POINTS OF SPHERICAL MAXIMA AND SOLVABILITY OF SEMILINEAR ELLIPTIC EQUATIONS

MARTIN SCHECHTER AND KYRIL TINTAREV

Abstract

We give mild sufficient conditions on a nonlinear functional to have eigenvalues. These results are intended for the study of boundary value problems for semilinear elliptic equations.

1. Introduction. Let $g(u)$ be a differentiable functional on a real Hilbert space H. We are interested in finding eigenvalues and eigenelements of g, i.e., solutions (ρ, u) of

$$
\begin{equation*}
g^{\prime}(u)=\rho u \tag{1.1}
\end{equation*}
$$

where $\rho \in \mathbb{R}$ and $u \in H$ (for the applications we are considering, it is important that $\rho \neq 0$ and $u \neq 0$). Following an idea used in [4], we make use of the fact that an element $u_{0} \in H$ which satisfies

$$
\begin{equation*}
\left\|u_{0}\right\|^{2}=t_{0}>0, \quad g\left(u_{0}\right)=\max _{\|v\|^{2}=t_{0}} g(v) \tag{1.2}
\end{equation*}
$$

is a solution of (1.1) with

$$
\begin{equation*}
\rho=\left(g^{\prime}\left(u_{0}\right), u_{0}\right) / t_{0} \tag{1.3}
\end{equation*}
$$

Our goal is to locate such elements u_{0}. In the present paper we assume as little on the the functional $g(u)$ as necessary to obtain the existence of these elements. Our only regularity assumption on g is that it be weakly continuous, i.e., that $u_{k} \rightarrow u$ weakly in H implies $g\left(u_{k}\right) \longrightarrow g(u)$. This allows us to obtain solutions of semilinear partial differential equations under weaker conditions than normally assumed.

We have shown elsewhere [6] that the function

$$
\begin{equation*}
\gamma(t)=\sup _{\|v\|^{2}=t} g(v) \tag{1.4}
\end{equation*}
$$

plays an important role in the study of (1.1). We have shown that it is a continuous nondecreasing function of t. In Section 2 we show that if $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then there is an infinite number of solution of (1.1) satisfying $t_{0}<\|u\|^{2}<t_{1}$ with at least one of these solutions satisfying

$$
\begin{equation*}
\rho \geq 2\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right) . \tag{1.5}
\end{equation*}
$$

Research supported in part by an NSF grant.
Received by the editors January 23, 1990 .
AMS subject classification: Primary: 35P30, 35T65, 47H12; Secondary: 47 H 15.
(c) Canadian Mathematical Society 1991.

Moreover, we show that if $0 \leq t_{0}<t_{1}<t_{2}$ and ρ is any number satisfying

$$
\begin{equation*}
\left[\gamma\left(t_{2}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{2}-t_{1}\right)<\rho / 2<\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right) \tag{1.6}
\end{equation*}
$$

then (1.1) has a solution u satisfying $t_{0}<\|u\|^{2}<t_{2}$. As a corollary we see that if

$$
\begin{equation*}
\alpha_{\infty}:=\liminf _{t \rightarrow \infty} \gamma(t) / t<\alpha:=\sup _{t_{1}, t_{2}}\left[\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right) \tag{1.7}
\end{equation*}
$$

then for any $\rho \in\left(2 \alpha_{\infty}, 2 \alpha\right)$ there is a solution $u \in H \backslash\{0\}$ of (1.1). Further results are given in Section 2.

Application of these results to boundary value problems for semilinear elliptic equations might be inferred from [6]. If A is a linear elliptic operator of order $2 m$ and $f(x, t)$ is a Caratheodory function, (1.1) has a meaning of

$$
\begin{equation*}
A u=\lambda f(x, u), \quad u \in H_{0}^{m}(\Omega), \tag{1.8}
\end{equation*}
$$

holding in a semi-strong sense. Here

$$
\begin{equation*}
g(u)=\int_{\Omega} F(x, u(x)) d x \tag{1.9}
\end{equation*}
$$

with

$$
\begin{equation*}
F(x, s)=\int_{0}^{s} f(x, \sigma) d \sigma \tag{1.10}
\end{equation*}
$$

Weak continuity of g and estimates on γ involved in theorems of this paper result in milder conditions on F rather than on f.
2. Existence of Eigenfunctions. In this section we shall be concerned with proving the existence of eigenvalues assuming only
(i) $g(u)$ is a weakly continuous Frechet differentiable map from an infinite dimensional real Hilbert space H to \mathbb{R}.
We define for $t \geq 0$

$$
\begin{align*}
S_{t} & =\left\{x \in H \mid\|x\|^{2}=t\right\} \tag{2.1}\\
\gamma(t) & =\sup _{u \in S_{t}} g(u) \tag{2.2}\\
\Sigma_{t} & =\left\{u \in S_{t} \mid g(u)=\gamma(t)\right\} . \tag{2.3}
\end{align*}
$$

It was shown in [6] that $\gamma(t)$ is a continuous nondecreasing function of t. First we have
Theorem 2.1. If $\gamma(t)>\gamma\left(t_{0}\right)$ for $t>t_{0}$, then there are sequences $\left\{s_{k}\right\} \subset \mathbb{R}$, $\left\{u_{k}\right\} \subset H,\left\{\rho_{k}\right\} \subset \mathbb{R}$ such that $s_{k} \searrow t_{0}, u_{k} \in \Sigma_{s_{k}}, \rho_{k}>0$ and

$$
\begin{equation*}
g^{\prime}\left(u_{k}\right)=\rho_{k} u_{k} . \tag{2.4}
\end{equation*}
$$

COROLLARY 2.2. If $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then there is an infinite number of solutions (u, ρ) of

$$
\begin{equation*}
g^{\prime}(u)=\rho u \tag{2.5}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
t_{0}<\|u\|^{2}<t_{1}, \quad \rho>0 \tag{2.6}
\end{equation*}
$$

In proving Theorem 2.1 we shall make use of the following results from [6].
LEMMA 2.3. If $\Sigma_{t}=\phi$, then there is a $t_{-}<t$ such that $\gamma(s)=\gamma(t)$ for $t_{-} \leq s \leq t$.
Lemma 2.4. If $\varphi(t) \in C^{1}(0, \infty)$ is such that $\varphi(t)-\gamma(t)$ has a local minimum at t_{0} and $\varphi^{\prime}\left(t_{0}\right) \neq 0$, then there is $a u \in \Sigma_{t_{0}}$ such that

$$
\begin{equation*}
g^{\prime}(u)=2 \varphi^{\prime}\left(t_{0}\right) u \tag{2.7}
\end{equation*}
$$

Proof of Theorem 2.1. Let t_{1} be any number $>t_{0}$, and $\hat{t}=\left(t_{0}+t_{1}\right) / 2$. For $t_{0}<$ $s<\hat{t}$ let $\varphi_{s}(t)=A(t-s)^{2}+B$, where the constants A, B are chosen so that $\varphi_{s}\left(t_{i}\right)=$ $\gamma\left(t_{i}\right), i=0,1$. Note that $A>0$ as long as $s<\hat{t}$. Let $\psi_{s}(t)=\varphi_{s}(t)-\gamma(t)$. Then $\psi_{s}\left(t_{i}\right)=0, i=0,1$. Since $\varphi_{s}(t)$ is decreasing for $t_{0}<t<s$ and $\gamma(t)$ is nondecreasing, $\psi_{s}(t)$ has a negative minimum in $\left[t_{0}, t_{1}\right]$ for every s. Let t_{s} be a point where

$$
\psi_{s}\left(t_{s}\right)=\min _{t_{0} \leq t \leq t_{1}} \psi_{s}(t) .
$$

Clearly $t_{s} \geq s$ for every $s<\hat{t}$. We claim that there cannot be a $\delta>0$ such that $t_{s}=s$ for $t_{0}<s<t_{0}+\delta$. For then

$$
\varphi_{s}(t)-\gamma(t) \geq \varphi_{s}(s)-\gamma(s), \quad t_{0} \leq t \leq t_{1}, \quad t_{0}<s<t_{0}+\delta
$$

This implies

$$
\gamma(t)-\gamma(s) \leq \varphi_{s}(t)-\varphi_{s}(s)=A(t-s)^{2}
$$

for such s, t. In turn this implies that $\gamma^{\prime}(s)$ exists and vanishes for $t_{0}<s<t_{0}+\delta$. This would mean that $\gamma(t)=\gamma\left(t_{0}\right)$ for $t_{0} \leq t<t_{0}+\delta$, contrary to assumption. Hence for each $\delta>0$ there is an s such that $t_{0}<s<t_{0}+\delta$ and $t_{s}>s$. Consequently $\psi_{s}(t)$ has a local minimum at t_{s} while $\varphi_{s}^{\prime}\left(t_{s}\right)=2 A\left(t_{s}-s\right)>0$. Thus there is a $u \in \Sigma_{t_{s}}$ such that $g^{\prime}(u)=2 \varphi_{s}^{\prime}\left(t_{s}\right) u$ (Lemma 2.4). This means that (2.5) has a solution satisfying (2.6). Since $t_{1}>t_{0}$ was arbitrary, the result follows.

Proof of Corollary 2.2. Let \tilde{t}_{0} be the largest number such that $\gamma(t)=\gamma\left(t_{0}\right)$ for $t_{0} \leq t \leq \tilde{t}_{0}<t_{1}$ and $\gamma(t)>\gamma\left(\tilde{t}_{0}\right)$ for $t>\tilde{t}_{0}$. Apply Theorem 2.1.

THEOREM 2.5. If $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then for each ρ_{0} satisfying $0<\rho_{0}<\sigma_{0}:=$ $2\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right)$ the following alternative holds: either
a) (2.5) has a solution $u \in S_{t_{1}}$ with $\rho \geq \rho_{0}$ or
b) (2.5) has a solution u with $t_{0}<\|u\|^{2}<t_{1}$ and $\rho=\rho_{0}$.

In proving Theorem 2.5 we shall make use of

Lemma 2.6. Assume that $\varphi(t) \in C^{1}\left[t_{0}, t_{1}\right], \varphi^{\prime}\left(t_{1}\right)>0$ and

$$
\begin{equation*}
\varphi(t)-\gamma(t) \geq \varphi\left(t_{1}\right)-\gamma\left(t_{1}\right), \quad t_{0} \leq t \leq t_{1} \tag{2.8}
\end{equation*}
$$

Then $\Sigma_{t_{1}} \neq \emptyset$ and every $u \in \Sigma_{t_{1}}$ is a solution of (2.5) with $\rho \geq 2 \varphi^{\prime}\left(t_{1}\right)$.
Proof. Clearly $\gamma(t)<\gamma\left(t_{1}\right)$ for $t<t_{1}$. For otherwise (2.9) will imply that $\varphi^{\prime}\left(t_{1}\right) \leq$ 0 . By Lemma 2.3 we see that $\Sigma_{t_{1}} \neq \phi$. For $u \in S_{t}, t_{0} \leq t \leq t_{1}$, let

$$
I(u)=\varphi\left(\|u\|^{2}\right)-g(u)
$$

Then if $u_{1} \in \Sigma_{t_{1}}, u \in S_{t}$

$$
\begin{aligned}
I\left(u_{1}\right) & =\varphi\left(t_{1}\right)-g\left(u_{1}\right)=\varphi\left(t_{1}\right)-\gamma\left(t_{1}\right) \\
& \leq \varphi(t)-\gamma(t) \leq \varphi(t)-g(u)=I(u)
\end{aligned}
$$

Thus $I\left(u_{1}\right)$ is a minimum of $I(u)$ for u satisfying $t_{0} \leq\|u\|^{2} \leq t_{1}$. Consequently there is a $\beta \geq 0$ such that

$$
I^{\prime}\left(u_{1}\right)=-\beta u_{1}
$$

Thus

$$
2 \varphi^{\prime}\left(t_{1}\right) u_{1}-g^{\prime}\left(u_{1}\right)=-\beta u_{1}
$$

or

$$
g^{\prime}\left(u_{1}\right)=\left[2 \varphi^{\prime}\left(t_{1}\right)+\beta\right] u_{1} .
$$

This gives the desired result.
PROOF OF THEOREM 2.5. Let $\psi(t)=\frac{1}{2} \rho_{0}\left(t-t_{0}\right)+\gamma\left(t_{0}\right)-\gamma(t)$. Then $\psi\left(t_{0}\right)=0$ and $\psi\left(t_{1}\right) \leq 0$. Assume first that $\psi(t) \geq \psi\left(t_{1}\right)$ for $t_{0} \leq t \leq t_{1}$. Then by Lemma 2.6, $\Sigma_{t_{1}} \neq \emptyset$ and every $u \in \Sigma_{t_{1}}$ is a solution of (2.5) with $\rho \geq \rho_{0}$. This is alternative (a). Otherwise there is a t between t_{0} and t_{1} such that $\psi(t)<\psi\left(t_{1}\right)$. This means that ψ has a minimum in (t_{0}, t_{1}). We can now apply Lemma 2.4 to conclude that (2.5) has a solution satisfying $t_{0}<\|u\|^{2}<t_{1}$ and $\rho=\rho_{0}$.

COROLLARY 2.7. If $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then (2.5) has a solution satisfying

$$
\begin{equation*}
t_{0}<\|u\|^{2} \leq t_{1}, \quad \rho \leq 2\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right) \tag{2.9}
\end{equation*}
$$

Proof. Let ρ_{0} equal the right hand side in (2.9).
Theorem 2.8. If $0 \leq t_{0}<t_{1}<t_{2}$ and

$$
\begin{equation*}
\left[\gamma\left(t_{2}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{2}-t_{0}\right)<\rho / 2<\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right) \tag{2.10}
\end{equation*}
$$

then (2.5) has a solution satisfying $t_{0}<\|u\|^{2}<t_{2}$.
Proof. Let $\varphi(t)=\frac{1}{2} \rho\left(t-t_{0}\right)+\gamma\left(t_{0}\right)$ and $\psi(t)=\varphi(t)-\gamma(t)$. Then $\psi\left(t_{1}\right)<0$ while $\psi\left(t_{2}\right)>0$. Thus there is a point t_{3} such that $t_{1}<t_{3}<t_{2}$ and $\psi\left(t_{3}\right)=0$. Since $\psi\left(t_{0}\right)=0$ and $\psi\left(t_{1}\right)<0, \psi(t)$ must have a negative minimum in the interval $\left(t_{0}, t_{2}\right)$. We can now apply Lemma 2.4 to conclude that (2.5) has a solution for $u \in \Sigma_{t}$ for some t satisfying $t_{0}<t<t_{2}$.

Corollary 2.9. If $0<t_{1}<t_{2}$ and

$$
\begin{equation*}
\left[\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)<\rho / 2<D^{-} \gamma\left(t_{1}\right), \tag{2.11}
\end{equation*}
$$

then for each $\epsilon>0$ there is a solution $u \in H$ of (2.5) satisfying $t_{1}-\epsilon<\|u\|^{2}<t_{2}$.
Proof. By (2.11) there is a $t_{0}<t_{1}$ such that $t_{1}-t_{0}<\epsilon$ and (2.10) holds. Apply Theorem 2.8.

Corollary 2.10. If $0 \leq t_{0}<t_{1}$ and

$$
\begin{equation*}
D^{+} \gamma\left(t_{1}\right)<\rho / 2<\left[\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right) \tag{2.12}
\end{equation*}
$$

then for every $\epsilon>0$ there is a solution $u \in H$ of (2.5) such that $t_{0}<\|u\|^{2}<t_{1}+\epsilon$.
Proof. By (2.12), there is a $t_{2}>t_{1}$ such that $t_{2}-t_{1}<\epsilon$ and (2.10) holds. Apply Theorem 2.8.

Corollary 2.11. If

$$
\begin{equation*}
\alpha_{\infty}:=\liminf _{t \rightarrow \infty} \gamma(t) / t<\alpha:=\sup _{t_{1}, t_{2}}\left[\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right) \tag{2.13}
\end{equation*}
$$

then for any $\rho \in\left(2 \alpha_{\infty}, 2 \alpha\right)$ there is a solution $u \in H \backslash\{0\}$ of (2.5).
Proof. By (2.13) one can pick t_{0}, t_{1}, t_{2} such that (2.10) holds and apply Theorem 2.8.

Corollary 2.12. If $\alpha \neq 0, \infty$, then for every $\epsilon>0$ there is a solution (u, ρ) of (2.5) such that $u \neq 0$ and $\rho \geq \alpha-\epsilon$.

Proof. Apply Corollary 2.7.
Corollary 2.13. If either $D^{-\gamma} \gamma\left(t_{1}\right)$ or $D^{+\gamma} \gamma\left(t_{1}\right)$ is positive, then there are sequences $\left\{\rho_{k}\right\} \subset \mathbb{R},\left\{u_{k}\right\} \subset H \backslash\{0\}$ such that $\rho_{k}>0,\left\|u_{k}\right\|^{2} \rightarrow t_{1}$ and (2.4) holds.

PROOF. If $D^{-\gamma}\left(t_{1}\right)>0$, then for every $\epsilon>0$ there is a $t_{0}<t_{1}$ such that $t_{1}-t_{0}<\epsilon$ and $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$. By Corollary 2.2 there is an infinite number of solutions of (2.5), (2.6). A similar argument works if $D^{+} \gamma\left(t_{1}\right)>0$.

Lemma 2.14. If $u_{0} \in \Sigma_{t_{0}}$, then

$$
\begin{equation*}
D^{-} \gamma\left(t_{0}\right) \leq\left(g^{\prime}\left(u_{0}\right), u_{0}\right) / 2 t_{0} \leq D^{+} \gamma\left(t_{0}\right) . \tag{2.14}
\end{equation*}
$$

Proof. We have, modulo $o\left(t-t_{0}\right)$,

$$
\begin{align*}
\gamma(t)-\gamma\left(t_{0}\right) & \geq g\left(t^{1 / 2} t_{0}^{-1 / 2} u_{0}\right)-g\left(u_{0}\right) \tag{2.15}\\
& =\left(g^{\prime}\left(u_{0}\right), u_{0}\right)\left(t^{1 / 2} t_{0}^{-1 / 2}-1\right) \\
& =\left(g^{\prime}\left(u_{0}\right), u_{0}\right)\left(t-t_{0}\right) / 2 t_{0} .
\end{align*}
$$

If $t<t_{0}$, this gives the first inequality in (2.14); if $t>t_{0}$, it gives the second.

Corollary 2.15. If $D^{-} \gamma\left(t_{0}\right)>0$, then $\Sigma_{t_{0}} \neq \emptyset$. Thus (2.5) has a solution (u, ρ) with $u \in \Sigma_{t_{0}}$ and $D^{-\gamma}\left(t_{0}\right) \leq \rho / 2$.

Proof. If $\Sigma_{t_{0}}=\emptyset$, then $D^{-\gamma}\left(t_{0}\right)=0$ by Lemma 2.3. If $u \in \Sigma_{t_{0}}$, then it is a solution of (2.5) for some $\rho \geq 0$.

COROLLARY 2.16. If $D^{+} \gamma\left(t_{0}\right)>0$, then the conclusion of Theorem 2.1 holds with

$$
\begin{equation*}
\liminf \rho_{k} \geq D^{+} \gamma\left(t_{0}\right) \tag{2.16}
\end{equation*}
$$

Proof. For each k there is a point $t_{k}>t_{0}$ such that $t_{k}-t_{0}<1 / k$ and

$$
\left[\gamma\left(t_{k}\right)-\gamma\left(t_{0}\right)\right] /\left(t_{k}-t_{0}\right) \geq D^{+} \gamma\left(t_{0}\right)-(1 / k)
$$

By Corollary 2.7 there is a solution (u_{k}, ρ_{k}) of (2.4) satisfying

$$
t_{0}<\left\|u_{k}\right\|^{2} \leq t_{k}, \quad \rho_{k} \geq D^{+}\left(t_{0}\right)-(1 / k)
$$

This gives the desired result.
Corollary 2.17. If $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then one of the following alternatives holds: either
(a) there is a solution (u, ρ) of (2.5) such that $u \in S_{t_{1}}$ and $\rho \geq \sigma_{0}=2\left[\gamma\left(t_{1}\right)-\right.$ $\left.\gamma\left(t_{0}\right)\right] /\left(t_{1}-t_{0}\right)$ or
(b) there is a sequence (u_{k}, ρ_{k}) of solutions of (2.4) such that $u_{k} \in S_{t_{1}}$ and $\rho_{k} \nearrow \sigma_{0}$, or
(c) there is a $\tilde{\rho}<\sigma_{0}$ such that for each ρ satisfying $\tilde{\rho}<\rho<\sigma_{0}$ there is a solution (u, ρ) of (2.5) with $t_{0}<\|u\|^{2}<t_{1}$.

Proof. Suppose (a) does not hold, and let $\tilde{\rho}$ be the supremum of all ρ such that (2.5) has a solution (u, ρ) with $u \in S_{t_{1}}$. If $\tilde{\rho}=\sigma_{0}$, then (b) must hold. If $\tilde{\rho}<\sigma_{0}$, then (c) must hold by Theorem 2.5 .

COROLLARY 2.18. If $\gamma\left(t_{0}\right)<\gamma\left(t_{1}\right)$, then the following alternative holds: either
(a) there is a $\tilde{t}<t_{1}$ such that for every t satisfying $\tilde{t}<t<t_{1}$ there is a $u \in S_{t}$ and a $\rho>0$ such that (2.5) holds, or
(b) there is a $\rho_{0}>0$ such that for each ρ satisfying $0<\rho<\rho_{0}$ there is a u such that $t_{0}<\|u\|^{2}<t_{1}$ and (2.5) holds.
Proof. Let \tilde{t} be the infimum of all t in $\left[t_{0}, t_{1}\right]$ such that $\gamma\left(t_{0}\right)<\gamma(t)$. If for each $t>\tilde{t}$ there is a $u \in S_{t}$ and a $\rho>0$ such that (2.5) holds, then option (a) is true. Otherwise there is a \hat{t} in $\left(\tilde{t}, t_{1}\right)$ such that (2.5) has no solution in $S_{\hat{t}}$ for any $\rho>0$. In this case Theorem 2.5 tells us that for any ρ satisfying $0<\rho<\rho_{0}:=2\left[\gamma\left(\hat{t}-\gamma\left(t_{0}\right)\right] /\left(\hat{t}-t_{0}\right)\right.$ there is a solution u of (2.5) satisfying $t_{0}<\|u\|^{2}<\hat{t}$.

References

1. D. G. De Figueiredo, P.-L. Lions, R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl. 61(1982), 41-63.
2. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. Conf. Board of Math. Sci., Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986.
3. M. Schechter, Spectra of partial differential operators. North Holland, 1986.
4. \qquad Derivatives of mappings with applications to nonlinear differential equations, Trans. Amer. Math. Soc. 293(1986), 53-69.
5. M. Schechter, K. Tintarev, Families of first eigenfunctions for semilinear elliptic eigenvalue problems, Duke Math. J. 62(1991), 453-465.
6. \qquad Spherical maxima in Hilbert space and semilinear eigenvalue problems, Diff. Int. Eqns. (5)3 (1990), 889-899.

University of California
Irvine, California 92717
U.S.A.

