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Abstract. Let $> and "# be minimal flows which are disjoint over their intersection. A
dynamical interpretation is given of the groups Hr(B/S, C/S) and H2(B/S, C/S),
where B and C are the groups of 3ft and *# respectively, and S is the group of the flow

1. Introduction
Let (K, X, T) be a bitransformation group where (X, T) is a minimal flow with
compact phase space X and phase group T, and where K is a compact topological
group. Then the flows (Z, T) 'between' (X, T) and (X/K, T) are completely deter-
mined by the closed subgroups of K, and so a classification of the latter produces one
of the former. This provides the basis for the introduction of the cohomology of
groups into topological dynamics.

For example, let / be a closed normal subgroup of K, / x the set of closed
subgroups S of K with K =J • S (semidirect product) and L e / x . Then it is known
that / x is in one-one correspondence with ZX(L, J) and Hl(L, J) represents J±/R
where L\ = L2 (mod R) if L2 = aL\a~l for some a e /.

The dynamical interpretation of the preceding statement is best given in terms of
algebras (or equivalently pointed flows) where the connection between flow and
subgroups is precise (see [1]).

Thus let if be an almost periodic extension of si with S normal in A, C a r-closed
normal subgroup of A with S^C, C x the set of closed normal subgroups N of A
with CN = A and CnN = S, and fleC1. (Here A and S are the groups of si and Sf
respectively.) If \&\ = (X, T) and \si\ = (X/K, T), then A/S = K and we may take
C/S sj and B/S = L. Now let <#x be the set of T-subalgebras JT of & such that
c€vX = y and cgnJT = s4. Then <gx is in one-one correspondence with Cx. Thus
H\B/S, C/S) classifies ^/R, and Hl{B/S, C/S), <$X/R where $ ! = i382(/?) if
8t2 = ®\<x for some aeC.

The dynamical interpretation becomes even more transparent when there exists a
cocycle <r on si to A/S such that <€ = ext (si, a) and SB = per (5 ,̂ a). In this case the
various elements of # x may be obtained from ^ by perturbing it by the set of
a-cocycles on si to C/S (see 3.12).
t Address for correspondence: Dr Robert Ellis, Department of Mathematics, University of Minnesota,

Minneapolis, MN 55455, USA.

https://doi.org/10.1017/S0143385700001152 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001152


50 R. Ellis

After considering Hl(L, J) it is natural to enquire into H2(L, J). In order to apply
the standard theory one must assume that / is abelian. Then a 2-cocycle / on L to /
induces a new group structure (K, f) on K. (For the sake of simplicity I avoid
topological considerations at this point.)

There are now two problems: (1) define an action of (K, f) on X; and (2) define a
new action of T on X which commutes with the new action of K.

It turns out that there is a natural way to solve (1) (5.3) and that in many cases
(for example when T = Z) (2) may be accomplished by perturbing the original flow
on AT.

In discussing the dynamical interpretation of H1 the algebraic point of view is
convenient but not essential. However, the situation is different with respect to H2.
The reason is that the link between the new group structure (K, f) and the new flow
produced in answer to (2) is provided by the group of the latter. Reverting to the
'algebraic' terminology introduced above and denoting this flow by Jf and its group
by N, it turns out that there is an injective map Y from A/N into A/S( = K) such that
the new group structure (A/S, f) is obtained by carrying over the group structure on
A/N by means of I\

These new flows are of the form per (5 ,̂ p) where peZBC#, C/S), the set of
S-cocycles on <£ to C/S (see 5.4). Moreover, there is a homomorphism
A:ZB(^,C/S)^Z2(B/S,C/S) which induces as isomorphism of
ZB{% C/S)/ZB{if) onto H2(B/S, C/S) when T = Z. (Here ZB{^) is the subset of
Zai^, C/S) consisting of those p for which per (91, p) = if, i.e. the perturbed flow
coincides with the original one - see (5.20).)

2. The cohomology H(L,J)
In this section the purely algebraic aspects of the situation will be discussed. The
material is well known in the context of group theory and I include it for the sake of
completeness. Since the proofs are standard I shall omit them. The interested reader
may consult [5] or supply them himself since they are quite straightforward. A word
of caution, however: the groups considered in this section come provided with a
topology so that the subgroups involved are closed and the cocycles considered are
continuous.

(2.1) Standing notation. Henceforth K will denote a compact topological group, / a
closed normal subgroup of K and L a fixed element of J±, the set of closed subgroups
S of K such that K is the semidirect product of / and 5. Thus K =J + S and
JnS = {0}. (It is convenient to write the group operation in K additively although K
need not be abelian.)

(2.2) Definition. A cocycle on L to J is a continuous function z :L-*J such that
z(0) = 0 and z{a +b) = z(a) + a • z(b) (a,beL). (Here a- x=a+x-a (aeL,
x 6 /).) The set of cocycles on L to / will be denoted by Z(L, J) or Z.

(2.3) Definition. A coboundary on L to J is a continuous function z :L-*J such that
z(0) = 0 and z(a) = c • a - a for some c e / and all a e L. The set of coboundaries on
L to J will be denoted by B (L, J) or B. If c e / then zc will denote the coboundary
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a->ca-a:L-*J. (Note that z(a) = c-a—a=c+a—c~aeJ since / is normal
inK.)

Let SsJ± and ae^T. Then aS and aJ will denote the unique elements of S and/
respectively such that a = aJ + aS. (Note that aJ depends upon aS. Thus the notation
is imprecise.)

(2.4) PROPOSITION. Given z :L^J let Sz={aeK\z (aL) = aJ} and given SeJ^ let
zs:L-*J be such that zs(x) + x e S(x e L). Then

(1) SzeJ1(zeZ(L,J)).
(2) zseZO^DiSeJ^.
(3) The map zeSz:Z(L, J)-*• / x is bijective with inverse S^zs :J^^>Z(L, J).

(2.5) Definition. The action of 7 on Z(L, J). Let c e / and z e Z(L, J). Then cz is the
map a-»c + z(a) -a • c :L-*J.

Notice that when/ isabelian (zc +z){a) = c • a -a +z{a) = c + a -c — a +z(a) =
c-a • c + z(a) = c + z(a)~a • c = cz(a) (aeJ). Thus cz = zc + z (c eJ) when / is
abelian.

(2.6) PROPOSITION. (1) B a z .

(2) czeZ(ceJ, zeZ).
(3) The map (c, z)>-*cz :JxZ^Z defines an action of Jon Z.
(4) Let c, deJ, then zc = zd if and only if cz =dz (z e Z).

Thus B acts on Z and we may form H = Z/B ={B+ z/z e Z}. When / is abelian Z
and B are groups and H is the quotient group.

(2.7) LEMMA. Let fz be the map a-> z(aL) + aL: K^K (zeZ). Then
(1) fz is a homomorphism of K into K.
(2) 52={a|/2(a) = a}.
0) U = d-fz (deJ).
( 4 ) Sdz = d - S z (

(2.8) PROPOSITION. Set Si = S2(R) if S2 = c • Si = c + Si - c for some ceJ
(S!,S2e/•*•). Then

(1) Sz= Sx if and only if z =cx for some c e / (z,xeZ).
(2) The map z -*SZ:Z->J^ induces a one-one correspondence between H(L,J)

andJ^/R.

3. The dynamical interpretation
Here the results of § 2 will be used to discuss a situation which occurs frequently in
topological dynamics.

(3.1) The data, si and y will denote minimal flows such that &1 is an almost periodic
extension of si and 5 is normal in A. (Here A and 5 are the groups of si and &
respectively.)

C and B will denote r-closed subgroups of A such that C is normal, CB = A and
CnB = S.

If one sets {X, T) = (\Sf\, T), K = A/S, J = C/S and L = B/S, then one obtains the
situation described in the introduction. The flow (\si\, T) is just {XIK, T).
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(3.2) PROPOSITION. Letc€ = a(C)n Sfand 38 = a(B) n Sf. Then & and <€ are disjoint
over their intersection, si and % v <# = y.

Proof. The fact that 08 n<# = si and 38 v <€ = &> follows immediately from the Galois
theory of distal extension [1, chapter 13].

Since C = 9 W is normal in A, <€$ = <€ (/3 eB = 9(39)). Hence <<? and 38 are
disjoint over their intersection [1, 18.9]. •

(3.3) PROPOSITION. Let %± be the set of T-subalgebras <£ of Sf with <€v% = y,
<€r\S£ = siand C x the set of r-closed subgroups L of A with CL = A,CnL = S. Then
the map ij/:C±->cgx such that >p(L) = a(L)n9> is a bijection and cL2c~l = L\ if and
only if HL,)c = 0(L2) (Lu L2 e Cx, c 6 C).

Proo/. This follows immediately from the results of chapter 13 of [1]. •

(3.4) Remarks. Proposition 3.3 and the results of § 2 establish a one-one cor-
respondence between Z(B/S, C/S) and c€±, and one between H(B/S, C/S) and
^/R where ifi = if2 (modi?) if S£2 = Z£\c for some ceC. In terms of flows
i?i =«S?2 (mod /?) if and only if there exists a flow isomorphism <A: |i?i| -»1^1 such
that figure 1 is commutative where TTI and TT2 are the canonical maps.

In order to obtain some more information about the class (€± I assume that there
exists a cocycle cr on J^ to A/S such that "£ = ext (si, a) and 9B = per (5 ,̂ <r). Such a
cocycle will exist when the map [p]-»/p :H{si, A/S) -*• Horn (A/A#, A/5) is onto
and this condition will hold when \si\ is O-dimensional. (For a more complete
discussion see [2], in particular 3.2, 3.7 and 5.22.) When this situation obtains, the
groups of the various flows are given by: C = ker So-\A, and B = {a e A : So-(a) = Sa}.
(Here Sa=fa in [2] and, consequently, 8cr(ax) = 8o-(a) + 8o-(x) (aeA, xefJT).)

(3.5) LEMMA. Let P(x,t) = ir(o-{x,t)) (xe\si\,teT) where n:A/S^B/S is the
canonical homomorphism. Then 13 is cohomologous to <r(mod si).

Proof. Let 8a and 5/8 be the functions corresponding to a and (3 respectively (see [2]
and [3]). Then 8P(a) = ir(8o-(a)) {a sA).

Let a=cb with c € C and b eB. Then 8a(a) = 8a(c) + So-(b) = 8a{b) = n8o-(a) =
8(3(a) since c e ker 8a. The proof is completed. •

Lemma 3.5 implies that <€ = ext (si, /3) and 53 = per (Sf, /3). Hence we may assume
that cr is a cocycle on si to B/S.

The cocycle a produces a new flow (x, t)-*x°f = a(x\si, i)~lxt:\y\x.T-*\9\ and
|S8| may be identified with the subset {xo°p\p e M}; where xo = u\Sf is the base point
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of (|SP|, T). Here M is a fixed minimal subset of the flow (J3T, T) (see [1]). In order to
avoid confusion I shall denote the set {xo°p\peM} by W.

The group A/S acts on \&\ via the map (aS, pffl-taplSf-.A/Sx]?]-*]^. I shall
denote aS by a and ax by ax (a e A, x e |5 |̂) when there is no chance of confusion.
Also x\M will be denoted by x(x e \Sf\).

(3.6) PROPOSITION. (1) ax°t = (<r(x, t)~l • a)(x ° f) (x € |^|, a e A, f e T). (Recall
that a(x, f) • a= cr(x, t) + d- a(x, t).)

(2) a(x°t) = ((cr(x,t)-a)x)°t (xe\Sr\,aeA,teT).
(3) xo°c = x0c (ceC).
(4) cx0°<? = xooc<j (c e C, q e/3T).
(5) ex e W (ceC,xe W).
(6) xi\s4 = x2\s4ifandonlyifx2 = cxiforsomeceC (xi,x2e|98|).
(7) W = {xe\Sf\:8a(x) = 0).

Proof. (1) ax°t = tr(x, t)~1axt = a(x, t)~xaa{x, t)cr(x, t)~1xt = (o-(x, t)'1 • a)(x°t).
(2) Replace a by <r(x, t) • a in (1).
(3) xo°c - o~(x0, c)~!xoc = So-(c)~xx0c - xoc. (Recall that C = ker 5a-.)
(4) Since cx0 = xoc, xo° cq = {xo° c) ° q = cxo° q.
(5) Let xeW. Then x = xo°q for some qeM. Hence ex = c(xo°q) =

((<T(XO, q) • c)xo)°q by (2). Since a-(x0, q) • c = Sd for some deC, cx = dxo°q-
xQ°dq<=W by {*).

(6) Let xi = xo°p and x% = xo°q for some p,qeM and let Xi|^ = x2|^. Then
for some aeA. Let a = be with c e C and ft€B. Then x2 = xo°^ =

p (since xo°b = xo). Furthermore, xo°cp = (xo°c)°p = xoc°p by (3);
and xoc ° p = (8or(p)~l • c) (xo°p) by (2). Hence x2 = (8o-{p)~x • c) (xo°p) =
{8cr{pYx • c)xi and 8a(p)~x • c e C/S.

Clearly x2 = cx\ for some c 6 C implies that x2\s4 = xx\s£.
(7) Let x€ W. Then x =xo°p = 5o-(p)~1x0p = xo<7 for some peM, where <? =
V = Sb. Hence x = <j|^ and 8cr(x) = 8<r(q) = 8cr(b~lp) = 8o-{b~x)8cr{p) =

Now let x € |5"| with &r(x) = 0; i.e. x = p l^ and 5<r(p) = 0. Then x = p\if = xop =
8a(p)~xxop = xo»p € W. D

(3.7) Remarks. (1) Statements (5) and (6) shows that C/S acts on W and that W/C is
= \st\. However as (1) shows, (C/S, W, T) is in general not a bitransformation group.

In their paper [4] Keynes and Newton consider a similar situation. There a- is a
constant cocycle and what corresponds to (XV, T) is called a <r-extension of {\st\, T).

(2) The transformation group (A/S, \¥\) may be viewed as a principal bundle over
\s£\. Then (5) and (6) show that W provides a reduction of the group of this bundle to
C/S. There is then a cross-section of the canonical map from \9'\/C/S-*\si\. By
examining the groups of the flows involved, one sees that [Sf[/C/S = |^|. Moreover,
since C o A, <€b = <g(b e B). Consequently, B/S acts on |"g| and \si\ = I^j/B/S. The
existence of a cross-section of the map | ^ | - » | ^ | implies that topologically |^ | =
B/S x \s&\. The cross-section also induces a cocycle on si to B/S (see [2]) which a
straightforward computation reveals to be cr.
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(3.8) Definition. A a-cocycle on si to C/S is a continuous function p : \s&\ x T -* C/S
such that p(x, ts) = p(x, t) + cr(x, t) • p(xt, s) {x e \s4\, t, s e T). The set of o--cocycles
on si to C/S will be denoted by Z«(si, C/S). (Written multiplicatively, p(x, ts) =
p(x, t)cr(x, t)p(xt, s)a(x, t)~\)

One may use a to define an action of T on <#(|.2/|, C/S), viz. {t • f)(x) =
o-(x, t) • f(xt) (xe\si\,teT). Then the definition given above coincides with the usual
one in the cohomology of groups (see, for example, [5]).

A cr-coboundary on si to C/S is then a cocycle y of the form, y(x, t) =
f(x) — o-(x,t)-f(xt) for some continuous function / on \si\ to C/S. The set of
cr-coboundaries is denoted by Ba{si, C/S).

The reason for the introduction of o--cocycles is that they may be used to perturb
the flow (W, T). Thus letp e Z^si, C/S) and* • t = {p(x, t)~lx)t {x<=W,te T). Then
it is easy to verify that the map (x, t) -> x • t: W x T -* W defines an action of T on W.
The resulting flow will be denoted by (Wp, T).

A computation similar to the one involved in (1) of (3.6) shows that

(ax) • t = ((a(x, t)p(x, ty1) • a)(x • t) (x e W, a e C,teT).

(3.9) PROPOSITION. LetpeZA^, C/S). Then (Wp, T) is an almost periodic exten-
sion of (|j#|, T).

Proof. Let a be an index on W. We must find an index /3 on W such that if (x, y) € /?
with x\si = y \ s i t h e n (x • t, y • t)ea (t&T).

If this were impossible, there would exist a net of indices /?„ converging to the
diagonal A, a net {xn, yn) with xn\s£ = yn 1-̂  and (xm yn)e@n for all n and a net tn with
(xn • tn,yn- tn)fta for all n.

Let yn = cnxn with cn e C. Then, by the compactness of the various spaces involved,
we may assume that lim xn = z = lim yn, cn->c, o-(xn,t)->b, p(xn, In)'1 -*d, and
xn • tn -» w.

Since z = lim yn = lim cnxn = c lim xn = cz, c =_e. Hence lim yn • tn =
lim (cnxn) • tn = lim (a{xn, tn)p(xn, tn)~

l • cn)(xn • tn) = (bd- e)(w) = w, a contra-
diction, n

(3.10) Definition. Let p&Z^si, C/S). Then per (W,p) will denote the T-algebra
corresponding to the pointed flow (els {x0 • t\te T}, x0) «= (Wp, T). By (3.9) per {W, p)
is an almost periodic extension of si.

(3.11) PROPOSITION. (1) z °aeZa(s&, C/S) and z °o- + aeZ{si,A/S)
(zeZ(B/S,C/S)).

(2) per(W, z°cr) = per(^, z°o- + o-) (z eZ(B/S, C/S)).
(3) 9(per (9>, z»tr + tr)) = {a e A\z{aB/S) = aC/S).
(4) The maps z^z°o-:Z(B/S,C/S)^Z<T(s£,CIS) and Z^Z°<T + (T:

Z(B/S, C/S)-+Z(si,A/S) are injective.

Proof. (1) This follows immediately from the definitions of the various terms
involved.

(2) Since (z°cr + o-)(x, t)~ixt = a(x, t)~\z°cr(x, tyxxt) = {z°a{x, tYlx)°t, the
actions of T on \SP\ used to determine per (W,z°o-) and per (¥, z°o- + o-) are the
same.
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(3) Let p = z°o- + o-. Then Sp(x) = p(e, x) = z(a(e, x)) + a(e, x) =
z(So-(x)) + 8o-{x) (X€0T). Theng (per (£f°,p)) = {aeA\8p(a) = aC/S} [2]. Thus, if
we write, a=c+b with c e C, beB and recall that So-(c) = 0 and So-(b) = bS, then
g(per (5̂ , p)) = {a € A|z(a5/S) = aC/S}.

(4) Let Zi, z2&Z(B/S, C/S) and suppose Zi°cr = z2°o- or zi°<x + o- = z2°o- + cr.
Then, in either case, Zi °cr = z2°cr, whence Zi°&r = Z2°5o-. By (3.7) above and (3.8.4)
of [2], 8a(A) = B/S and this implies that z\ = z2. The proof is completed. •

(3.12) Remarks. (1) Statement (3) above shows that the group of the flow
per {if, z°cr + o-) when projected onto A/S is just the subgroup of A/S determined
by the cocycle z. (See proposition 2.4.) Thus all the elements of ^ may be realized
by perturbing Sr° by cocycles of the form z ° a + cr or by perturbing W by a -cocycles of
the form z°cr(ze Z(B/S, C/S)).

(2) In their work on er-extensions [4] Keynes and Newton ask what amounts in
this context to the question: when is |per (W, p)\ = W for p e Za(si, C/S). That this is
the case when p = z °cr for some z € Z(B/S, C/S) can be seen by examining the flow
induced on |5 |̂ by the cocycle r\ = z °o- + a. Then x0 • c = S-q(x)~1xoc = xoc (c e C),
since C = ker So: Thus, in this case, ir^1(x0) ^ |per (W, p)\, whence |per (W, p)\ = W.
(Here TT : W-* \s&\ is the canonical map.)

4. The cohomology H2(L, J)
This section contains some more results from the theory of the cohomology of groups
which will be used later. Proofs will be omitted or merely indicated. The data are
those of § 2 with the additional assumption that / is abelian.

(4.1) Definition. A continuous function f:LxL-*J is a 2-cocycle on L to J if
x • /(y, z)+f(x, y +z)=f(x, y)+f(x + y, z); and it is a 2-coboundary on LtoJ if there
is a continuous function g: L->/with/(JC, y) = x • g(y) -g(x + y) + g(x) (x, y, z eL).
(All functions involved are also assumed to be normalized, i.e. f(x, 0) =/(0, y) = 0
andg(0) = 0(x,yeL).)

Then the set of all 2-cocycles on L to /, Z2(L, J) is an abelian group and the set of
2-coboundaries B2(L,J) a subgroup thereof. The quotient group H2(K,J) =
Z2(K, J)/B2(K, J) is the second cohomology group ofK with coefficients in / . (Again
the reader is cautioned that here the functions considered are continuous whereas in
the algebraic theory of the cohomology of groups there is no topology involved. Of
course when L is finite the two notions coincide.)

(4.2) PROPOSITION. LetfeZ2(L,J). Then the map (x, y)->x0y =/(ir(x), ir(y)) +
x + y.KxK^K defines a group structure on K such that:

(1) (K, ©) is a compact topological group.
(2) x®y = x + y, y®x = y+x, and y@xOy = y+x-y(xeJ, y eK).
(3) x ®y - {x + y) € J (x, y e L).
Conversely, if ® is a group structure on K satisfying (1), (2) and (3), then the map

(x, y)-* x®y -(x + y):LxL^J defines a 2-cocycle on L to J.
(Here v :K -* L is the map such that -rr(a) = ah, where a = aJ + aL (a € K).)

The group structure determined by the 2-cocycle / will be denoted (K, / ) .

https://doi.org/10.1017/S0143385700001152 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001152


56 R. Ellis

(4.3) PROPOSITION. Let, f, heZ2(L,J). Then f and h are cohomologous (i.e.
f-heB2(L,J)) if and only if there exists an isomorphism <f> of (K,f) onto (K,h)
such that<f>(x) = x (xeJ) and TT(<£(*)) = •""(*) (xeK).

Proof. The relation between the isomorphism <t> and the function g required in
definition 4.1 is given by <f>(x) = g(x) + x (xeL). D

5. The dynamical interpretation ofH2(B/S, C/S)
The situation is again that of § 3 with the additional assumption that C/S is abelian.

Let feZ2(B/S,C/S). Then, as in §4, a new topological group (A/S,f) is
produced. A natural question to ask is whether one can define an action of (A/5, / )
on \Sf\ with quotient \s#\ such that the group of the resultant bundle can be reduced to
C/S.

It turns out that this can be done (see 5.3). However, the resulting action need not
commute with the action of T on \Sr°\. Consequently, one seeks to perturb the latter in
such a way as to obtain again a bitransformation group.

Perturbation suggests cocycles and an investigation shows that the relevant ones
are the so called S-cocycles, ZB(% C/S) on <£ to C/S (see 5.4).

Finally, it is shown how a 5-cocycle, p, on *# to C/S determines a 2-cocycle on B/S
to C/S and how the new group structure on A/S is related to the group of the flow

(5.1) Notation. For the remainder of this section / will denote a fixed element of
Z2(B/S, C/S),

a1@a2=f(Sa-(ai), 8<r(a2)) + ai + a2,
and

a *x = (f(8cr(a), 8o-(x)) + a)x=f(S<r(a), Scr(x))(ax) (au a2, a eA/S, xe\<f\).

(Recall that Scr induces the canonical map on A/S to B/S.)

(5.2) LEMMA. a*x = (a®a)y where a, a eA/S, ye Wand x = ay.

Proof. By (3.6), 8cr(y) = 0. Hence 8cr(x) = 8cr(ay) = 8o-(a) + 8cr(y) = 8o-(a) and

a *x = (f(8a(a), 8a(x)) + a)x = (f(8a(a), 8<r(a)) + a)(ay)

= (f(8<r(a),8o-(a)) + a+a)y = (a®a)y. •

(5.3) PROPOSITION. The map (a, x)-*a*x: A/S x |y|-»\y\ defines a free action of
A/S on \£f\ such that:

(1) c*x = cx (ce C/S, x € M); and
(2) a*x = ax (aeA/S,xeW).

Proof. Let au a2 e A/S, x e \Sf\. Write x = ay with a e A/S, yeW. Then by (5.2),

= ((a1®a2)®a)y = (a1®A2)*ay = {ai®a2)*x.

Now let a *x = x. Then (a ®a)y = ay, whence a ©a = a and a = 0.
(1) c *x = (c®a)y = (c+a)y = c(ay) = cx(ce C/S), by (2) of (4.2).
(2) Uxe W, thena*x = (a®0)x = ax (a eA/S), by (5.2). •

The next step is to produce an action of T on |5^| which commutes with the action of
(A/S, f) defined in (5.3). Since the group structure on C/S induced by / coincides
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with the original group structure and the action of C/S on \Sf\ is unchanged, it is
natural to seek an action of T such that the canonical map of \Sf\ onto \<€\ will be a
homomorphism. This is equivalent to finding a cocycle p on <€ to C/S, i.e. an element
of Z(% C/S), and using it to perturb the original flow on \6P\.

It turns out that not all the elements of Z(<£, C/S) arise in this way (i.e. by varying
/ ) , only the so-called B-cocycles. It is convenient for expository purposes to study
these objects before studying / further.

(5.4) Definition. Let p e Z\<e, C/S). Then p is a S-cocycle on <<? to C/S if Sp(ax) =
a-SP{x) + Sp(a) (a e A, x e 0T with Scr(x) = 0). The set of B-cocycles on % to C/S
will be denoted by Zs(<£, C/S).

(5.5) LEMMA. Let peZB(%C/S). Then d8p(a1 + cua2 + c2) = d8p(aua2) =

Proof. The coboundary operator d satisfies the relation:
dSp{au a2) = di • 8p(a2)-5p(«i + a2) + Sp(a2) (au a2eA).

By setting ai = ci + ai one obtains d8p{ci

(since the inner automorphism of C/S induced by ci is the identity).
Now set a2 = c2 + a2. Then d8p(ai,

8p{ay). By (5.4), 8p(a1

&\ • 8p(c2) + 8p(ai + a2), whence d8p(ai,a2) = ai • (5p(c2) + 5p(a2))-ai • 8p(c2) —
8p(ai + a2) + 8p(ai) = dSp(ai, a2). Thus d8p(ai, a2) = d8p(ci + a2, c2 + a2).

If one replaces ci by a% • ci and c2 by a2 • c2, one obtains d8p{aua2) =
d8p(ai + cua2 + c2) (cuc2eC, aua2eA). •

(5.6) Remark. (1) Lemma 5.5 shows that d8p induces a continuous function on
B/S x B/S to C/S. Clearly d(d Sp) = 0 so that d 8p is a 2-cocycle on S/S to C/S. It is,
however, in general not a 2-coboundary for 8p need not induce a function of B/S to
C/S.

(2) Since dSpe Z2(B/S, C/S), it induces a group structure on A/S and an action
of A/S on |5^|. These will be denoted by ai®a2 and aQx respectively (au a2, a e
A/S and x e |

(5.7) LEMMA. Lef peZB(<€,C/S). Then d8p(8a(a),8a-(x)) + 8p(ax) =
a • 8p(x) (a e A, x € M). (Notice that d 8p(8cr(a), 8a(x)) is well defined by (5.5).)

Proof. Let a=c + b, 8<r(x) = J3 with ceC, b,/3eB. Then d8p(8o-(a), 8<T(X)) =

d8p(b, 0) = b- 8p(p)-8p(b+0) + 8p(b) and x = j8y with &r(y) = 0.
Then 8p(ax) = 8p((a +/3)y) = (a+/3) • 8p(y) + 8p(a +13), by (5.4), and a • 5p(x) =

a • 5p()8y) = a • (/? • 5p(y) + 5p(j8)) = ^ 8 - 8p(y) + d • 8p(J3).
Hence

d8p(8a(a), 8a(x))-a • 8p(x) + 8p(ax)

= 5• 8p<fi)-a • 8p(P)-8p(b+0) + 8p(a

https://doi.org/10.1017/S0143385700001152 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001152


58 R. Ellis

Since b-a=c and C/S is abelian, b • 8p((S) = a • 8p{fS). Also 5p(a+/?) =
8p(c + b + 0) = 8p(c) + 8p(b + (3). Consequently, d8p{8cr(a),8o-(x))-a • 8p{x) +
8p(ax) = 8p(c) + 8p(b) = 8p(a). The proof is completed. •

(5.8) LEMMA. Let p€ZB(^,C/S) and Y:A^(A/S,d8p) such that Y(a) =
-8p(a) + d (aeA). Then Y isahomomorphismsuchthatY(C)<^C/Sandk&xY<^C.
Moreover, Y is onto if and only if Y(C) = C/S.

Proof. Since 8p(A) <= C/S, Y(C) <= C/S.
Let a\, a2eA. Then

i)®r(a2) = d8p(8o-(Y(ai)), 8o-(Y(a2))) + T(ai) + Y(a2)

ai), 8cr(a2))-8p{ax)-di • 8p(a2) + d1

= -8p(ax + a2) + a1 + d2 = Y(ai + a2)
by (5.7).

Thus F is a homomorphism and Y(a) = 0 if and only if 8p(a) = a. Since 8p(A)c
C/S this can only occur if a e C.

Moreover, 8p(A) c C/S implies that if Y is onto then Y(C) = C/S.
Finally, suppose Y(C) = C/S and let aeA. Choose ceC with Y(c) = 8p(a). Then

Y{c + a) = Y(c)®Y(a) = 8p(a)®Y(a) = 8p(a) + Y(a) = a. The proof is completed. •

(5.9) PROPOSITION. Let peZB{^,C/S), N = {aeA\8p(a) = a}, ^ = per(y,p),
<£:pV|-»|5i such that <f>{x\Jlf) = 8p{x)~\x\^) (xeM), and Y:A->A/S such that
Y(a) = -8p(a) + d. Then <f>((x\Jf)t) = <Hx) • t = P(x,t)~1((x\Sf)t)(xeM,teT) and
<t>(ax\Jf) = Y(a) Q<f>(x) (a e A, xeM).

Proof. The map </> is just the identification map p\N->x0 • p = 8p(p)~1(p\Sf) (see
section 5 of [2]). Hence <p is a transformation group monomorphism of (|̂ V|, T) into

By (5.8), N is a normal subgroup of A and, by [2], N is the group of the
flow.^V.Hence<f>(a(x\Jf)) = <f>{ax\Jf) = 5p(ax)"1(aA:|^') = (-8p(ax) + d)(x\Sf) (a e A,
xeM).

On the other hand, Y(a)Q <t>(x\^) = Y(a)Q (8p(xy1x\y)=(d8p{8o-(Y(a)),
8o-(8p(x)'1x\^)) + Y(a)-8p(x))(x\y). Since r(a) = -5p(a) + a and 8p(a), Sp(x)e
C/S, 8a-(Y(a)) = 8o-(a) and 8o-(8p(x)~1x) = 8<r(x). Hence r(a)0(/.(jc|^V) =
(dSp(S<r{a),S<r(x))-Sp(a)-a • 5pU) + a)U|^) = (-5p(ax) + a)(x|^). Conse-
quently, r(fl) 0 </> (x |̂ V) = <f>(a(x \Jf)). D

(5.10) LEMMA. Let p e ZB(«, C/5). Then c Q(x • t) = (c O x) • t (c e C/S, x e \<f\,
tsT).

Proof. This follows immediately from the definitions of the terms involved. •
(5.11) PROPOSITION. Let p, Y, and <f> be as in (5.9). Then

(1) The flow (|y|p, T) commutes with the action of (A/S, dSp) on \Sf\.
(2) The pair (Y, </>) is a bitransformation group monomorphism of (A/N, \Jf\, T)

into ((A/S, dSp),\y\p,T).
(3) <f> is onto if and only if Y is onto.
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Proof. (l)Let U be the image of <f>, and let a e A, x e |./V|andf e T. Since (ax)t = a(xt),

(T(a)Q4>(x)) • t = ct>{ax) • t = 4>((ax)t) = (/>(a{xt)) = r(a)Q(f,(xt) = T(a)®(<f>(x) • t).

Hence (I>)©y) • t = r (a )0 (y • t) (a e A, y e U, t e T).
Now ( r ( a ) O y ) - t = ((-8p(a) + d)Oy)- t = {(-8p{a) ® a) O y) • t =

(8p(aVl O (a O y)) • t = Sp(a)~\(a O y) • f), since 5p(a) e C/S.
On the other hand, T(a)0(y • t) = (-8p(a) + a)Q(y • t) = 8p(a)~l(aQ{y • t)) (as

above).
Hence (aOy)- t = aQ(y • t) (aeA, y eU, teT).
Let x e \SP\. Then, since U covers \sd\, there exist a eA,y eU with j : = a 0 y . Then

(a O x) • t = {a O (a O y)) • t = ((a®a) O y) • r = (a ® a) O (y • t)
= a O (a Q (y • t)) = a O ((a (D y) • t) = a O (x • t).

(2) This is just (5.9).
(3) Let 4> be onto. Since <f> preserves fibres over \si\, it maps A/N onto A/S. But

4>\A/N = V.
On the other hand, if F is onto, <f> maps the fibre over the base point of \s4\ onto

itself. Since </> is a r-homomorphism and (|^|, T) is minimal, <A is onto. •

The following result from the algebraic theory of minimal flows will be useful (see
12.12 of [1]).

(5.12) PROPOSITION. Let (H, X, T) be a bitransformation group with (X, T) minimal,
& = a\ {XIH, y0), S£ = al (X, x0), T the map from F = g(^) to H such that Y(a)(x0) =
xoa (aeF) and <f> the map p\^f-*xop: \!£\->X(peM). Then the pair (F,4>) is a
bitransformation group isomorphism of (F/L, |J?|, T) onto (H,X, T).
(5.13) PROPOSITION. Let peZ(<g,C/S) and feZ2(B/S,C/S) be such that
((A/S,f), MP, T) is a bitransformation group. Then peZB(%, C/S) and f = d8p.

Proof. "Let Jf = per (V, p), N = g(Jf), X = els {x0-t\teT}^\y\ and H =
{a e A/S|a *x eX (x eX)}. Then (5.12) is applicable and the pair (F, </>) becomes in
this case <t>(p\Jf) = x0 • p = 8p(pTlxop = 8p(pT\p\Sf) (peM) and r(a)xo =
r(a)*xo = T(a)(xo) = Xo • a =8p(a)~1(xoa) = (-8p(a) + d)xo. Hence, viewed as a
map from A into (A/S, f), r(a) = -8p(a) + d(a eA).

Now let «5o-(x) = 0 and aeA. Then 4>(ax) = 8p(ax)~1(ax\y) =
(-Sp(ax) + a)(x[Sr). A/so 4>(ax) = T(a) * <fi(x) = (f{Sa(T{a)), 8o-(<J>(x)) + r(a))<f>(x).
Since (f>(x) = 8P(xy\x\Se), 8cr(<f>(x)) = 8o-(8p(xy1) + 8o-(x) = 0 (recall that 8p(x)e
C/S and C = ker&r). Thus 4>(ax) = r(a)t/>(x) = (-8p(a) + d)(8p(xy1x\^) =
(-Sp(a)-a • 8p(x) + d){x\y). Equating the two expressions for 4>(ax), one obtains
8p(ax) = a • 8p(x) + 8p(a); i.e. p is a B-cocycle.

By (5.8) and the first part of this proof, r(fli)©r(a2) = r(a1)®r(a2) (au a2 e A).
Since ai = -8p(ai) + Y(ai) and 5p(a,)eC/5 (/ = 1,2), a1®a2 = ai®a2, whence

2) (au a2eA). •

Proposition 5.11 shows that a 5-cocycle p on ̂  to C/S produces a group structure
on A/S and a flow M|p on |5^| such that ((A/5, d8p), \y\p, T) is a bitransformation
group. It would be desirable to know whether, given feZ2(B/J, C/S), there is
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p eZB(% C/S) with dSp=f. The next few results make use of proposition (5.13) to
give a partial answer to this question.

(5.14) PROPOSITION. Let T = l and feZ2(B/S, C/S). Then there exists pe
ZB(<€, C/S) with d8p=f.

Proof. Let t be the generator of Z. By (5.13) it suffices to find a map x >->* • t: \y\ -»
|5"| such that a *(x • t) = (a *x) • t (aeA/S, x e \SP\).

To this end set x • t = f(8a(x), a{x, t))xt. Then

a*(x-t) = (f(Sa(a), 8a(xt)) + a +f(Str(x), <r(x, t)))xt

= (f(8<r(a), 8<r{xt)) + a • f(Sa(x), <T(X, t)) + a)xt,

and

(a*x)-t = (f(So-(a), Sa(x)) + a)x • t = (f(Sa{ax),cr(x,t))+f(Scr{a),So-{x)) + a)xt.

Since a • c = 8a{a) • c, 8<r(ax) = oa(a) + So-(x) and a{x, t) = -So-{x) + Sa(xt), the
preceding equations and the fact that/isa2-cocycle imply that(a*x) • t = a*(x • t).

•
(5.15) PROPOSITION. Let T be free, al(o-) = R, and feZ2(B/S,C/S). Then there
exists p € ZB(% C/S) with dSp=f.

Proof. Since 8a induces a homomorphism of T into B/S [2], the map {t, c) -» 8a{t) • c
of T x C/S into C/S defines an action of T on C/S.

A straightforward computation shows that the map (t\,t2)-*
f(8o-(h), 8a{t2)): T x T->C/S is a 2-cocycle on T to C/S (see [5]).

Since T is free, this map is a coboundary, i.e. there exists w.T^C/S with
fiSo-ih), 8<r{t2)) = dw(tu t2) = 8o-(h) • w{t2)-w{h t2) + w(h) and w(0) = 0 [5].

We may extend w to fiT and, by continuity, obtain

f(8cr(x),8o-{y)) = 8o-(x)-w(y)-w(xy) + w(x) (x,y

Now set p(x, t) = -w{x) + w(xt) = -w(x)+ w(x) + 8o-(x) • w(t)-f(8o-(x), 8<r(t)) =
&r(jc) • w(t) -f(8a(x), 8<r(t)). This shows that p is a cocycle on ^ to C/S with Sp = w.

If one sets x = a and5o-(y) = 0in (*), one obtains 0 = 8o-(a) • w(y) — w(ay) + w(a);
i.e. p is a B-cocycle.

Finally, 8a(b) = b (beB) implies that d8p =dw =/. The proof is completed. •

(5.16) PROPOSITION. Let feB2(B/S,C/S). Then there exists peZB(^, C/S) with
d8p=f. Moreover, peB\<$, C/S) and (A/S, \Sf\, T) = ((A/S,f), MP, T).

Proof. Let g:B/S-*C/S be such that g(0) = 0 and dg=f. Set w(x) = g(8a-(x))
(*€j8T). Then w induces a continuous map from |*<?|-» C/S. Hence the equation
p(x, t) = w(x)~1w(xt) (x e QT) defines a coboundary p on % to C/S with 8p = w.

Let 8cr(x) = 0 and a e A. Then 8p(ax) = w(ajc) = g(8o-(ax)) = g(8cr(a) + 8o-(x)) =
g(8a(a)) and w(x) = g(5o-(x)) = g(0) = 0. Hence 5p(ax) = g(5o-(a)) =
a • Sp(;c) + Sp(a) and so peZB(B/S, C/S).

Moreover, d8p(bi, b2) = dw(bu b2) = b\ • w(b2) — w(bi + b2) + w(bi) = bi • g(b2)-
x + b2) + gi^) = dg(bu b2) = /(*,, b2) {bu b2 e B/S).
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Finally, in this case the map F with F(a) = — Sp(a) + d reduces to the canonical map
of C onto C/S. Hence the group N of the flow Jf = per (P, p) is just S by (5.9), and
(5.16) follows from (5.8) and (5.11). •

I should now like to relate § 3 to the present section. To this end the following lemma
shows how the set of tr-cocycles on si to C/S may be included in the set of B -cocycles
on <# to C/S.

(5.17) LEMMA. Let <J>(y) • (x, t) = 8a{x) • y{x, t) (xe |« | , teT, ye2Urf, C/S)).
Then $ is a monomorphism of' Za{si, C/S) into ZB(% C/S).

Proof. That * is a monomorphism of Za(sl, C/S) into Z(<£, C/S) follows immedi-
ately from the definitions involved.

Now 8<$(y)(ax) = <l>(y)(e, ax) = Soie)- y(e, ax) = y(e,ax) = y(e, a) + a(e,a)- y(a,c);
5<J>(y)(a) = y(e, a) and a • 8<b(y)(x) ~ a • y(e, x). Since y induces a function on \s&\,
y{a, x) = y(e, x). Moreover, since C/S is abelian, a • c = So-(a) • c = cr{e, a) • c(aeA,
c € C/S). Consequently, 4>(y) e ZB{B/S, C/S). •

(5.18) PROPOSITION. Let peZB{.% C/S). Then the following statements are pair-
wise equivalent.

(1) peim<!>.
(2) (A/S, \Sf\p, T) is a bitransformation group.
(3) dSp = 0.

Proof. (1) implies (2). Let p(x, t) = Sa(x) • y(x, t) with yeZ«($i,C/S), and let
aeA/S,xe |^|.Thena(x • t) = a{p{x, t)~lxt) = (a -p(x, t)){xt) = ( - a • p(x, t))(axt)
and (ax) • t = p(ax, t)~\axt) = (-p(ax, t))(axt).

Now

p(ax, t) = Sa{ax) • y(ax, t) = (8o-(a) + 8cr(x)) • y(x, t)

= So-(a) • (8<r(x) • y(x, t) = a- p(x, t).

(2) implies (3) by (5.13) with / • 0.
(3) implies (1). Set y(x, t) = Sa(x)~1 • p(x, t) = Saix)'1 • (-Sp(x) + Sp(xt)). Let

a e A. Then

y(ax, t) = 8a{ax)~l • (Sp{ax) + Sp(axt))

= 8a(ax)~1 • (-a • 8p(x)-8p(a) + 8p(a) + a • 8p(xt))

= (-8<r(x)-8cr(a)) • a • p(x, t) = 8o-{xY1 • p(x, t) = y(x, t).
Thus y defines a continuous function from |^ | x T to C/S. The verification that y is

a cr-cocycle is straightforward. The proof is completed. •

(5.19) PROPOSITION. Let ZB(S0 = {vzZB(%C/S)\pei(9',r1) = ¥\. Then d8r,e
B2(B/S, C/S)(t) e ZB{Sf)), and the map A such that A(r)) = d8rf is a homomorphism
ofZB{Sf) onto B2(B/S, C/S) with ker A = im *.

Proof. Since the group of per {Sf, 17) is S, A/S = (A/S,d8ri) (5.11), whence dS-q €
B2(B/S, C/S) (4.3). (The isomorphism in (5.11) is the identity on C/S.)
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Let feB2{B/S, C/S). Then there exists r\ eZB(<<?, C/S) with dSrj = / and T? e
B($,C/S) (5.16). Thus 5TJ(C) = 0 (ceC), whence the group of per(y, TJ) =

{a e A\Sr](a) = a} = S. Consequently, y = per (tf, 17) and A is onto.
The map A is clearly a homomorphism and its kernel is the image of $

by (5.18). •

The proof of (5.19) together with (5.14) implies:

(5.20) PROPOSITION. Let T = Z. Then the map p>-^d8p:ZB(%C/S)^
Z2(B/S, C/S) induces an isomorphism of ZB(% C/S)/ZB(9>) onto H2(B/S, C/S).

In (3.11) it was shown that the map z^>z°o-\Z(B/S,C/S)^Z<r(si,CIS) is
injective. Combining this map with the embedding of Za{si, C/S) into ZB(^, C/S)
(5.17), one obtains an embedding V of Z{B/S, C/S) in ZB(<€, C/S). The next result
characterizes the image of ¥ .

(5.21) PROPOSITION. Let P(p) = 8p°cr (peZB(^,C/S)). Then P induces a
homomorphism of im $ n B(<#, C/S) onto i m ^ with P2 = P and kerP =
<b{Ba(&, C/S)).

Proof. Let p e im 4> n B{%, C/S). Then Sp(c) = 0 (c e C) and so Sp induces a map of
B/S into C/S. By (3) of (5.18), SpeZ{B/S,C/S), whence P(p)eim*. Since
S(pi+p2) = Spi + Sp2, P is a homomorphism of im$nSC<?, C/5) into im ^ .

Let i j e i m ^ . Then TJ(X, t) = Scr(x) • g(a(x, t)) (xe\^\,teT) where g e

Z(B/S, C/5).Then rj e im <t>andSTJ =g°8<r. Since So-(c) = 0 (c e C), 77 €fl(<£, C/S).
Consequently, 77 € im <$>nBC$, C/S).

Now P ( 1 7 ) = 5T7°CT, i.e. P(n)(x,t) = Sri(tr{x,t)) = g(S<r(tr(x,t)) = g(<r(x,t)) =
•q{x, t) (8o-(b) = b (beB/S)). Thus P(-q) = TJ.

This shows that P is onto and that P2 = P.
Let p(x, t) = <5o-(x) • y(jc, t) with y e^(.stf, C/S) then /J(p)(x, 0 = 8p(o-(x, t)) =

8y{a(x,t)) = 0.
On the other hand, let p(x, t) = 8cr(x) • y(x, t) be in B(<<?, C/5) with P(p) = 0. Then

8p = 8y implies 5y(c) = 0 (c 6 C) (since p € B(«, C/5)) and 8y(b) = 0(beB) (since
image of a is B/5 and 8y{o-(x,t)) = 8p(a(x,t)) = P(p)(x,t) = 0). Hence ye

g, C/5). The proof is completed. •

6. Concluding remarks
First I should like to discuss a simple example in order to illustrate some of the ideas
in §§ 3 and 5.

Let us begin with the minimal flow (\si\, a) where \si\ is the set of reals mod 1 and a
denotes the map y^*y+a: \s£\-*\s&\ with a irrational.

Let a be the cocycle on si to Z2 given by the constant map y -* 1: \sd\ -* Z2. Then
the flow <£ = ext {si, o-) is given by the map (a, y)->(a + 1, y + a): Z2x\si\^> Z2x\si\.

The flow 38 will be a cr -extension of si. To construct it let / denote the underlying
topological group of \sd\ and <f> a continuous map from \si\ to / such that the flow
( / x | ^ | , y) is minimal, where (k, y)y = (<f>(y)-k, y+a)(keJ,y e\si\). (Many such
</> exist, see [4].)
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Now / acts on / x | ^ | in the obvious way and Z2 acts on / via the map
(a, Jt)i-^(-l)afc:Z2x/ -+J. Then it is easy to see that (k(r,y))y = (o-(y)k)(r,y)y
(k,reJ,ye \$4\); i.e. 59 is what Keynes and Newton call a cr-extension of si.

The flow y= <€ v 38 is the subset of the cartesian product \<€\ x \3ft\ given by the
orbit closure of the point (0, 0, 0, 0) under the map

(a, y, k, z)i-»(a +1 , y +a, <f>(z)-k, z+a).

y may be identified with the flow (\y\, rj), where \¥\=Z2x\stf\xJ and
(a, y, k)-n = (a+ l,y+a, 4>(y)-k).

Let me now identify the various other objects which occur in §§ 3 and 5. Thus
C/S = J, B/S = Z2 and A/S = J -Z2, where (k, a)(r, b) = (k + (-l)ar, a+b). Then
A/S acts on |5"| via the relation (k, a)(b, y, r) = (a+b,y,(~ l)"+bk + r), and with this
action (A/5, \SP\, 17) becomes a bitransformation group.

Then C/S=J = {(k,0)\keJ}cA/S and B/SsZ 2 s{(O,a) |aeZ 2 }cA/S. The
flow per (y, ex) is obtained from Sf by taking the orbit closure of the point (0, 0, 0)
under the flow induced by the map (a, y, )fc)>-»o-(y)~1((a, y, k)rj) =
(0, \)(a + \,y + a,<t>(y)-k) = {a,y+a,<}>(y)-k). Thus

W = {(0, y, jfc)|y € |jrf|, it € / } c \y\ and per (5 ,̂ er) =

Let x0 = (0, 0, 0) e \Sf\. Since o-(x, 17) = (0,1) (x € |5 |̂), the cocycle equation shows
that 5cr(jt017 k) = (0, 0) or (0,1) depending upon whether k is even or odd. Hence
Sa(a, y, k) = (0,a)(ae Z2, y e \sd\, k e / ) .

In this example Z\B/S,CIS) = Z1{Z2,J) = B\I.2,J) where keJ is identified
with the cocycle pk on Z2 to / such that pk(a) = ka(ae Z2). The corresponding flows
on W are given by the maps r]k : W-* W (keJ) where (r, y)r}k = (<f>(y)-r — k,y+a)
(r, k 6 /, y e \sA\), and the subgroups of A/S by {(0, 0), (fc, 1)} (consider r\k °cr as in
(3.11)).

The second cohomology group H2(B/S, C/S) is just H2(Z, J) = Z2 (see (7.1) of
[5]) and a non-trivial 2-cocycle is given by the function

otherwise.

The new group structure on / • Z2 is given by (k, a)@(r, b) =
(f(a,b) + k + (-l)ar, a+b) and the new action of / • Z2 on \Sf\ by (Jfc, a)*(b, y, r) =
((f(a,b),O)(k,a))(b,y,r). Thus (k,a)®(r,b) = {k,a)(r,b) and (k, a)*(b, y, r) =
(k,a){b,y,r), unless a = \ = b in which case (k, l)©(r, 1) = (!+&-/•, 0) and
(k, 1)*(1, y, r) = (d 0)(k, 1))(1, y, r) = (fc +| , 1)(1, y, r) = (0, y, k +\ + r).

The new flow on |5^| determined by the B-cocycle p on "̂  to C/S with d dp =f is
given by the map xy =f(8cr(x), CT(X, I7))(XT/) (X € \Sf\). Thus, if x = (i, y, r), <x(x, TJ) =
1, So-(x) = 6 and (ft, y, r)y = (/(ft, 1), 0) (b, y, r)V = {fib, 1), 0)(b + l,y+a, 4>{y)-r).
Thus (0, y, r)y = (0, y, r)r/ and (1, y, r)y = (|, 0)(l, y, r)T/ = (|, 0)(0, y +<

I should like to conclude with some remarks, questions, and suggestions for further
study.
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(6.1) Remarks. (1) The theory given in § 5 is deficient in one point: it says little about
the map p>->d8p :ZB(«, C/S)->Z2(B/S, C/S) for general groups T.

(2) The assumption that C/S be abelian is necessary in order to apply the standard
results of the cohomology theory of groups. However, in many of the situations
arising in topological dynamics C/S need not be abelian. This might be circumvented
by emphasizing ZB(% C/S) rather than H2(B/S, C/S).

(3) In this paper Sf was assumed to be an almost periodic extension of si. Can the
results be extended to distal extensions?

(4) The question as to when there exists a cocycle <r on si to A/S with <€ =
ext (si, a), 88 = per (y, a-) and SP = 9H v 3S is an interesting one. However, starting
with a flow si and a cocycle y on si to a compact group K with Sy(A) = K, one can
always produce c€, S3,5f and a satisfying the preceding conditions: set C = ker Sy and
choose any r-closed subgroup B with CB =A. Then S = CnB,<$ = si(C)nsi*,
m=si(B)nsi*, &=<€*& and <r(x,t) = ir8y~\y(x,t)) (xe\si\, teT) are the
required objects. (Here n is the isomorphism of A/C onto B/S induced by the
canonical map of A/S = C/S • B/S onto B/S.) Of course, one may choose B = A
whereupon everything collapses. However, the set of possible choices for B should
give some insight into the flow si and the group C.
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