POINTS OF SPHERICAL MAXIMA AND SOLVABILITY OF SEMILINEAR ELLIPTIC EQUATIONS

MARTIN SCHECHTER AND KYRIL TINTAREV

ABSTRACT. We give mild sufficient conditions on a nonlinear functional to have eigenvalues. These results are intended for the study of boundary value problems for semilinear elliptic equations.

1. Introduction. Let g(u) be a differentiable functional on a real Hilbert space H. We are interested in finding eigenvalues and eigenelements of g, i.e., solutions (ρ, u) of

$$(1.1) g'(u) = \rho u$$

where $\rho \in \mathbb{R}$ and $u \in H$ (for the applications we are considering, it is important that $\rho \neq 0$ and $u \neq 0$). Following an idea used in [4], we make use of the fact that an element $u_0 \in H$ which satisfies

(1.2)
$$||u_0||^2 = t_0 > 0, \quad g(u_0) = \max_{||v||^2 = t_0} g(v)$$

is a solution of (1.1) with

(1.3)
$$\rho = \left(g'(u_0), u_0 \right) / t_0.$$

Our goal is to locate such elements u_0 . In the present paper we assume as little on the the functional g(u) as necessary to obtain the existence of these elements. Our only regularity assumption on g is that it be weakly continuous, i.e., that $u_k \rightarrow u$ weakly in H implies $g(u_k) \rightarrow g(u)$. This allows us to obtain solutions of semilinear partial differential equations under weaker conditions than normally assumed.

We have shown elsewhere [6] that the function

(1.4)
$$\gamma(t) = \sup_{\|v\|^2 = t} g(v)$$

plays an important role in the study of (1.1). We have shown that it is a continuous nondecreasing function of t. In Section 2 we show that if $\gamma(t_0) < \gamma(t_1)$, then there is an infinite number of solution of (1.1) satisfying $t_0 < ||u||^2 < t_1$ with at least one of these solutions satisfying

(1.5)
$$\rho \geq 2[\gamma(t_1) - \gamma(t_0)]/(t_1 - t_0).$$

Research supported in part by an NSF grant.

AMS subject classification: Primary: 35P30, 35T65, 47H12; Secondary: 47H15.

Received by the editors January 23, 1990.

[©] Canadian Mathematical Society 1991.

Moreover, we show that if $0 \le t_0 < t_1 < t_2$ and ρ is any number satisfying

(1.6)
$$[\gamma(t_2) - \gamma(t_0)]/(t_2 - t_1) < \rho/2 < [\gamma(t_1) - \gamma(t_0)]/(t_1 - t_0)$$

then (1.1) has a solution *u* satisfying $t_0 < ||u||^2 < t_2$. As a corollary we see that if

(1.7)
$$\alpha_{\infty} := \liminf_{t \to \infty} \gamma(t) / t < \alpha := \sup_{t_1, t_2} [\gamma(t_2) - \gamma(t_1)] / (t_2 - t_1)$$

then for any $\rho \in (2\alpha_{\infty}, 2\alpha)$ there is a solution $u \in H \setminus \{0\}$ of (1.1). Further results are given in Section 2.

Application of these results to boundary value problems for semilinear elliptic equations might be inferred from [6]. If A is a linear elliptic operator of order 2m and f(x, t) is a Caratheodory function, (1.1) has a meaning of

(1.8)
$$Au = \lambda f(x, u), \quad u \in H_0^m(\Omega),$$

holding in a semi-strong sense. Here

(1.9)
$$g(u) = \int_{\Omega} F(x, u(x)) dx$$

with

(1.10)
$$F(x,s) = \int_0^s f(x,\sigma) \, d\sigma.$$

Weak continuity of g and estimates on γ involved in theorems of this paper result in milder conditions on F rather than on f.

2. Existence of Eigenfunctions. In this section we shall be concerned with proving the existence of eigenvalues assuming only

(i) g(u) is a weakly continuous Frechet differentiable map from an infinite dimensional real Hilbert space H to \mathbb{R} .

We define for $t \ge 0$

(2.1)
$$S_t = \{ x \in H \mid ||x||^2 = t \}$$

(2.2)
$$\gamma(t) = \sup_{u \in S_t} g(u)$$

(2.3)
$$\Sigma_t = \left\{ u \in S_t \mid g(u) = \gamma(t) \right\}.$$

It was shown in [6] that $\gamma(t)$ is a continuous nondecreasing function of t. First we have

THEOREM 2.1. If $\gamma(t) > \gamma(t_0)$ for $t > t_0$, then there are sequences $\{s_k\} \subset \mathbb{R}$, $\{u_k\} \subset H$, $\{\rho_k\} \subset \mathbb{R}$ such that $s_k \searrow t_0$, $u_k \in \Sigma_{s_k}$, $\rho_k > 0$ and

$$(2.4) g'(u_k) = \rho_k u_k.$$

COROLLARY 2.2. If $\gamma(t_0) < \gamma(t_1)$, then there is an infinite number of solutions (u, ρ) of

$$(2.5) g'(u) = \rho u$$

satisfying

(2.6)
$$t_0 < ||u||^2 < t_1, \quad \rho > 0$$

In proving Theorem 2.1 we shall make use of the following results from [6].

LEMMA 2.3. If $\Sigma_t = \phi$, then there is a $t_- < t$ such that $\gamma(s) = \gamma(t)$ for $t_- \leq s \leq t$.

LEMMA 2.4. If $\varphi(t) \in C^1(0, \infty)$ is such that $\varphi(t) - \gamma(t)$ has a local minimum at t_0 and $\varphi'(t_0) \neq 0$, then there is a $u \in \Sigma_{t_0}$ such that

$$(2.7) g'(u) = 2\varphi'(t_0)u$$

PROOF OF THEOREM 2.1. Let t_1 be any number $> t_0$, and $\hat{t} = (t_0 + t_1)/2$. For $t_0 < s < \hat{t}$ let $\varphi_s(t) = A(t-s)^2 + B$, where the constants A, B are chosen so that $\varphi_s(t_i) = \gamma(t_i), i = 0, 1$. Note that A > 0 as long as $s < \hat{t}$. Let $\psi_s(t) = \varphi_s(t) - \gamma(t)$. Then $\psi_s(t_i) = 0, i = 0, 1$. Since $\varphi_s(t)$ is decreasing for $t_0 < t < s$ and $\gamma(t)$ is nondecreasing, $\psi_s(t)$ has a negative minimum in $[t_0, t_1]$ for every s. Let t_s be a point where

$$\psi_s(t_s) = \min_{t_0 \le t \le t_1} \psi_s(t).$$

Clearly $t_s \ge s$ for every $s < \hat{t}$. We claim that there cannot be a $\delta > 0$ such that $t_s = s$ for $t_0 < s < t_0 + \delta$. For then

$$\varphi_s(t) - \gamma(t) \ge \varphi_s(s) - \gamma(s), \quad t_0 \le t \le t_1, \quad t_0 < s < t_0 + \delta.$$

This implies

$$\gamma(t) - \gamma(s) \le \varphi_s(t) - \varphi_s(s) = A(t-s)^2$$

for such s, t. In turn this implies that $\gamma'(s)$ exists and vanishes for $t_0 < s < t_0 + \delta$. This would mean that $\gamma(t) = \gamma(t_0)$ for $t_0 \leq t < t_0 + \delta$, contrary to assumption. Hence for each $\delta > 0$ there is an s such that $t_0 < s < t_0 + \delta$ and $t_s > s$. Consequently $\psi_s(t)$ has a local minimum at t_s while $\varphi'_s(t_s) = 2A(t_s - s) > 0$. Thus there is a $u \in \Sigma_{t_s}$ such that $g'(u) = 2\varphi'_s(t_s)u$ (Lemma 2.4). This means that (2.5) has a solution satisfying (2.6). Since $t_1 > t_0$ was arbitrary, the result follows.

PROOF OF COROLLARY 2.2. Let \tilde{t}_0 be the largest number such that $\gamma(t) = \gamma(t_0)$ for $t_0 \le t \le \tilde{t}_0 < t_1$ and $\gamma(t) > \gamma(\tilde{t}_0)$ for $t > \tilde{t}_0$. Apply Theorem 2.1.

THEOREM 2.5. If $\gamma(t_0) < \gamma(t_1)$, then for each ρ_0 satisfying $0 < \rho_0 < \sigma_0 := 2[\gamma(t_1) - \gamma(t_0)]/(t_1 - t_0)$ the following alternative holds: either

- a) (2.5) has a solution $u \in S_{t_1}$ with $\rho \ge \rho_0$ or
- b) (2.5) has a solution u with $t_0 < ||u||^2 < t_1$ and $\rho = \rho_0$.

In proving Theorem 2.5 we shall make use of

LEMMA 2.6. Assume that $\varphi(t) \in C^1[t_0, t_1], \varphi'(t_1) > 0$ and

(2.8)
$$\varphi(t) - \gamma(t) \ge \varphi(t_1) - \gamma(t_1), \quad t_0 \le t \le t_1$$

Then $\Sigma_{t_1} \neq \emptyset$ and every $u \in \Sigma_{t_1}$ is a solution of (2.5) with $\rho \geq 2\varphi'(t_1)$.

PROOF. Clearly $\gamma(t) < \gamma(t_1)$ for $t < t_1$. For otherwise (2.9) will imply that $\varphi'(t_1) \le 0$. By Lemma 2.3 we see that $\Sigma_{t_1} \neq \phi$. For $u \in S_t, t_0 \le t \le t_1$, let

$$I(u) = \varphi(||u||^2) - g(u).$$

Then if $u_1 \in \Sigma_{t_1}$, $u \in S_t$

$$I(u_1) = \varphi(t_1) - g(u_1) = \varphi(t_1) - \gamma(t_1)$$

$$\leq \varphi(t) - \gamma(t) \leq \varphi(t) - g(u) = I(u)$$

Thus $I(u_1)$ is a minimum of I(u) for u satisfying $t_0 \le ||u||^2 \le t_1$. Consequently there is a $\beta \ge 0$ such that

$$I'(u_1)=-\beta u_1.$$

Thus

$$2\varphi'(t_1)u_1-g'(u_1)=-\beta u_1$$

or

$$g'(u_1) = [2\varphi'(t_1) + \beta]u_1$$

This gives the desired result.

PROOF OF THEOREM 2.5. Let $\psi(t) = \frac{1}{2}\rho_0(t-t_0) + \gamma(t_0) - \gamma(t)$. Then $\psi(t_0) = 0$ and $\psi(t_1) \le 0$. Assume first that $\psi(t) \ge \psi(t_1)$ for $t_0 \le t \le t_1$. Then by Lemma 2.6, $\Sigma_{t_1} \ne \emptyset$ and every $u \in \Sigma_{t_1}$ is a solution of (2.5) with $\rho \ge \rho_0$. This is alternative (a). Otherwise there is a *t* between t_0 and t_1 such that $\psi(t) < \psi(t_1)$. This means that ψ has a minimum in (t_0, t_1) . We can now apply Lemma 2.4 to conclude that (2.5) has a solution satisfying $t_0 < ||u||^2 < t_1$ and $\rho = \rho_0$.

COROLLARY 2.7. If $\gamma(t_0) < \gamma(t_1)$, then (2.5) has a solution satisfying (2.9) $t_0 < ||u||^2 < t_1$, $\rho < 2[\gamma(t_1) - \gamma(t_0)]/(t_1 - t_0)$.

PROOF. Let ρ_0 equal the right hand side in (2.9).

THEOREM 2.8. If $0 \le t_0 < t_1 < t_2$ and

(2.10)
$$[\gamma(t_2) - \gamma(t_0)]/(t_2 - t_0) < \rho/2 < [\gamma(t_1) - \gamma(t_0)]/(t_1 - t_0)$$

then (2.5) has a solution satisfying $t_0 < ||u||^2 < t_2$.

PROOF. Let $\varphi(t) = \frac{1}{2}\rho(t-t_0) + \gamma(t_0)$ and $\psi(t) = \varphi(t) - \gamma(t)$. Then $\psi(t_1) < 0$ while $\psi(t_2) > 0$. Thus there is a point t_3 such that $t_1 < t_3 < t_2$ and $\psi(t_3) = 0$. Since $\psi(t_0) = 0$ and $\psi(t_1) < 0$, $\psi(t)$ must have a negative minimum in the interval (t_0, t_2) . We can now apply Lemma 2.4 to conclude that (2.5) has a solution for $u \in \Sigma_t$ for some t satisfying $t_0 < t < t_2$.

COROLLARY 2.9. If $0 < t_1 < t_2$ and

(2.11)
$$[\gamma(t_2) - \gamma(t_1)]/(t_2 - t_1) < \rho/2 < D^{-\gamma}(t_1),$$

then for each $\epsilon > 0$ there is a solution $u \in H$ of (2.5) satisfying $t_1 - \epsilon < ||u||^2 < t_2$.

PROOF. By (2.11) there is a $t_0 < t_1$ such that $t_1 - t_0 < \epsilon$ and (2.10) holds. Apply Theorem 2.8.

COROLLARY 2.10. If $0 \le t_0 < t_1$ and

(2.12)
$$D^{+}\gamma(t_{1}) < \rho/2 < [\gamma(t_{1}) - \gamma(t_{0})]/(t_{1} - t_{0})$$

then for every $\epsilon > 0$ there is a solution $u \in H$ of (2.5) such that $t_0 < ||u||^2 < t_1 + \epsilon$.

PROOF. By (2.12), there is a $t_2 > t_1$ such that $t_2 - t_1 < \epsilon$ and (2.10) holds. Apply Theorem 2.8.

COROLLARY 2.11. If

(2.13)
$$\alpha_{\infty} := \liminf_{t \to \infty} \gamma(t)/t < \alpha := \sup_{t_1, t_2} [\gamma(t_2) - \gamma(t_1)]/(t_2 - t_1)$$

then for any $\rho \in (2\alpha_{\infty}, 2\alpha)$ there is a solution $u \in H \setminus \{0\}$ of (2.5).

PROOF. By (2.13) one can pick t_0, t_1, t_2 such that (2.10) holds and apply Theorem 2.8.

COROLLARY 2.12. If $\alpha \neq 0, \infty$, then for every $\epsilon > 0$ there is a solution (u, ρ) of (2.5) such that $u \neq 0$ and $\rho \geq \alpha - \epsilon$.

PROOF. Apply Corollary 2.7.

COROLLARY 2.13. If either $D^-\gamma(t_1)$ or $D^+\gamma(t_1)$ is positive, then there are sequences $\{\rho_k\} \subset \mathbb{R}, \{u_k\} \subset H \setminus \{0\}$ such that $\rho_k > 0, ||u_k||^2 \rightarrow t_1$ and (2.4) holds.

PROOF. If $D^{-\gamma}(t_1) > 0$, then for every $\epsilon > 0$ there is a $t_0 < t_1$ such that $t_1 - t_0 < \epsilon$ and $\gamma(t_0) < \gamma(t_1)$. By Corollary 2.2 there is an infinite number of solutions of (2.5), (2.6). A similar argument works if $D^{+\gamma}(t_1) > 0$.

LEMMA 2.14. If $u_0 \in \Sigma_{t_0}$, then

(2.14)
$$D^{-\gamma}(t_0) \le (g'(u_0), u_0)/2t_0 \le D^{+\gamma}(t_0).$$

PROOF. We have, modulo $o(t - t_0)$,

(2.15)
$$\gamma(t) - \gamma(t_0) \ge g(t^{1/2}t_0^{-1/2}u_0) - g(u_0)^{-1}$$
$$= (g'(u_0), u_0)(t^{1/2}t_0^{-1/2} - 1)$$
$$= (g'(u_0), u_0)(t - t_0)/2t_0.$$

If $t < t_0$, this gives the first inequality in (2.14); if $t > t_0$, it gives the second.

COROLLARY 2.15. If $D^{-\gamma}(t_0) > 0$, then $\Sigma_{t_0} \neq \emptyset$. Thus (2.5) has a solution (u, ρ) with $u \in \Sigma_{t_0}$ and $D^{-\gamma}(t_0) \leq \rho/2$.

PROOF. If $\Sigma_{t_0} = \emptyset$, then $D^-\gamma(t_0) = 0$ by Lemma 2.3. If $u \in \Sigma_{t_0}$, then it is a solution of (2.5) for some $\rho \ge 0$.

COROLLARY 2.16. If $D^+\gamma(t_0) > 0$, then the conclusion of Theorem 2.1 holds with

(2.16)
$$\liminf \rho_k \ge D^+ \gamma(t_0).$$

PROOF. For each k there is a point $t_k > t_0$ such that $t_k - t_0 < 1/k$ and

$$[\gamma(t_k) - \gamma(t_0)] / (t_k - t_0) \ge D^+ \gamma(t_0) - (1/k).$$

By Corollary 2.7 there is a solution (u_k, ρ_k) of (2.4) satisfying

$$t_0 < ||u_k||^2 \le t_k, \quad \rho_k \ge D^+(t_0) - (1/k).$$

This gives the desired result.

COROLLARY 2.17. If $\gamma(t_0) < \gamma(t_1)$, then one of the following alternatives holds: either

- (a) there is a solution (u, ρ) of (2.5) such that $u \in S_{t_1}$ and $\rho \geq \sigma_0 = 2[\gamma(t_1) \gamma(t_0)]/(t_1 t_0)$ or
- (b) there is a sequence (u_k, ρ_k) of solutions of (2.4) such that $u_k \in S_{t_1}$ and $\rho_k \nearrow \sigma_0$, or
- (c) there is a $\tilde{\rho} < \sigma_0$ such that for each ρ satisfying $\tilde{\rho} < \rho < \sigma_0$ there is a solution (u, ρ) of (2.5) with $t_0 < ||u||^2 < t_1$.

PROOF. Suppose (a) does not hold, and let $\tilde{\rho}$ be the supremum of all ρ such that (2.5) has a solution (u, ρ) with $u \in S_{t_1}$. If $\tilde{\rho} = \sigma_0$, then (b) must hold. If $\tilde{\rho} < \sigma_0$, then (c) must hold by Theorem 2.5.

COROLLARY 2.18. If $\gamma(t_0) < \gamma(t_1)$, then the following alternative holds: either

- (a) there is a $\tilde{t} < t_1$ such that for every t satisfying $\tilde{t} < t < t_1$ there is a $u \in S_t$ and $a \rho > 0$ such that (2.5) holds, or
- (b) there is a $\rho_0 > 0$ such that for each ρ satisfying $0 < \rho < \rho_0$ there is a u such that $t_0 < ||u||^2 < t_1$ and (2.5) holds.

PROOF. Let \tilde{t} be the infimum of all t in $[t_0, t_1]$ such that $\gamma(t_0) < \gamma(t)$. If for each $t > \tilde{t}$ there is a $u \in S_t$ and a $\rho > 0$ such that (2.5) holds, then option (a) is true. Otherwise there is a \hat{t} in (\tilde{t}, t_1) such that (2.5) has no solution in $S_{\tilde{t}}$ for any $\rho > 0$. In this case Theorem 2.5 tells us that for any ρ satisfying $0 < \rho < \rho_0 := 2[\gamma(\hat{t} - \gamma(t_0)]/(\hat{t} - t_0)]$ there is a solution u of (2.5) satisfying $t_0 < ||u||^2 < \hat{t}$.

830

REFERENCES

- 1. D. G. De Figueiredo, P.-L. Lions, R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl. 61(1982), 41–63.
- 2. P. H. Rabinowitz, *Minimax methods in critical point theory with applications to differential equations*. Conf. Board of Math. Sci., Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986.
- 3. M. Schechter, Spectra of partial differential operators. North Holland, 1986.
- **4.** _____, Derivatives of mappings with applications to nonlinear differential equations, Trans. Amer. Math. Soc. **293**(1986), 53–69.
- 5. M. Schechter, K. Tintarev, Families of first eigenfunctions for semilinear elliptic eigenvalue problems, Duke Math. J. 62(1991), 453–465.
- **6.** _____, Spherical maxima in Hilbert space and semilinear eigenvalue problems, Diff. Int. Eqns. (5)**3** (1990), 889–899.

University of California Irvine, California 92717 U.S.A.