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ABSTRACT. The freezing of sea water to the base of an ice shelf can give rise to large
patches of accumulated ice, a phenomenon known as marine ice. In this study a numerical
method is presented for calculating the thickness of the marine-ice layer using an ice-
shelf-ocean model. The present-day modeling paradigm of ice-shelf-ocean interaction
usually involves the fixed specification of the ice-shelf geometry while the ocean circulation
in the cavity beneath the ice shelf evolves freely. This approach relies on several assumptions,
such as steady-state ice-shelf thickness and ice-shelf flow fields, in order to make reasonable
quantitative estimates of the thermodynamic exchange processes occurring at the ice-shelf
base. This paper discusses the impact of these and other assumptions on the estimation of the
thickness of the marine-ice layer. Model simulation results are presented for an idealized ice-
shelf-ocean configuration as a demonstration of the feasibility of the numerical method. A
sensitivity analysis is given so as to quantify the relative uncertainty in the marine-ice thick-
ness that arises from uncertainties in the model input parameters, these being principally the

ice-shelf flow field, the basal accumulation rate and the ice-shelf thickness field.

1. INTRODUCTION

The purpose of this study is to investigate, using a numerical
model, aspects of the melting and freezing processes that
occur at an ice-shelf base. Melting occurs at an ice-shelf base
because the sea water residing in the cavity beneath an ice
shelf is relatively warm compared to the in situ pressure-
depressed freezing point (Millero, 1978); freezing occurs
because warm waters in contact with the ice-shelf base
undergo cooling and freshening and rise along the base,
leading to the formation of frazil ice (Lewis and Perkin,
1986). At the ice-shelf base, the net accumulation over time
of this ice can produce a substantially thick layer of ice,
commonly referred to as marine ice. This accumulated layer
has been observed beneath all the major ice shelves of
Antarctica, i.e. the Ronne Ice Shelf (Thyssen and others,
1993; see their fig. 5), the Filchner Ice Shelf (Grosfeld and
others, 1998; see their fig. 3) and the Amery Ice Shelf (Fricker
and others, 2001; see their fig. 3b).

The thickness of the accumulated ice at an ice-shelf base
1s difficult to quantify, as direct observational evidence is
lacking due to the logistical difficulty of accessing that
remote surface. Some point measurements have been made
by ice-core drilling from the surface down through to the
base. For instance, on the Amery Ice Shelfa marine ice layer
of approximately 150 m has been detected (Morgan, 1972),
on the Ross Ice Shelf a 6 m layer (Zotikov and others, 1980),
and on the Ronne Ice Shelf a layer of >60m (Oerter and
others, 1992). As compared to point measurements, a more
spatially complete pattern of marine-ice thickness can be
obtained by the use of airborne radio-echo sounding (Robin
and others, 1983). As an example of this method, over the
Ronne Ice Shelf a pattern of centralized accumulation of
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marine ice has been detected using this method (Thyssen
and others, 1993) that shows a maximum thickness of
> 350 m. As another example, over the Amery Ice Shelf a
pattern of thickness has been found, concentrated to the
northwest, with a maximum thickness of 190m (Fricker
and others, 2001).

With an objective of estimating the contribution of basal
thermodynamic processes to the overall mass balance of
present-day ice shelves, some researchers have turned to
numerical modeling. They have adopted the practice of using
a fully three-dimensional, dynamical-thermodynamical
ocean model but with a thermodynamical-only ice-shelf
model (e.g. Determann and Gerdes, 1994; Grosfeld and
others, 1997; Williams and others, 1998; Holland and Jenkins,
2000). In such studies the ice-shelf “model” is in reality
simply a parameterization of the fluxes of heat and fresh
water that occur at the ice-shelf-ocean interface. The ice-
shelf flow field does not play an explicit role in such a frame-
work. Part of the justification for this approach lies with the
significant disparity in time-scales between the slowly
flowing ice shelf (e.g. 1kma ') and the relatively fast-
flowing sub-ice-shelf waters (e.g. 10cmss ). Adopting this
approach, one can simulate the spatial pattern of melting
and freezing at an ice-shelf base. Such simulations are
meaningful to the extent that a key assumption holds true:
that the ice shelf is in a steady-state balance with respect to
all possible sources and sinks of mass and heat.

The ability of a numerical model to simulate a marine-
ice thickness layer, in rough accord with that directly
observed, is useful because it lends greater confidence in
the model-derived basal melting and freezing rates.
Accurate knowledge of such rates is, after all, a critical
component in making meaningful ice-shelf mass-balance
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estimates. The rates themselves are extremely difficult to
derive by direct observational techniques. Some point
measurements have been taken from holes opened at the
ice-shelf base by hot-water drilling. An ultrasonic echo
sounder has been deployed benecath one such hole in
Ekstromisen and successfully used to directly record basal
ablation (Nixdorf and others, 1994). On the Filchner—
Ronne, an alternative direct technique, based on electro-
magnetic measurements taken from transmission lines
inserted into the melt hole, has been demonstrated capable
of making relatively accurate measurements of basal
ablation (Grosfeld and Blindow, 1993). The logistical
support required for a single point measurement is
significant and may thus preclude such direct techniques
from providing us with spatial patterns of basal melting
and freezing rates that span entire ice shelves.

Taking into consideration the above points, there is
justification then in developing a numerical method for
determining the present-day spatial pattern of thickness of
the marine-ice layer beneath the major ice shelves of
Antarctica. In this paper, we describe a numerical
technique for calculating the thickness of the accreted
marine-ice layer. The technique is based on mass conser-
vation and is outlined in section 2. Some details about the
existing ice-shelf and ocean models, which provide the
necessary “forcing” data to the marine-ice thickness model,
are given in section 3. An application of the modeling
technique to an idealized ice-shelf-ocean geometry,
illustrating the resulting steady-state pattern of marine-ice
thickness, is presented in section 4. That section includes an
analysis of the relative uncertainty in the computed thick-
nesses arising due to uncertainties in the forcing fields. The
main conclusions of this work are drawn in section 5.

2. MARINE ICE-MODEL

2.1. Thickness conservation equation

The idea of computing the thickness of the marine-ice layer,
in a one-dimensional sense along a given horizontal flowline
following the bottom of an ice shelf and based on the
principle of conservation of mass, has been previously
described (e.g. Budd and others, 1982), and applied to
Antarctic ice shelves (e.g. Determann, 1991; Williams, 1999).
We now extend and generalize the one-dimensional hori-
zontal description by carrying it over into a two-
dimensional horizontal description in spherical coordinates
as a step towards permitting present-day ice-shelf-ocean
models to produce two-dimensional horizontal patterns of
marine-ice thickness that can be compared with observed
patterns. The goal is to compute the thickness of the marine-
ice layer given complete knowledge of all other relevant
features of the ice shelf] such as its total thickness, horizontal
flow field and basal accumulation rate.

We simplify the treatment of the ice shelf by considering
it to be vertically homogeneous such that the meteoric and
marine-ice components have the same density. The statement
of mass conservation under conditions of incompressible flow
becomes equivalent to the statement of volume conservation.
The volume balance equation for a given vertical column of
ice shelf is then derived by treating the ice surface and base
as material surfaces upon which ice-volume sources and sinks
act. At the ice-shelf surface z; meteoric ice accumulates at a
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Fig. 1. Avertical slice in the yz-coordinate plane showing the ice
shelf; the ocean waters in the sub-ice-shelf cavity, and the under-
lying bedrock. The ice shelf is of a total thickness Hy which
includes both the meteoric and marine-ice contributions. The
surface of the ice shelf is located at zy, and the base at zy,. The
respective accumulation rates of snow and ice at the surface and
the bottom are G and ay, respectively (both taken at the ice-
equivalent density ), where the overlying dot notation represents
a time derivative. The marine-ice thickness component of the
total thickness is hy, and is shown as the darker, shaded patches.
The vertically uniform flow of the ice shelf is V. while the
vertically non-uniform flow of the ocean waters is V..

rate ds and thus the position of the ice-shelf surface is the kine-
matic boundary condition
Dz,
Dy

= ws + dg , (1)

where w; 1s the vertical velocity at the surface. In this context,
the material derivative assumes the two-dimensional form

D o0 0 0

D—tza‘f'Ui%-f—V{a—y. (2)
The last relation is strictly valid only for flat geometries, but
the approximation is well justified by the fact that the
neglected curvature terms are very small in the present
application because of the relatively small horizontal scale of
an ice shelf as compared to the scale of the Earth. The
components of the depth-independent ice-shelf horizontal
flow velocity are defined as U; and Vi, or equivalently
expressed in vector form as V, = (Ui, V) (see Fig. 1). Through-
out this paper the independent variables x,y, z and t have
their usual meanings. Analogous to the surface, the position
of the ice-shelf base z;, changes as it accumulates marine ice at
a rate ay, so that the kinematic boundary condition is

Dzb -
Dt
where wy, 1s the vertical velocity at the base. The total thick-

ness of the ice shelf is defined as the difference H; = z5 — 2y,
Vertically integrating the incompressibility condition for the

wy, — dy , (3)

three-dimensional flow of the ice shelf, assuming no vertical
shear in the horizontal flow field, applying the boundary
conditions of Equations (1) and (3), then a conservation
equation for the total ice-shelf thickness is derived as
OH;
ot

The internal interface between the meteoric and marine ice is

+ V- (HV)) = ds + a, . (4)

taken to be a material surface since we do not allow any trans-
formational processes, such as molecular diffusion, to operate
at that interface. This means that we can write separate
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relations, based on Equation (4), for the meteoric h, and
marine hy, layers as

i§+v-@ﬁgz@, (5)
z$+v(%ﬁ):@. (6)

Built into this model is the reasonable assumption that the
flow velocity of the meteoric and marine-ice layers is
identical, or equivalently that there is no vertical shear in the
horizontal ice-flow field (Sanderson and Doake, 1979).Io solve
Equation (6), and thus obtain the thickness of the marine-ice
layer, we need to know the ice-shelf velocity field V. and the
basal accumulation rate ay,. Later on, we provide estimates for
these, with the ice-shelf velocity field being obtained from a
solution of the ice-shelf flow evolution equation (section 3.2)
and the basal accumulation rate derived from a three-layer
formulation of heat and fresh-water exchange between the
ice-shelf base and the ocean waters in the sub-ice-shelf cavity
(section 3.3). For the moment, we assume these quantities as
known. We also later examine the sensitivity of the simulated
marine-ice thickness to uncertainty in the magnitude of these
“forcing” quantities (section 4.2).

2.2. Numerical solution technique

We describe an accurate, efficient algorithm to numerically
solve Equation (6). We first introduce subscripts which refer
to a grid index, namely, ¢ and j referring to lattice positions
in the £ and g coordinate directions, respectively, and a super-
script t which refers to time index, or equivalently, an iteration
index. The discretization of the volume-conservation relation,
Equation (6), is carried out on a C-grid stencil (Arakawa and
Lamb, 1977; see Fig. 2a).

We represent the divergence operator of Equation (6) in
spherical coordinates and we temporarily utilize the Earth’s
spherical coordinate notation with A being the longitude
and ¢ the latitude coordinate, both expressed in degree
angle measure. The flux-divergence term in the volume-
conservation relation, Equation (6), can be expressed in
terms of a volume-flux vector F in a (), ¢) spherical-
coordinate system as

F=F\+F, (7)
with A and ¢ being the unit vectors in the longitudinal and
latitudinal directions, respectively, and F* and F the respec-
tive volume fluxes. We can then rewrite this expression in

terms of a coordinate system defined with the independent
variables (z, ) defined according to

T = Rcos o), y= Rop, (8)

where the differential relations between the two coordinate
systems are

Or = Rcos ¢ O\, Oy = RO¢, (9)

and the first differential relation makes additional use of the
fact that ¢ is independent of x. We introduce a “distance”
function 6 defined as

8= Rcosp & = RCOS(%)CS)\’¢ ; (10)

where 6" is a constant.

The use of a C-grid stencil means that the lateral volume
fluxes will be defined at the vector gridpoints, while the flux
divergence V - F will be defined at the scalar, or marine-ice
thickness, gridpoints (see Fig. 2b). Using a first-order accurate
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Fig. 2. Grid stencil for discretization of the marine-ice thickness
layer evolution equation. (a) The stencil has scalar quantities,
v.e. the marine-ice thickness hi_%’ il defined by the solid-circle
symbols and referred to as the scalar gridpoints, occurring at the
intersection of the solid lines. The vector components, i.e. the ice-
Slow field U; j and V; ;, defined by the solid-diamond symbols
and referred to as the vector gridpoints, occur at the intersection
of a solid and a dashed line. This arrangement is known as the
C-grid stencil ( Arakawa and Lamb, 1977). The grid indices are
denoted by subscripts © and j in the T and § directions, respect-
wely, where full-integer indices occur at the vector gridpoints
and half-integers occur at the scalar gridpoints. (b) Stencil
definitions for auxiliary variables used in the flux divergence
calculation. F'; and FZ‘UJ are the zonal and meridional volume
Sluxes and are defined at the vector gridpoints. The grid spacing
in the zonal and meridional directions is defined by the
“istance” functions and 6] ; and 53;{]-, respectively, defined at
the vector gridpoints. The grid spacing at scalar gridpoints,
represented by 6; 44 is obtained by averaging neighboring
grid spacings as defined at vector points.

Taylor series expansion of the volume-flux vector F' leads to
the finite-difference expression of the flux divergence as

i Y x Y Y T Y Qx
60— F6 + F 60 0 — F 67 a1

&2,
i+, 41

V. F

This expression fully retains the spherical-coordinate
attributes of the underlying grid.

A potential mechanism leading to undesirable negative
marine-ice thickness may occur when the forcing term a,
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goes negative, 1.e. during basal melting events. When this
term is negative, and there is no marine ice present, we
suppress it. Consequently, we insist that the actual source—
sink term for the marine ice is expressed in terms of a related
quantity ar, later referred to as the “corrected”accumulation
rate, as

Va, >0

T ap
= { i H (hy — €)
where H|[] represents the Heaviside step function and € is a
small positive quantity.
Using the spatial discretization of Equation (11) we carry
out an iterative solution to the marine-ice thickness relation,
Equation (6), by discretizing it in time as

t+1 _ Kt
hz‘%gﬁ - hzﬁ,jﬁ
T Y _ Lz SY Y T _ Y ST
s [ Frrni®ing = B+ g8 — Bl
2
I
2J7T73
+ 5t(“b)i+§,j+§ ) (13)

where 0t is the effective “time-step” of the iteration procedure
as it marches towards a steady-state solution. This is a relaxa-
tion procedure whereby we terminate the algorithm upon
minimizing sequential differences in the L; norm of the mar-
ine-ice thickness according to the measure

A = 1A < e (14)

where the tolerance 1s specified as a small fraction normalized
by the number of gridpoints as ¢ = [1074 . NZNy]. In the
last expression, N* and NY are the number of gridpoints in
the £ and g directions, respectively.

An appropriate value for the “time-step” increment 0t
can be derived with a physical argument based on the travel
time for an average particle to traverse the entire ice shelf by
entering at the grounding line and leaving at the ice-shelf
front. For a typical ice shelf of dimension L =500km and
travel velocity U =0.5kma ' the total traversal time would
be of order T = L/U =~ 10? years. This is a rough estimate of
the time for the marine-ice thickness to establish an equilib-
rium pattern, and so a reasonable ¢t is a small fraction of
this. In practice, therefore, we take 6t =1year and iterate
for a maximum total length of time 7' = 10" years, unless
the condition of Equation (14) is met first, in which case the
algorithm terminates. It is also noted that this particular
integration period and time-step apply only to the solution
of the marine-ice thickness layer equation and not to the
ocean model, which is later introduced.

In Figure 3 we illustrate a plan view of the ice shelf] the
key model variables and also the treatment of the lateral
boundary conditions. A further discussion of the detailed
aspects of the numerical procedure (e.g. the design and
application of the lateral boundary conditions as depicted in
Figure 3) may be found elsewhere (http://fish.cims.nyu.edu/
project_oisi/marine_ice_thickness/j_glac_supplement.html).

3. SUPPORTING MODELS

The marine-ice thickness model requires knowledge of vari-
ous ice-shelf and ocean “forcing” fields, most notably the ice-
shelf thickness, ice-shelf velocity and ice-shelf basal accumu-
lation rate. The evaluation of the latter field can be achieved
via the use of a three-dimensional ocean-general-circulation
model, a brief description of which is provided at the end of
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Fig. 5. Plan view in the xy-plane of an ice shelf surrounded by
a continental ice sheet and open ocean. The heavy black lines
show the ice flow Vi (x:, ) originating from the ice sheel, tra-
versing the grounding line ( dotted line ), flowing across the ice
shelf, and ultimately reaching the ice-shelf front ( dashed line ).
The darker, shaded paiches show a marine-ice layer
hm(x,y) embedded at the underside of the ice shelf of thick-
ness Hi(x,y). The ice shelf is delimited by the horizontal
domain S and enclosed by the lateral boundary OS) The
boundary conditions applied along the lateral boundary OS2
are of zero marine-ice thickness hyy, = 0 along the grounding
line and zero normal gradients Ohy, / On along the remaining
boundaries (where N denotes the outward normal direction ).

this section. The development of that ocean model has
occurred within the framework of a longer-term modeling
effort, referred to as the Polar Ocean Land Atmosphere Ice
Regional (POLAIR) modeling system, which is focused on
investigating various aspects of ice—ocean interaction, the
phenomena of marine-ice layers being one such aspect. We
now describe the “supporting” models that yield the informa-
tion necessary to compute marine-ice thickness patterns
according to the discretized relation of Equation (13).

3.1. Ice-shelf thickness

A prognostic equation describing the evolution of the ice-
shelf thickness, as derived from the standard fluid dynami-
cal assumptions of mass conservation and incompressibility,
was given as Equation (4). In the steady-state context of the
present study we will not be evolving the ice-shelf thickness,
but rather will be taking it as a specified, constant field
throughout the model integration. Part of the motivation
for this approach is that in the situation whereby one would
like to determine the marine-ice thickness pattern of a real
Antarctic ice shelf, one would start by using as input data
the present-day observed thickness pattern of the ice shelf.
This pattern, whether derived from radio sounding estimates
or satellite altimeter measurements, would of necessity
include both the meteoric and marine-ice components, thus
giving a “total” ice-shelf thickness field H;. Since the marine-
ice thickness field hy, is already included within such a total
ice-shelf thickness field H;, and since we are interested in
determining the present-day pattern of marine-ice thickness,
we will then not evolve the total ice-shelf thickness pattern.
The 1dealized ice shelf we are using takes the shape of a
“sector” in spherical coordinates. It is oriented in the
meridional direction, with lines of constant longitude
forming the sidewalls. The grounding line is located at the
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Fig. 4. Plan view of model domain for idealized ice-shelf
calculations in a spherical-coordinate system. The ocean
domain extends south—north_from 85° S to 75° S and west—
east from 10° W to 10° E. The ice-shelf domain, shown as the
stippled area, exists only in the southern part of the ocean
domain. The grounding line occurs at the latitude line 85° S
(dotted line) across which flows a specified ice volume flux
of 20 km’a . The ice-shelf front occurs across the latitude line
80° S (dashed line). The ice shelf is bounded to the west and

east by sidewalls through which no volume flux may occur.

southern extreme of the sector along a line of constant
latitude, and the ice front is located along a more northerly
line of constant latitude. There are no longitudinal thickness
variations. The complete, idealized model domain as
sketched in Figure 4 shows the ice shelf being fully contained
within a larger oceanic domain. We refer to that part of the
ocean domain not covered by the ice shelf as the open-ocean
domain, and to the complementary part as the sub-ice-shelf
domain. The entire domain is horizontally discretized with a
grid spacing of 6 = 1.0° angular measure. At the ground-
ing line this equates to a grid spacing of about 10 km.

Given an idealized ice shelf having spatial extent as out-
lined, we need to create a meaningful total thickness pattern.
This can be achieved by following along an approximated
theory that states that the thickness gradient of an ice shelf
is independent of accumulation rates, ice-shelf thickness and
ice-shelf velocity fields (Sanderson, 1979). The meridional
thickness gradient 0H;(y)/0y for a meridionally oriented
idealized ice shelf is then approximated as

OHi(y) _ 27 (15)

) A
Y pigW(y)<1—§)

where the constant 7y is a stress-related parameter, taken to
be 90 kPa, W (y) is the meridionally dependent width of the
ice shelf, g is the acceleration due to gravity taken as

9.8lms ° p is the ice-shelf density in kgm °, and p, is a
mean ocean water density of 1025.0kgm °. Equation (15)
states that the thickness gradient is inversely proportional
to the width of the ice shelf, a feature confirmed by field
data (Sanderson, 1979). Although the sidewalls of the ice
shelf are lines of constant longitude, the ice shelf does
actually widen as one traverses it in a northerly direction
because of the use of a spherical-coordinate system. The
width W(y) of the idealized ice shelf is a function then of
only the meridional coordinate y.
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Fig. 5. North—south transect of the idealized ice-shelf properties:
() thickness Hy inunits of m, (b) density inunits p; of kgm >,

and (¢) surface elevation zs in units of m.

It should be noted that Equation (15) was originally
derived in the context of a constant-width domain, and the
validity of its application in the present context of a varying-
width domain has not been proven. However, as Equation
(15) is used simply for the purpose of creating an idealized
ice-shelf thickness pattern, we overlook this point in the
present idealized application.

The ice-shelf thickness is evaluated starting at the ice-
shelf front y¢, where the ice-shelf thickness is specified as a
constant of integration, and then integrating Equation (15)
southward to a latitude line ¥, so

v oH(Y)
oy

1) = - |

Yt

dy . (16)

The numerical integration of Equation (16) on a spherical-
coordinate grid is a straightforward task. It conveniently gives
a discrete, constant ice-shelf profile to use in the computation
of the marine-ice thickness field. Setting the ice-shelf front
thickness H (yr) to be 100 m, we arrive at the ice-shelf profile
depicted in Figure 5a where the thickness at the grounding
line H(y,) has reached a value of just over 800 m.

Knowing the ice-shelf thickness, there are two additional
quantities that we can now derive, namely, the ice-shelf
density and surface elevation (Thyssen, 1988). The spatially
dependent density is a consequence of assuming a constant-
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thickness firn layer residing near the ice-shelf surface. A well-
known empirical relation (Thyssen, 1988) is

13800.0
Hi(y) '

where at present the ice-shelf thickness Hj(y) derives from
Equation (16). The density p;(y) in the above expression
has units of kg m ~ when the thickness H;(y) is expressed in
m. The computed density is shown in Figure 5b. Knowing
the ice-shelf density p;(y), we can then compute the ice-shelf
surface elevation z4(y) from Archimedes’ principle as

a) = (129 11, (18)

Po

pily) = 911.0 — (17)

where knowledge of the density pi(y) comes from Equation
(17) and the thickness H;(y) from Equation (16). The computed
surface elevation is shown in Figure Sc.

3.2. Ice-shelf velocity

3.2.1. Governing equations

For a unit volume of ice shelf, the basic differential equation
describing the flow field follows from the statement that the
divergence of the three-dimensional stress tensor exactly
equals the only external force operating on the system,
namely, that of gravity, and so

V7= —nd, (19)

where T is the three-dimensional stress tensor, having com-
ponents denoted 7;5, and g is the gravitational acceleration
vector. The %7 subscripts are meant to indicate permutations
of the z,y and z coordinate directions. Instead of using
components of the stress tensor, this relation can be con-
verted into one involving the three-dimensional strain-rate
tensor & having components denoted €ij, by introducing a
flow law (Glen, 1955)

éij = ATNilTZv/j y (20)
where A is a temperature-dependent ice-stiffness parameter
having a value of approximately 20x10 Pa *s ! which
corresponds to ice at a temperature of about —20°C. In
Equation (20) we have also introduced 7, the effective
deviator stress, and TZ-IJ-, the components of the stress deviator
(see Paterson, 1994, for further details). The flow-law exponent
N is generally taken to be equal to three. Employing the usual
relation between strain rates and velocity gradients

. 1[0V v
i = 5 (81‘/ + 81}) ’ (21)

we can then transform Equation (19) from one based on
strains to one involving only velocity gradients. The resulting
two-dimensional horizontal-flow equations, after several
simplifying assumptions (Morland, 1987), become

e {wHi <2 8U1+8Vi)] +2 [vHi(aU%LaVi)} —pigh; 2

ox oxr Oy dy oy Oz ox
0 ou; oV, o, .. [oU;, oV 0z
g (4 il (1 — ol 225
v e et vt ) R

(22)
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The depth-averaged effective viscosity v is defined as

__ 1

Vin

J il 2+ oV 2+1 o, , OV, , OU oV, o
or Ay 4\ 0y O Ox Oy

-dz, (23)

in which the vertical integration is taken from the ice-shelf
base located at 2}, to the surface at z;. The effective viscosity is
inversely proportional to the flow strain rates, and so the flow
behavior is such that the ice “fluid” becomes less viscous the
more the flow field develops divergent and shear strains. In
the present study we ignore all terms involving the spatial gra-
dients of 7 occurring in Equation (22), a simplification adopted
in previous ice-shelf flow modeling (e.g. Determann, 1991).

3.2.2. Boundary conditions

Along the perimeter of the ice shelf] three different types of
boundary conditions are applied, depending on the exact
nature of the boundary. Along sections of the grounding line
where ice streams enter into the ice shelf we specify the
volume flux Wi, of the ice stream. Given that we know the
thickness Hij|y, of the ice shell at such locations, we can
convert the volume flux to a two-dimensional horizontal flow
vector V;|m that serves directly as a Dirichlet-type boundary
condition on the flow Equations (22). In the instance that a
simulation involved a real Antarctic ice shelf, such fluxes
would come from estimates based on field or satellite obser-
vations. In our idealized study, we specify a volume flux of
Uilp0 =20 km” a " along the entire southern grounding line,
a line of constant latitude. That flux is equivalent to a flow
velocity of about 0.05kma ', given the assigned thickness
and width of the ice shelf along the grounding line. Along
sections of the grounding line where there are no ice streams,
we specify the volume flux as zero, ¥;| 5, =0. In our idealized
ice-shelf configuration this is equivalent to stating that the
sidewalls of the ice shelf, which are lines of constant longitude,
have no ice-volume sources or sinks.

The treatment of boundary conditions along the ice-shelf
front is more complicated, partly because shear stresses are
introduced in the yz-plane by the unbalanced hydrostatic
pressure along the ice “cliff” Nonetheless, an approximated
expression for the strain rate for an ice shelf spreading in one
dimension (Thomas, 1973) in the form of a Neumann-type
boundary condition is

—

ovi _vy N
=377 A(pigzs)" (24)
on 15,9)

where n denotes the coordinate direction normal to the ice-
shelf front. In our idealized ice-shelf set-up, the ice front is
taken as a line of constant latitude, and so in Equation (24)
we could in fact replace n directly by y.

3.2.3. Numerical solution technique

Equations (22-24) governing the flow, the viscosity and the
boundary conditions, respectively, are discretized on a spher-
ical-coordinate C-grid in much the same manner as that out-
lined in section 2 for the marine-ice layer equation. The use of
a spherical coordinate system is fully accounted for in the
discretization process by making all gridcells “locally” square
exactly as for the marine-ice thickness equation. The solution
technique is that of successive overrelaxation (with an over-
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Fig. 6. Two-dimensional horizontal ice-shelf flow field V. The
Slow intensity is given by the color bar to the right and has units
of km a”". The equilibrium flow field, after approximately 2000
iterations, shows a peak flow of about 0.75kma " occurring
near the middle of the ice-shelf front, away from the retarding
influence of the sidewalls. Note that only the ice-shelf-covered
portion of the total domain is shown. Incidentally, the initial
Slow field is everywhere zero except for the specified velocity
along the grounding line where the velocity is approximately
0.05kma .

relaxation parameter of 1.2). The domain grid is separated
into a checkerboard-like grid yielding two “sub-grids”, which
we refer to as the “white” and “black” grids. On alternating
iterations the white gridcells are updated using data from the
black gridcells, and vice versa on the succeeding iteration.
Such a checkerboard scheme is amenable to automatic code
parallelization as it only uses gridcell data from nearest
neighbors and thus renders the solution technique efficient on
modern, parallel-computing platforms (Press and others,
1996) such as a multi-processor Cray J90 as used in this study.
Testing of the model showed that convergence, defined in
terms of the behavior of the L; norm of the ice-shelf kinetic
energy, reached 0.1% of its asymptotic value after less than
2000 iterations. The equilibrium flow field resulting from the
iteration procedure is shown in Figure 6.

3.3. Basal accumulation

The procedure outlined in section 2 for estimating the
marine-ice thickness is sensitive to the degree of realism with
which the basal accumulation and ablation rates can be
modeled. To make computation of such rates as accurate as
possible, it is necessary to determine the physical
characteristics exactly at the ice-shelf-ocean interface where
there are three physical constraints: the interface must be at
the freezing point and both heat and salt must be conserved
at the interface during any phase changes. This description
can be configured to give a system of three linear equations
in three unknowns, namely, the interface temperature T,
salinity S}, and the ice-shelf basal accumulation rate dy, all of
which may be solved for simultaneously. Such an approach is
commonly referred to as a “viscous-sublayer” parameter-
ization of thermodynamic exchange, because the actual fluxes
of heat and salt are modeled to occur by molecular diffusion
in a thin viscous fluid layer attached to the ice-shelf~ocean
interface. Details on the exact formulation of this modeling
approach are outlined elsewhere (Holland and Jenkins, 1999).
The simulated melt rate at the ice-shelf base arising from
application of the viscous-sublayer model is shown in Figure 7.
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Fig. 7 Pattern of ice-shelf basal melting (red zones) and freezing
(blue zones) from the model simulation. The black zones
correspond to areas where ice is neither melting nor freezing.
The contour range is taken between +3cma ' to optimize the
visual impression between the melting and freezing zones. The
actual maximum melting rate is well above the contoured range,
and has an intensity of about 80 cm a " that occurs in the south-
eastern corner. The actual maximum basal freezing rate is below
the contoured range, and has an intensity of about —8 cm a " that
occurs in the northwestern part of the domain. Overall, melting
domanates freezing, and averaged over the entire ice-shelf base,
there is a net melting of 0.5 cma "

3.4. Ocean model

The fully prognostic, three-dimensional circulation field V, of
the ocean waters in the sub-ice-shelf cavity (see Fig. 1) is
modeled using an isopycnic-coordinate, ocean-general-
circulation model (Bleck and others, 1992) which includes an
embedded mixed-layer turbulent-kinetic-energy parameter-
ization (Gaspar, 1988) in its uppermost layer. The ocean
model has been reformulated so as to be able to deal with the
inclusion of arbitrary bottom and surface topographies, and
as such is well suited to the problem of ice-shelf-ocean
interaction (Holland and Jenkins, 2000). The model has been
designed such that the interconnection between the open-
ocean part of the domain and the sub-ice-shelf part is
seamless; there is no requirement for application of any sort
of artificial boundary condition to join these two sub-
domains. The only boundary conditions applied to the ocean
model are that of no normal fluid flow through any of its
boundaries and that of no heat or salt flow through any
boundaries, except the thermodynamic exchange occurring
at the ice-shelf base as described in section 3.3. Geothermal
heat fluxes through the sea floor are not considered. Over the
open-ocean part of the domain, surface stress and buoyancy
fluxes can be included but are presently set to zero for the
purposes of this idealized study.

The ocean model produces an “ice-pump”-type
circulation as principally forced by the pressure-dependent
freezing point of sea water (Lewis and Perkin, 1986). This cir-
culation is created by the melting and freezing patterns at the
ice-shelf base, and, in turn, this circulation fundamentally
modifies the intensity of those thermodynamical processes
that created it in the first place. From the point of view of the
present study, the ocean model is of relevance in that it pro-
duces the “forcing” pattern of corrected accumulation dy, that
acts as the source term for marine-ice growth. It does this by
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Fig. 8. Plan view showing the dynamical and thermodynamical
ocean-model forcing fields. The domain shown is that of the full
ocean which includes both the open-ocean domain to the north and
the sub-ice-shelf domain to the south. The two sub-domains of the
ocean are separated by the dashed line representing the ice-shelf
Jront. The overlying white streamlines show the ocean near-
surface flow field with speeds of approximately Iem's ' In the
sub-ice-shelf cavity the near-surface ocean flow is almost uni-
JSormly directed towards the northwest; in the open ocean a cyclo-
nic gyre pattern persists. The color underlay shows the near-
surface ocean water temperatures, with red corresponding to
“warm” temperatures of about —18°C and blue to the pressure-
depressed freezing-point temperatures, in places as cool as —2.4°C.

prognostically computing the ocean mixed-layer tempera-
tures T}y, salinities Sy, and flow field V.

The ocean domain is set to everywhere have a flat-bottom
topography of depth 1000 m. The ocean model horizontal
grid exactly mimics all other grids used in the study. The ice
shelf of thickness depicted in Figure 5a floats upon the ocean
surface in the southern part of the ocean domain, thus giving
the ocean a surface topography in that region. The ocean is
assigned to have ten equal-thickness isopycnic layers, initially
all set to have a temperature of —1.8°C, and to be uniformly
stratified in salinity over the range 34.4-34.8 psu (practical
salinity units). The initial conditions are designed to repre-
sent the typical range of water-mass properties commonly
found along the Antarctic continental shelves (Jacobs and
others, 1985). Both High Salinity Shelf Water, having salinity
above 34.6 psu, and Low Salinity Shelf Water, having salinity
below 34.6 psu, are thus represented.

The ocean model is integrated for a 10 year period using a
split-explicit method with a time-step 6 of 1hour for the slow,
baroclinic component and of 100s for the fast, barotropic
component of the flow (Higdon and Bennett, 1996). The
simulated near-surface ocean flow field and temperature
patterns at the end of the integration are shown in Figure 8.
The mixed-layer waters rise along the base of the ice shelfand
flow in a general northwest direction that is consistent with a
circulation as driven by an ice-shelf pump mechanism (albeit
greatly influenced by the Earth’s rotation). To complete the
circulation pathway, the deeper waters have a return flow that
1s basically in an opposite sense, 1.e. towards the southeast (not
shown). Of particular relevance to the formation of marine ice
is that the near-surface ocean flow field is greatly influenced
by the Coriolis force, as is evident by the north-south and
cast-west asymmetries seen in the flow pattern. The
description of all relevant “forcing” fields required to compute
the marine-ice thickness field is now complete.
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Fig. 9. A time series representing the areal-averaged marine-
ice thickness, denoted (hy,) and in units of m, running over the
Jull 10 year simulation period of the ocean model.

4. SIMULATION RESULTS

4.1. Marine-ice thickness

With all the “forcing” fields now in place, the discretized
marine-ice thickness relation, Equation (13), is solved on a
grid that is conveniently collocated with all other model
grids. The numerical solution of the marine-ice thickness is
achieved by an iteration technique (see section 2.2). The
model system, including all the component models previously
described, is run for a 10 year ocean simulation period, and
during that interval the marine-ice thickness equation is
solved for once per day of ocean simulation so that the
temporal variation, if any, in the marine-ice thickness evolu-
tion can be tracked. As noted previously, the marine-ice
thickness model is separately integrated for a 1000 year period
so as to achieve a near-equilibrium solution. It is important to
be clear that the marine-ice thickness computation is repeated
once per day of ocean simulation in the asynchronous compu-
tation strategy employed here. Horizontally averaged over the
entire ice-shelf base, the temporal evolution of the marine-ice
thickness 1s given in Figure 9. We note that after a short adjust-
ment time of <lyear of ocean simulation, the marine-ice
thickness pattern settles down to a relatively stable areal-aver-
aged equilibrium value of approximately 6 m.

The more general intention for the algorithm computing
the marine-ice thickness is for it to be solved just once per
ocean model simulation— that being at the very end of an
ocean model run when the ice-shelf and ocean system have
arrived at a near steady-state equilibrium. In the present
model configuration, that equilibrium time-scale is taken to
be 10 years of simulated ocean time. Previous studies have
illustrated that relatively small ocean basins, such as used in
the present study, undergo near-complete internal adjustment
over a decadal integration period (Holland and others, 1996).

The spatial pattern of marine-ice thickness at the end of
the model run is shown in Figure 10. The gross features of
the pattern indicate that there is no marine ice to be found
anywhere along the grounding line. An analysis of the
ocean model behavior along the grounding line shows that
relatively warm waters are constantly being pulled into the
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Fig. 10. The simulated pattern of equilibrium marine-ice
thickness for the full ice-shelf domain at the end of the 10 year
ocean model run. The areal-averaged thickness is 6.5 m and
the maximum ts 30 m, that maximum occurring in the north-
western part of the ice-shelf domain.

near-surface layer of the ocean in this region and are thus
constantly supplying heat that enables melting to predom-
inate. This leaves almost no possibility for marine ice to
build up near the grounding line. In addition, the fact that
we enforce a boundary condition of zero marine-ice
thickness wherever an ice stream enters onto the ice shelf
contributes to the absence of any marine ice in the vicinity
of the grounding line. In any case, having no marine ice
here is not an unreasonable feature. By contrast, along the
western sidewall, and particularly near the western ice-shelf
front, there is a notable build-up of marine-ice thickness of
about 30 m. There are several reasons for this, the most
significant being the manner in which the ocean circulation
operates (see Fig. 8). Another feature of the marine-ice field
is that the occurrence of persistent basal melting at a given
location does not necessarily imply zero marine-ice
thickness in that location. Consider, for example, the area
marked “Mild Melting” on the basal accumulation diagram
(Fig. 7) and the corresponding area on the marine-ice
thickness diagram (Fig. 10). While the marine-ice thickness
in this area falls below neighboring values, it is not zero.

We can simplify the picture of basal accumulation by
thinking of it as one in which melting is generated in the
southeastern “half” of the ice shelf and freezing in the north-
western “half”. In this view we have cut the ice shelf into two
along its southwest—northeast diagonal. The ocean model
“ice pump” is then seen as a device that works to melt
meteoric ice from the southeastern corner of the ice shelf
and to then deposit marine ice in the northwestern corner.

Another factor contributing to a greater build-up of
marine ice along a sidewall, more so than in the central
region of the idealized ice shelf, is that the simulated ice-
shelf flow field is much slower near sidewalls (see Fig. 6).
This suggests that for real Antarctic ice shelves we might
also find the greatest build-up of marine ice near equivalent
features (e.g. in the vicinity of ice islands or ice rises where
the ice-shelf flow is likely quite sluggish). There is possibly
some supporting evidence for this in the large accumulation
of marine ice found in the lee of the Henry and Korff Ice
Rises on the Ronne Ice Shelf (Thyssen and others, 1993).

Generally, we do not think of the Earth’s rotation as
affecting large-scale glacial flows, mainly because the ice
viscosity is so enormous that viscous forces completely
dominate over rotational ones. Our idealized model
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configuration was set up to be completely symmetrical east
to west, yet the marine-ice thickness pattern developed a
marked east—west asymmetry. This asymmetry arises from
the action of the Coriolis force on the ocean currents which
in turn impacts the basal accumulation rate and which
subsequently impacts the marine-ice thickness. If we were
to interactively solve the equation of total ice-shelf thickness,
ie. Equation (4), in a fully coupled ice-shelf-ocean
modeling sense, we would see that indirectly the Coriolis
force would come to play a significant role in the evolution
of the ice-shelf thickness through its controlling influence on
the ocean currents.

Another point to elaborate, particularly when one
contemplates computing the marine-ice thickness for a real
Antarctic ice shelf using the strategy outlined in this paper,
is that the marine-ice thickness field hy, so computed must
be considered to be embedded within the total ice-shelf
thickness field H; and not to be exterior to that field. When
comparing model-simulated marine-ice thickness to
observational data of the same, it must be kept in mind that
the computed marine-ice thickness does not change the
given, total ice-shelf thickness. This is a necessary
consequence of the assumption, in a modeling system such
as the present, that an ice-shelf-ocean system reaches a near
steady-state equilibrium consistent with the total ice-shelf
thickness data initially inputted to the model.

4.2. Sensitivity analysis

The simulated pattern of marine-ice thickness shown in
section 4.1 has, of course, some uncertainties in the displayed
field. Such uncertainties arise from limitations of the
numerical method and also from basic assumptions that
underlie the governing relation, Equation (6). There is an
additional error arising from inexact knowledge of the ice-
shelf flow velocity V; and the basal accumulation rates ay,. 1o
quantify these uncertainties we start with the marine-ice con-
servation relation, Equation (6), and simplify it under the
assumptions of steady state and one-dimensionality in the
meridional direction. Further manipulating the simplified
equation and expressing it as a relation between differentials
in marine-ice thickness dhy,, ice-shelf flow velocity dV; and
accumulation rate ay, we arrive at an approximate expres-
sion for a one-dimensional gridcell of width 6% as

Ohy _OVi  and?
o~ Vi Viha
This can be further manipulated so as to more conveni-
ently express the rightmost term as a relative uncertainty in
the accumulation rate 8dy, /ay, finally yielding
oh oVi a &\ ba
R o = (26)
hm ‘/1 6ab Vlhm ap
This expression gives the relative error in marine-ice thick-
ness Oy, /hy expressed in terms of the relative error in ice-
shelf flow velocity 6V;/Vi and basal accumulation rate

(25)

bay/dy. As expected, the assumption of incompressibility of
the ice-shelf flow field shows that the relative error in flow
velocity exactly contributes an error of the same magnitude
as, but of opposite sign to, the marine-ice thickness. The
relative error due to the uncertainty in the accumulation rate
has a magnitude governed by the prefactor in parentheses of
the last term in Equation (26). Considering a basal accumu-
lation rate of d;, = lecma ', a 10% uncertainty in this rate of
8a, = 0.lcma |, a gridcell width of ¢Y = 10km, an ice-shelf
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flow velocity of V; = lkma 'and a marine-ice thickness layer
of hy = 10 m, then this prefactor evaluates to approximately
0.1. This suggests that the relative error in basal accumulation
rate has a somewhat smaller impact on the overall compu-
tation of marine-ice thickness than does the ice-shelf flow
field, at least in the regime portrayed here.

This error analysis may appear deficient in that there is
no explicit mention of the impact of uncertainty regarding
the total thickness Hj of the ice shelf itself upon the calcula-
tion of the marine-ice thickness. While it is true that there is
no explicit term involving H; in Equation (6), there is none-
theless an implicit dependence on Hj through its significant, if
not controlling, influence on the accumulation rate dy,. This is
because the pattern and intensity of the accumulation rate is
largely the result of an “ice-pump” circulation within the sub-
ice-shelf cavity resulting from the interaction of the ocean
thermal structure with the sub-ice-shelf morphology. Another
reason for questioning the impact of uncertainty regarding
the ice-shelf thickness upon marine-ice thickness is that the
ice-shelf flow field is also dependent upon the ice-shelf thick-
ness as noted in Equation (22). It is beyond the scope of this
work to carry out a thorough error analysis of the ice-shelf
thickness on the marine-ice thickness, as that would involve
introducing and analyzing the relevant three-dimensional
ocean equations and their treatment of topography at the
ice-shelf base.

In an attempt to compare the sensitivity of marine-ice
thickness to variations in ice-shelf flow velocity, accumulation
rate and ice-shelf thickness, a series of sensitivity experiments
are carried out on the simulation described in section 4.1.
Because of restrictions on computational resources, each
sensitivity experiment is run for a 1year simulation period.
The first-year simulation results of the run reported in section
4.1 are now referred to as the “control” run. In each sensitivity
experiment a 10% relative error is introduced into a given
quantity so as to observe its relative impact on the marine-ice
thickness quantity Ay, /hy, Results are shown in Table 1 and
indicate that the marine-ice thickness is more sensitive to the
precision of specification of the ice-shelf flow velocity field
than to the accumulation rate, consistent with the earlier
scaling argument.

There 1s also a dependence on the ice-shelf thickness
field reported in Table 1. The ice-shelf thickness sensitivity
experiment was performed in a slightly different manner to
the other experiments. Specifically, for the experiment in
which the ice-shelf thickness was decreased by 10%, an add-
itional constraint was imposed, namely, that the thickness
could nowhere drop below 100 m, an arbitrary specified
minimum ice-shelf thickness. This has the effect of reducing

Table 1. Relative variations in thickness of the marine-ice
layer 8Py, [/ huy due to imposed variations in ice-shelf flow
velocity £6V;/V; basal accumulation rate +6d,/dy, and
total ice-shelf thickness fields £6 H; / H;

% % bay, bay, 6H; 6H;
Control — + 71 — 71 + i — E T, T,

6hm

. 0% -8%

+10%  +4% 4% +2%  —14%

Notes: In each instance the imposed variation is taken as +10% of the rele-
vant “control” run field of a particular quantity. Note that the percentage
change for the experiment —§H, / H; is influenced by the restriction that the
total ice-shelf thickness is nowhere permitted to drop below 100 m. See text
for details.
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the slope at the ice-shelf base, particularly near the ice-shelf
front, and thus reducing the strength of the “ice-pump”
mechanism. With this peculiarity in mind, we can infer
empirically that the uncertainty in the ice-shelf thickness,
and particularly its slope, can be as important to the overall
computation of the marine-ice thickness layer as the
uncertainty in the ice-shelf velocity field.

When interpreting the results of the sensitivity experi-
ments, we keep in mind that the individual experiments are
in varying degrees interdependent, making an unambiguous
interpretation of an individual experiment a difficult task.
When we impose an “arbitrary” 10% change in the ice-shelf
velocity field, it has no direct impact on the basal accumu-
lation rate or on the ice-shelf thickness, the latter because we
hold the ice-shelf thickness fixed in this modeling paradigm.
Similarly, imposing a change in the basal accumulation rate
has no direct impact on the ice-shelf velocity field or on the
ice-shelf thickness field, in this modeling paradigm. However,
imposing a change in the ice-shelf thickness field does impact
both the ice-shelf velocity field and the basal accumulation
rate, the former through the diagnostic ice-shelf velocity field
(Equation (22)), and the latter through the pressure-depen-
dent freezing temperature.

5. CONCLUSIONS

This study has demonstrated that it is possible to simulate the
steady-state spatial pattern of thickness of the marine-ice
layer beneath an ice shelf using the present-day class of ice-
shelf-ocean numerical models. The thickness pattern is gen-
erated by using an efficient and parallelizable, iterative
solution technique on the steady-state mass-conservation
equation formulated for the marine-ice layer, which includes
source and sink terms. The simulation of an idealized ice-shelf
cavity geometry has highlighted the kind of spatial patterns of
marine-ice thickness that are derivable from the modeling
technique. Future studies are now being planned in which
realistic versions of the major ice-shelf cavities around Ant-
arctica will be set up and will include a calculation of marine-
ice thickness for comparison with observations.

An assessment has been made of the relative uncertainty
in marine-ice thickness arising from uncertainty in the
input forcing fields. In a relative sense, the uncertainty in
the ice-shelf flow field was found to be the most critical field,
but uncertainties in the basal accumulation rate and ice-
shelf thickness are also noteworthy.

There are several assumptions that have gone into this
formulation, justifiable in the context of the present-day
approach to ice-shelf-ocean modeling. First, steady state is
achieved so that the temporal fluctuations in the flow field of
the ice shelf and the ocean circulation can be ignored.
Second, the source and sink terms for the marine ice are
computed from a three-equation formulation of ice-shelf~
ocean thermodynamics, and the formulation provides a
reasonable estimate of these important terms. Thirdly, the
marine-ice layer is assumed to be advected by the ambient
flow of the ice shelf, and vertical shear in the ice-shelf flow is
negligible. Fourthly, the thickness of the marine-ice layer
does not interactively change the overall thickness of the
ice shelf as, at least for the present-day class of ice-shelf~
ocean models, the marine-ice layer is already implicitly
embedded within the total ice-shelf thickness. While it is
important to keep all of these assumptions in mind when
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applying this technique to real Antarctic ice shelves, it is
emphasized that the extent to which the technique will be
useful is dependent upon the degree to which the
assumption that the ice-shelf-ocean system is in or near a
steady-state equilibrium holds true.

At some point in the future, one might expect that fully
coupled, dynamical ice-shelf and ocean circulation models
can be efficiently constructed. The present study is a step in
that direction by presenting a dynamical-thermodynamical,
three-dimensional ocean model that forces a two-dimen-
sional, limited-dynamical-thermodynamical ice-shelf model.
As mentioned earlier, the huge disparity of time-scales
between the relatively fast-evolving ocean and the slowly
evolving ice shelf provides some justification for this
approach. It would represent a significant increase in compu-
tational complexity to dynamically and interactively evolve
the ice-shelf thickness and flow fields synchronously to the
oceanic fields. In such a modeling paradigm, the inclusion of
significant beds of marine ice within the ice shelf would lead
to a warming of the ice shelf, an alteration of the thermal
structure and then, through the rheological interdependence
of the ice stress and strain rates, an impact on the ice-shelf flow
field. The present study is viewed as an intermediate step to-
wards that future modeling goal, as it provides an opportunity
to garner maximal information and insight from the present-
day class of ice-shelf-ocean models.

As an increasing amount of observational data on the
spatial patterns of the marine-ice layer, for all the major
Antarctic ice shelves, becomes available it will provide an
important data resource with which to validate the
performance of ice-shelf-ocean numerical models. Requiring
that such models accurately simulate the thickness of the
observed marine-ice layer is then a stringent test that will lead
us toward more robust and meaningful models. Ultimately,
this will increase our understanding of the complex ice-
shelf-ocean system.
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