*/45.
Inserting these values in the inequality of Theorem 1 we can judge whether the variational
distance is small enough to allow the Poisson distribution to be used. If this is possible, we
conclude, finally, that

ron=n-on ()}

This is then, approximately, the probability of no breakage.
For further results on the case X, =b/2, constant, see Cowan et al. (1990) and Holst
(1989).
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