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Abstract

We prove that neat and coneat submodules of a module coincide when R is a commutative ring such that
every maximal ideal is principal, extending a recent result by Fuchs. We characterise absolutely neat
(coneat) modules and study their closure properties. We show that a module is absolutely neat if and only
if it is injective with respect to the Dickson torsion theory.
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1. Introduction

The classical notion of purity for abelian groups (see, for example, [10]) was
generalised to neatness by Honda [12]. Thus a subgroup A of an abelian group B is
called pure if nA = A ∩ nB for every integer n, whereas A is called neat if pA = A ∩ pB
for every prime p. Neatness has been extended from abelian groups to modules over a
commutative ring in the following ways. Let R be a commutative ring. A short exact
sequence

0→ A
f
→ B

g
→C→ 0

in the module category Mod(R) is called:

(i) neat if for every simple module S the functor HomR(S , −) preserves its
exactness, that is, the following is a short exact sequence:

0→ HomR(S , A)
HomR(S , f )
−−−−−−−−−→ HomR(S , B)

HomR(S ,g)
−−−−−−−−−→ HomR(S ,C)→ 0;

(ii) coneat if for every simple module S the functor S ⊗R − preserves its exactness,
that is, the following is a short exact sequence:

0→ S ⊗R A
S⊗R f
−−−−−→ S ⊗R B

S⊗Rg
−−−−→ S ⊗R C→ 0.
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If the short exact sequence

0→ A
f
→ B

g
→C→ 0

is neat (coneat), then f is called a neat (coneat) monomorphism and g is called a neat
(coneat) epimorphism. Usually A will be identified with a submodule of B, and we
simply say that A is a neat (coneat) submodule of B. Neatness is the same as P-purity
in the sense of [17, 33.1] for the class P of all simple modules, and coneatness has also
been called s-purity in [7].

For R = Z the concepts of neat and coneat submodule of a module (abelian group)
coincide, but over an arbitrary ring R they are in general inequivalent, as one may see
from [11, Examples 3.2, 3.3]. Hence it is interesting to determine conditions on the
commutative ring R under which neatness and coneatness are the same. In particular, it
would be useful to obtain solutions expressed in terms of ideals of rings; see [1, 4, 13]
for examples of recent related results using ideals.

Fuchs has recently reconsidered the problem of comparing neatness and coneatness,
and his main result states that for an integral domain R the two concepts coincide if
and only if every maximal ideal of R is (finitely generated) projective, that is, invertible
[11, Theorem 5.2]. He also notes that if coneatness implies neatness over an arbitrary
commutative ring R, then every maximal ideal of R must be finitely generated [11,
page 137]. But if R has every maximal ideal finitely generated, then the two notions
are still inequivalent by [11, Example 3.2].

With these results as motivation, we prove that neatness and coneatness are the
same over any commutative ring having every maximal ideal principal (Theorem 2.1).
Then we continue the study of absolutely neat and absolutely coneat modules over
commutative rings from [6, 7] by giving new characterisations and analysing their
closure properties. We show that a module is absolutely neat if and only if it is
injective with respect to the Dickson torsion theory (Theorem 3.4). We characterise
some properties of commutative rings by using absolute neatness (coneatness).

Throughout the paper R will denote a commutative ring with identity.

2. Neat and coneat submodules

We begin with our main result connecting neatness and coneatness.

T 2.1. Let

0→ A
f
→ B

g
→C→ 0

be a short exact sequence in Mod(R). Consider the following statements.

(i) A is neat in B.
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(ii) For every maximal ideal M of R and for every commutative diagram in Mod(R)

0 // M
u //

α

��

R

β

��

v // R/M //

γ

��

0

0 // A
f

// B g
// C // 0

with exact rows, there exists a homomorphism w : R→ A such that wu = α.
(iii) For every maximal ideal M = rR of R, the equation rx = a ∈ A has a solution

x ∈ A whenever it has a solution in B.
(iv) For every maximal ideal M of R, MA = A ∩ MB.
(v) A is coneat in B.

Then (i)⇔(ii) and (iv)⇔(v). If every maximal ideal of R is principal, then all
statements are equivalent.

P. (i)⇔(ii). Using the diagram from (ii), the equivalence of (i) and (ii) follows by
the homotopy lemma [17, 7.16] (see also [5]).

(iv)⇔(v). This follows by [11, page 136] (see also [16, page 170]).
For the rest of the proof we suppose that every maximal ideal of R is principal.
(ii)⇔(iii). First suppose that (ii) holds. Let M = rR be a maximal ideal of R,

and assume that the equation rx = a ∈ A has a solution b ∈ B. We may define two
homomorphisms α : M→ A by α(rs) = as for every s ∈ R, and β : R→ B by β(1) = b.
It is easy to see that α is well defined. Let u : M→ R be the inclusion homomorphism.
Then βu = fα, and we obtain in the canonical way a commutative diagram in Mod(R)
with exact rows as in (ii). Hence there exists a homomorphism w : R→ A such that
wu = α. If a0 = w(1), then a = α(r) = wu(r) = w(r) = ra0 ∈ rA. Therefore, the equation
rx = a ∈ A has a solution in A.

Conversely, suppose that (iii) holds. Let M = rR be a maximal ideal of R, and
consider a commutative diagram in Mod(R) with exact rows as in (ii). Let b = β(1) and
a = α(r). Then a = f (a) = fα(r) = βu(r) = β(r) = rb. Now by hypothesis the equation
rx = a ∈ A also has a solution in A, say a0 ∈ A. Then we may define a homomorphism
w : R→ A by w(1) = a0. It follows that wu = α.

(iii)⇔(iv). First suppose that (iii) holds. Let M = rR be a maximal ideal of R.
Note that MA = A ∩ MB is equivalent to rA = A ∩ rB, and we only need to show the
inclusion A ∩ rB ⊆ rA. To this end, let a ∈ A ∩ rB, hence a = rb for some b ∈ B. Hence
the equation rx = a ∈ A has a solution b ∈ B. By hypothesis, it must also have a solution
a0 ∈ A. Then a = ra0 ∈ rA, as required.

Conversely, suppose that (iv) holds. Let M = rR be a maximal ideal of R and assume
that the equation rx = a ∈ A has a solution b ∈ B. Then a = rb ∈ A ∩ rB = A ∩ MB =

MA = rA, so the equation rx = a has a solution in A. �

R 2.2. (1) The linking property between neatness and coneatness is condition
(iii) of Theorem 2.1. Now assume that every maximal ideal M of R is only
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finitely generated, say M = r1R + · · · + rnR, instead of principal. Then neatness of a
submodule A of a module B is equivalent to the condition that the system of equations

rix = ai ∈ A (i ∈ I)

with unknown x has a solution in A whenever it has a solution in B [11, Lemma 2.2].
On the other hand, by Theorem 2.1 (iv)⇔(v), coneatness of A in B is equivalent to the
condition r1A + · · · + rnA = A ∩ (r1B + · · · + rnB), that is, the equation

r1x1 + · · · + rnxn = a ∈ A

with unknowns x1, . . . , xn has a solution in A whenever it has a solution in B.
Comparing these characterisations of neatness and coneatness, one should not expect
their equivalence, even over a commutative ring such that every maximal ideal is
finitely generated. Specific examples are given by Fuchs [11, Examples 3.2, 3.3].

(2) The condition that every maximal ideal of R is principal is not necessary in
order to have the coincidence of the two concepts of neatness and coneatness. Indeed,
if R is a Prüfer domain with all maximal ideals finitely generated, then it is always an
N-domain (in the sense that neatness and coneatness are the same) [11, page 142].

E 2.3. Let R = K[x1, . . . , xn] be the polynomial ring in commuting indetermi-
nates x1, . . . , xn over a field K. Then R is a Noetherian domain (for example, [3,
Theorem 7.5]). In general, (x1 − a1, . . . , xn − an) with a1, . . . , an ∈ R is a maximal
ideal of R which is not principal. If n = 1 and K is algebraically closed, the maximal
ideals of R are of the form (x1 − a1)R with a1 ∈ R, so they are principal.

3. Absolutely neat (coneat) modules

A module is called absolutely neat (coneat) if it is a neat (coneat) submodule of
any module containing it. In this section we study closure properties of the classes of
absolutely neat (coneat) submodules. They will have a certain degree of similarity, but
one should also expect differences given by the fact that neatness and coneatness do
not coincide in general.

E 3.1. In [11, Example 3.3] it was shown that, if R is an integral domain having
a simple module S with projective dimension p.d.(S ) > 1, then there exists a short
exact sequence 0→ D→ M→ S → 0 which is not neat such that T ⊗R D = 0 for every
simple module T . The latter clearly implies that D is absolutely coneat, but D is not
absolutely neat.

The following characterisation of absolutely coneat modules is known.

T 3.2 [7, Theorem 2.2]. The following are equivalent for a module A.

(i) A is absolutely coneat.
(ii) A is a coneat submodule of an injective module.
(iii) A is a coneat submodule of an absolutely coneat module.
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Now we give a similar characterisation for absolutely neat modules.

T 3.3. The following are equivalent for a module A.

(i) A is absolutely neat.
(ii) A is a neat submodule of an injective module.
(iii) A is a neat submodule of an absolutely neat module.

P. (i)⇒(ii). If A is absolutely neat, then it is neat in its injective hull E(A).
(ii)⇒(iii). This is clear.
(iii)⇒(i). Assume that A is a neat submodule of an absolutely neat module B, and

consider the induced neat short exact sequence 0→ A
β
→ B→C→ 0 in Mod(R). Let

α : A→ D be a monomorphism. Now consider the pushout of α and β to obtain the
following commutative diagram in Mod(R) with exact rows:

0 // A
β

//

α

��

B //

γ

��

C // 0

0 // D
δ // P // C // 0

Since B is absolutely neat, the monomorphism γ : B→ P is neat. It follows that
δα = γβ is a neat monomorphism, so α must be a neat monomorphism [17, 33.2].
Therefore, A is absolutely neat. �

We may add two more equivalent conditions to absolute neatness. Denote by τD the
Dickson torsion theory, that is, the hereditary torsion theory generated by all simple
modules [9].

T 3.4. The following are equivalent for a module A.

(i) A is absolutely neat.
(ii) For every maximal ideal M of R, A is injective with respect to the canonical short

exact sequence
0→ M→ R→ R/M→ 0.

(iii) A is τD-injective.

P. (i)⇒(ii). Assume that A is absolutely neat. By Theorem 3.3, A is a neat
submodule of some injective module E. Let M be a maximal ideal of R. Then we
have an induced commutative diagram in Mod(R) with exact rows:

0 // M
u //

α

��

R

β

��

v // R/M //

γ

��

0

0 // A
f

// E g
// E/A // 0

Since A is neat in E, it follows that A is injective with respect to the upper short exact
sequence by Theorem 2.1.
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(ii)⇒(i). Assume that A is injective with respect to the canonical short exact
sequence 0→ M→ R→ R/M→ 0 for every maximal ideal M of R. Let M be a
maximal ideal of R, and consider a commutative diagram in Mod(R) with exact rows

0 // M
u //

α

��

R

β

��

v // R/M //

γ

��

0

0 // A
f

// B g
// C // 0

By hypothesis, there exists a homomorphism w : R→ A such that wu = α. Then A is
neat in B by Theorem 2.1.

(ii)⇔(iii). This follows by [2, Corollary 1.4.3]. �

Since direct limits commute with tensor product, it is straightforward to check that
the class of absolutely coneat modules is closed under arbitrary direct limits. In the
case of absolute neatness we have a weaker property. Note that neatness is an inductive
property (in the sense that direct limits of neat short exact sequences are also neat
short exact sequences) if and only if every maximal ideal of R is finitely generated [11,
Lemma 2.4].

P 3.5. Let R be a commutative ring such that every maximal ideal of R is
finitely generated. Let (Ai, fi j)I be a direct system of absolutely neat modules with
direct limit (lim

−→
Ai, fi) such that each fi j is a monomorphism. Then lim

−→
Ai is an

absolutely neat module.

P. First note that, since each fi j is a monomorphism, so is each fi. Let

0→ lim
−→

Ai
u
→ B

v
→C→ 0

be a short exact sequence in Mod(R). For every i ∈ I, ui = u fi is a monomorphism
and we have an exact sequence 0→ Ai

ui
→ B

vi
→Ci→ 0, which is neat because Ai is

absolutely neat. Now let S be a simple module. For every i ∈ I, Ai is absolutely neat,
so Theorem 2.1 yields the following induced short exact sequence:

0→ HomR(S , Ai)→ HomR(S , B)→ HomR(S ,Ci)→ 0.

Since every maximal ideal of R is finitely generated, S must be finitely presented.
Now using the exactness of direct limits and the isomorphisms lim

−→
HomR(S , Ai) �

HomR(S , lim
−→

Ai) and lim
−→

HomR(S ,Ci) � HomR(S , lim
−→

Ci) � HomR(S ,C), we have the

following induced short exact sequence with canonical homomorphisms:

0→ HomR(S , lim
−→

Ai)→ HomR(S , B)→ HomR(S ,C)→ 0,

which shows that the initial short exact sequence is neat by Theorem 2.1. Hence lim
−→

Ai

is an absolutely neat module. �
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P 3.6. The class of absolutely neat modules is closed under direct products
and extensions. If every maximal ideal of R is finitely generated, then the class of
absolutely neat modules is closed under direct sums.

P. Let (Ai)i∈I be a family of absolutely neat modules. Let u :
∏

i∈I Ai→ B be a
monomorphism in Mod(R). For every j ∈ I, let f j : A j→

∏
i∈I Ai be the canonical

embedding. Then u j = u f j : A j→ B is a monomorphism, which is neat because A j is
absolutely neat. Denote by C j the cokernel of u j. Now let S be a simple module. Then
for every j ∈ I we have an induced short exact sequence

0→ HomR(S , A j)→ HomR(S , B)→ HomR(S ,C j)→ 0,

hence a short exact sequence

0→
∏
j∈I

HomR(S , A j)→ (HomR(S , B))I →
∏
j∈I

HomR(S ,C j)→ 0

and so a short exact sequence

0→ HomR

(
S ,

∏
j∈I

A j

)
→ HomR(S , BI)→ HomR

(
S ,

∏
j∈I

C j

)
→ 0.

It follows that the canonical monomorphism
∏

j∈I A j ↪→ B ↪→ BI is neat, and so the
monomorphism

∏
j∈I A j ↪→ B is neat [17, 33.2]. Hence

∏
i∈I Ai is an absolutely neat

module.
The closure of the class of absolutely neat modules under extensions follows by

[17, 35.2]. If every maximal ideal of R is finitely generated, then the closure of the
class of absolutely neat modules under direct sums follows by Proposition 3.5. �

P 3.7. The class of absolutely coneat modules is closed under direct sums
and extensions. If every maximal ideal of R is finitely generated, then the class of
absolutely coneat modules is closed under direct products.

P. The closure of the class of absolutely coneat modules under direct sums follows
easily, because direct sums commute with tensor products. The closure of the class of
absolutely coneat modules under extensions follows by [7, Theorem 2.4].

Let (Ai)i∈I be a family of absolutely coneat modules. Let u :
∏

i∈I Ai→ B be a
monomorphism in Mod(R). For every j ∈ I, let f j : A j→

∏
i∈I Ai be the canonical

embedding. Then u j = u f j : A j→ B is a monomorphism, which is coneat because
A j is absolutely coneat. Now let S be a simple module. Then for every j ∈ I
we have an induced monomorphism S ⊗R A j→ S ⊗R B, hence a monomorphism∏

j∈I(S ⊗R A j)→ (S ⊗ B)I . Since every maximal ideal of R is finitely generated,
S is finitely presented, and so tensor products commute with direct products.
Then we have a monomorphism S ⊗R (

∏
j∈I A j)→ S ⊗R BI . It follows that the

canonical monomorphism
∏

j∈I A j ↪→ B ↪→ BI is coneat, and so the monomorphism
u :

∏
j∈I A j→ B is coneat. Hence

∏
i∈I Ai is an absolutely coneat module. �

https://doi.org/10.1017/S0004972713000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000622


350 S. Crivei [8]

4. Absolutely neat (coneat) modules over particular rings

Every injective module is absolutely neat and absolutely coneat by Theorems 3.2
and 3.3. In the case of a commutative domain we have the following result.

T 4.1. Let R be a commutative domain such that every maximal ideal is
principal. Then the following are equivalent.

(i) R is Noetherian.
(ii) Every absolutely neat (coneat) module is injective.

P. Under the hypotheses on R, neatness and coneatness coincide by Theorem 2.1.
(i)⇒(ii). Since R is a Noetherian domain such that every maximal ideal of R is

principal, it follows that every τD-injective module is injective [8, Corollary 2.4.3].
Then every absolutely neat module is injective by Theorem 3.4.

(ii)⇒(i). Let (Ai)i∈I be a family of injective modules. Then each Ai is
absolutely neat, and so

⊕
i∈I Ai is absolutely neat by Proposition 3.6. Now

⊕
i∈I Ai

is injective, which shows that R is Noetherian by the Bass–Papp theorem (for
example, [14, 3.46]). �

E 4.2. Let (Ki)i∈I be an infinite family of fields, and let R =
∏

i∈I Ki. Then R is a
commutative von Neumann regular ring, and so a V-ring. Then every simple module is
injective, whence it follows that every module is absolutely coneat [7, Example 3.1].
In particular, the ideal J =

⊕
i∈I Ki of R is absolutely coneat. But J is not finitely

generated, hence J is not injective. Therefore, there are absolutely coneat modules
which are not injective.

A ring R will be called max-hereditary if every maximal ideal is projective.

E 4.3. Recall that a commutative ring R is called Rickart (or a PP-ring) if every
principal ideal of R is projective [14, 7.48]. Then any commutative Rickart ring
with every maximal ideal principal is max-hereditary. An integral domain R is max-
hereditary if and only if it is an N-domain [11, Theorem 5.2], so every Prüfer domain
with all maximal ideals finitely generated is max-hereditary.

T 4.4. The following are equivalent.

(i) R is max-hereditary.
(ii) The class of absolutely neat modules is closed under homomorphic images.

P. (i)⇒(ii). Assume that R is max-hereditary. Let B be an absolutely neat
module, and A a submodule of B. Also, let M be a maximal ideal of R. Since R is
max-hereditary, M is projective. The short exact sequence 0→ M→ R→ R/M→ 0
induces an exact sequence

Ext1R(M, A)→ Ext2R(R/M, A)→ Ext1R(R, A)

in which the first and the last terms are zero. Then Ext2R(R/M, A) = 0. The short exact
sequence 0→ A→ B→ B/A→ 0 induces an exact sequence

Ext1R(R/M, B)→ Ext1R(R/M, B/A)→ Ext2R(R/M, A).
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The first term is zero by Theorem 3.4, because B is absolutely neat. It follows that
Ext1R(R/M, B/A) = 0, and so B/A is absolutely neat by Theorem 3.4. Hence (ii) holds.

(ii)⇒(i). Assume that the class of absolutely neat modules is closed under
homomorphic images. Let M be a maximal ideal of R. Let N be a module,
and E(N) its injective hull. Then E(N)/N is absolutely neat by hypothesis, so
Ext1R(R/M, E(N)/N) = 0 by Theorem 3.4. The short exact sequence 0→ N→ E(N)→
E(N)/N→ 0 induces an exact sequence

Ext1R(R/M, E(N)/N)→ Ext1R(R/M, N)→ Ext2R(R/M, E(N))

in which the first and the last terms are zero. The short exact sequence 0→ M→ R→
R/M→ 0 induces an exact sequence

Ext1R(R, N)→ Ext1R(M, N)→ Ext2R(R/M, N)

in which the first and the last terms are zero. It follows that Ext1R(M, N) = 0, and so M
is projective. Therefore, R is max-hereditary. �

T 4.5. The following are equivalent.

(i) R is semisimple.
(ii) R is absolutely neat and every maximal ideal of R is finitely generated projective.

P. (i)⇒(ii). Assume that R is semisimple. Then clearly every maximal ideal
of R is finitely generated projective. For every (maximal) ideal M of R, the short
exact sequence 0→ M→ R→ R/M→ 0 splits, so every module is absolutely neat by
Theorem 3.4. Thus R is absolutely neat.

(ii)⇒(i). Assume that R is absolutely neat and every maximal ideal of R is finitely
generated projective. Let M be a maximal ideal of R. Then M is finitely generated
projective, so it is a direct summand of a finite direct sum of copies of R. Since
R is absolutely neat, so is M by Proposition 3.6. Then the short exact sequence
0→ M→ R→ R/M→ 0 splits. Hence every maximal ideal of R is a direct summand.
Then R is semisimple by [15, Proposition 3.25]. �
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