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POINTS OF SPHERICAL MAXIMA AND SOLVABILITY 
OF SEMILINEAR ELLIPTIC EQUATIONS 

MARTIN SCHECHTER AND KYRIL TINTAREV 

ABSTRACT. We give mild sufficient conditions on a nonlinear functional to have 
eigenvalues. These results are intended for the study of boundary value problems for 
semilinear elliptic equations. 

1. Introduction. Let g(u) be a differentiable functional on a real Hilbert space H. 
We are interested in finding eigenvalues and eigenelements of g, i.e., solutions (p,u) of 

(1.1) g'{u)=pu 

where p G R and u G H (for the applications we are considering, it is important that 
p ^ O and u ^ 0). Following an idea used in [4], we make use of the fact that an element 
wo G H which satisfies 

(1.2) ||"o||2 = *o > 0, g(u0) = max g(v) 
IMI2='o 

is a solution of ( 1.1 ) with 

(1.3) p = (gf(u0\uo)/t0. 

Our goal is to locate such elements UQ. In the present paper we assume as little on the 
the functional g(u) as necessary to obtain the existence of these elements. Our only reg­
ularity assumption on g is that it be weakly continuous, i.e., that w& —+ u weakly in H 
implies g(uk) —• g{u). This allows us to obtain solutions of semilinear partial differential 
equations under weaker conditions than normally assumed. 

We have shown elsewhere [6] that the function 

(1.4) 7 ( 0 = sup g(v) 
||V||2=/ 

plays an important role in the study of (1.1). We have shown that it is a continuous 
nondecreasing function of t. In Section 2 we show that if 7(fo) < 7(*i), then there is an 
infinite number of solution of (1.1) satisfying to < \\u\\2 < t\ with at least one of these 
solutions satisfying 

(1.5) P>2[l(tl)-l(t0)]/(tl-t0). 
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Moreover, we show that if 0 < to < t\ < t2 and p is any number satisfying 

(1.6) [ 7 ( f 2 ) - 7 ( f o ) ] / ( f 2 - f i ) < p / 2 < [7(f i ) -7(f 0)] / ( f i - fo) 

then (1.1) has a solution u satisfying t0 < \\u\\2 < t2. As a corollary we see that if 

(1.7) aoo:=liminf7(0/f < oc := sup[l(t2)-1(h)]/(t2-h) 

then for any p G (2aoo, 2a) there is a solution u G H \ { 0} of (1.1). Further results are 
given in Section 2. 

Application of these results to boundary value problems for semilinear elliptic equa­
tions might be inferred from [6]. If A is a linear elliptic operator of order 2m andf(x, t) 
is a Caratheodory function, (1.1) has a meaning of 

(1.8) Au = Xf(x, w), u e #o (Q), 

holding in a semi-strong sense. Here 

(1.9) g(u) = JaF(x,u{xj)dx, 

with 

(1.10) F(x,s) = JSf(x,cr)d(j. 

Weak continuity of g and estimates on 7 involved in theorems of this paper result in 
milder conditions on F rather than on/ . 

2. Existence of Eigenfunctions. In this section we shall be concerned with proving 
the existence of eigenvalues assuming only 

(i) g(u) is a weakly continuous Frechet differentiable map from an infinite dimen­
sional real Hilbert space H to R. 

We define for t > 0 

(2.1) St = {x£H\ \\x\\2 = t) 

(2.2) 7(0 = sups(K) 
uest 

(2.3) I , = { i i e S , | *(!«) = 7 (0} . 

It was shown in [6] that 7(0 is a continuous nondecreasing function of t. First we have 

THEOREM 2.1. 7/7(0 > 7"(*o) for t > to, then there are sequences {sk} C R, 
{ ujc} C //, { pic} C R such that sk \ to, Uk G E5A, p* > 0 and 

(2.4) g'(w )̂ = pfcW*. 

COROLLARY 2.2. If 7 (fo) < 7 (f i ), ^^« there is an infinite number of solutions (M, p ) 

of 

(2.5) g'(u)=pu 
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satisfying 

(2.6) t0< \\u\\2 < tu P > 0 

In proving Theorem 2.1 we shall make use of the following results from [6]. 

LEMMA 2.3. IfHt = <f>, then there is at- < t such thatl(s) = lit) for t- < s < t. 

LEMMA 2.4. If<p(t) G C{(0, oo) is such that ip(t) — 7(0 has a local minimum at to 
and ip'(to) ^ 0, then there is au G Zro such that 

(2.7) tf(u) = 2(p\to)u. 

PROOF OF THEOREM 2.1. Let t\ be any number > t0, and t = (t0 +1\)/ 2. For t0 < 
s < ? let (fs(t) = A(t — s)2 + B, where the constants A,B are chosen so that ips(ti) — 
7 (*/),/ = 0,1. Note that A > 0 as long as s < t. Let ^ ( 0 = <^(0 - 7(0- Then 
^J(^I) = 0, / = 0,1. Since (ps(t) is decreasing for to < t < s and 7(0 is nondecreasing, 
t/j5(0 has a negative minimum in [to, t\ ] for every s. Let ^ be a point where 

V>^) = min \jjs(t). 

Clearly ^ > s for every s < ?. We claim that there cannot be a S > 0 such that ts = s 
for to < s < to + S. For then 

^( r ) - 7(0 > <Ps(s) - l(sl t0<t<tu to < s < t0 + S. 

This implies 
7(0 - 7 (J) < <M0 - ^ ( J ) = A{t - s)2 

for such s, t. In turn this implies that l\s) exists and vanishes for to < s < to+6. This 
would mean that 7(0 — 7(^o) for to < t < to +6, contrary to assumption. Hence for 
each S > 0 there is an s such that to < s < t0 + 6 and ts > s. Consequently i/^(0 
has a local minimum at ts while (ff

s(ts) = 2A(ts — s) > 0. Thus there is a u G E^ such 
that g'(u) — 2iff

s(ts)u (Lemma 2.4). This means that (2.5) has a solution satisfying (2.6). 
Since t\ > to was arbitrary, the result follows. • 

PROOF OF COROLLARY 2.2. Let t0 be the largest number such that 7 (f) = 7 (to) for 
*o < t < to < t\ and 7(0 > 7(?o) for t > t0. Apply Theorem 2.1. • 

THEOREM 2.5. If If (to) < 7(t\), then for each p0 satisfying 0 < p0 < cr0 : = 
2[7(*i) — J (to)]/ (t\ — to) the following alternative holds: either 

a) (2.5) has a solution u G Stx with p > po or 
b) (2.5) has a solution u with to < \\ u\\2 < t\ and p — po. 

In proving Theorem 2.5 we shall make use of 
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LEMMA2.6. Assume that (p(t) G Cl[to,t\], ip'ih) > 0 and 

(2.8) Y>(0-7(0>¥>(*i)- 'y(fi), t0<t<t{ 

Then Z,, ^ 0 #wd every u £ ^ , w 0 solution of (2.5) vWf/z p > 2(p'(t\). 

PROOF. Clearly 7(0 < 7(h) for t < t\. For otherwise (2.9) will imply that tpf(t\) < 
0. By Lemma 2.3 we see that £,, ^ </>. For u £ St,to <t <t\, let 

/(w) = <^(N|2)-£(")• 

Then if wi € Zr,, M € Sr 

Z(«i) = <p(*i) - s("i) = <p(*i) " 7(^i) 

< </>(0 - 7(0 <<p(t)-g(u) = /(K), 

Thus /(wi) is a minimum of I{u) for M satisfying to < \\u\\2 < t\. Consequently there is 
a /? > 0 such that 

7/(m) = - i3iii. 

Thus 
2(p'(t\)u\ - g'(u\) = -/3u\ 

or 
^ ( m ) = [ 2 ^ 1 ) + /3]Ml. 

This gives the desired result. • 

PROOF OF THEOREM 2.5. Let xp (t) = \po(t - fo) + 7 (to) -l(t). Then ip (t0) = 0 and 
VK'i) < 0. Assume first that ^ ( 0 >ty(t\) for ro < £ < fi. Then by Lemma 2.6, E,, ^ 0 
and every u € Zr, is a solution of (2.5) with p > po- This is alternative (a). Otherwise 
there is a t between to and ri such that xp(t) < xp (t\). This means that ip has a minimum 
in (fo, *i)- We can now apply Lemma 2.4 to conclude that (2.5) has a solution satisfying 
fo < ||w||2 < t\ and p = po. • 

COROLLARY 2.7. Ifl(to) < l(t\), then (2.5) /zas a solution satisfying 

(2.9) ; 0 < H 2 < f i , p<2[7 ( f i ) -7 ( fo ) ] / (* i - ' o ) . 

PROOF. Let po equal the right hand side in (2.9). • 

THEOREM 2.8. IfO < t0 < h < h and 

(2.10) [l(t2) -l(to)]/(t2 - t0)< p / 2 < [7(*i) - 7(f0)]/(fi - *o) 

f/ien (2.5) /uw a solution satisfying to < || w||2 < ^-

PROOF. Let <p(f) = ^p(r-r0)+7(^o)and^(0 = (f(t)-7(t). Then t/K'i) < 0 while 
ip (t2) > 0. Thus there is a point t$ such that t\ < t^ < t2 and ip (£3) = 0. Since %p (to) = 0 
and xp (t\) < 0,ip (t) must have a negative minimum in the interval (to, t2). We can now 
apply Lemma 2.4 to conclude that (2.5) has a solution for u G Zf for some £ satisfying 
ô < f < h. m 
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COROLLARY 2.9. 7/0 < t\ < t2 and 

(2.11) [l(t2) -7( r , ) ] / (? 2 -ti)<p/2< D~1{U\ 

then for each e > 0 there is a solution u G H of (2.5) satisfying t\ — e < || w||2 < J2-

PROOF. By (2.11) there is a t0 < 'i such that t\ - t0 < e and (2.10) holds. Apply 
Theorem 2.8. • 

COROLLARY 2.10. If 0 < t0 < t\ and 

(2.12) D+KhX p/2< [l(ti)-l(t0)]/(ti-t0) 

then for every e > 0 f/*ere is a solution u G H of (2.5) swc/i f/iar to < \\ u\\2 < t\ + e. 

PROOF. By (2.12), there is a t2 > h such that t2 - h < e and (2.10) holds. Apply 
Theorem 2.8. • 

COROLLARY 2.11. / / 

(2.13) aoo := liminf7(0/* < <* := sup[7(f2) -7(fi)]/(f2 - fi) 

then for any p G (20^, 2a) r/zere is a solution u £ H\ {0} o/(2.5). 

PROOF. By (2.13) one can pick to, t\Ji such that (2.10) holds and apply Theorem 
2.8. • 

COROLLARY 2.12. If a ^ 0, oo, then for every e > 0 f/^re w a solution (w, p) 6>/ 
(2.5) swc/i J/iûtf M ^ O am/ p > a — e. 

PROOF. Apply Corollary 2.7. • 

COROLLARY 2.13. If either D~l (t\) or D+l (t\) is positive, then there are sequences 
{ pk} C R, { Mfc} C / / \ { 0} SWC/Î f/iaf pik > 0, || u*||2 —• t\ and (2.4) holds. 

PROOF. If D~7 (f i ) > 0, then for every e > 0 there is a t0 < t\ such that t\ - 1 0 < e 
and 7 (*o) < 7(fi). By Corollary 2.2 there is an infinite number of solutions of (2.5), 
(2.6). A similar argument works if D+l(t\) > 0. • 

LEMMA 2.14. Ifu0 G I,0, then 

(2.14) D~l(to) < (gf(u0),uo)/2to < D+l(t0). 

PROOF. We have, modulo o(t — t0), 

(2.15) 7(0 - If (to) > g(t]/2t-l/2»o) ~ g(uo) 

= (gf(uo),uo)(tl'2t-l/2-l) 

= (gf(uo),uo)(t-to)/2t0. 

lft< to, this gives the first inequality in (2.14); if t > to, it gives the second. • 
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COROLLARY 2.15. IfDl(t0)>0, then I,0 / 0. Thus (2. 5) has a solution (w, p) 
with u G Lro andD~l(to) < p / 2 . 

PROOF. If Z,0 = 0, then D~7 (to) = 0 by Lemma 2.3. If w G Z,0, then it is a solution 
of (2.5) for some p > 0. 

COROLLARY 2.16. IfD+l(to) > 0, f/zew r/ie conclusion of Theorem 2.1 holds with 

(2.16) liminfp*>Z)+7(to). 

PROOF. For each k there is a point ft > to such that ft — to < 1 / k and 

[7 (ft) - 7 (to)]/ (ft ~ to) > #+7(to) ~ (1 / *). 

By Corollary 2.7 there is a solution (w&, Pfc) of (2.4) satisfying 

to< | k | | 2 < f t , Pk>D+(t0)-(l/k). 

This gives the desired result. • 

COROLLARY 2.17. If 7 (to) < 7 (ft), then one of the following alternatives holds: 
either 

(a) there is a solution (w, p) of (2.5) such that u G Sh and p > cro = 2[7(ft) — 
7(fo)]/(fi-fo)0r 

(fr) r/zere w « sequence (w ,̂ pu) of solutions of (2.4) such that uk G 5ri and pk f cr0, 

or 
(c) there is a p < cro such that for each p satisfying p < p < do there is a solution 

(u, p) of (2.5) with to < | |w| |2<ft. 

PROOF. Suppose (a) does not hold, and let p be the supremum of all p such that 
(2.5) has a solution (u, p) with u G Stl. If p = 0"o, then (b) must hold. If p < CTQ, then 
(c) must hold by Theorem 2.5. • 

COROLLARY 2.18. Ifl(to) < 7 (ft), then the following alternative holds: either 
(a) there is at < t\ such that for every t satisfying t < t < t\ there is a u G St and 

a p > 0 swc/i that (2.5) holds, or 
(b) there is a po > 0 swc/z that for each p satisfying 0 < p < po there is a u such 

that t0 < \\u\\2 < ft and(2.5) holds. 

PROOF. Let F be the infimum of all t in [to, t\ ] such that 7 (to) < 7 (0- If for each t > t 
there is a u G St and a p > 0 such that (2.5) holds, then option (a) is true. Otherwise there 
is a t in (?, t\) such that (2.5) has no solution in S? for any p > 0. In this case Theorem 2.5 
tells us that for any p satisfying 0 < p < po := 2[7(?—7(to)]/ (?— to) there is a solution 
« of (2.5) satisfying to < \\ u\\2 < t. m 
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