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This study examines the effects of surface topography on the flow and performance of a
self-propelled swimming (SPS) body. We consider a thin flat plate with an egg-carton
roughness texture undergoing prescribed undulatory swimming kinematics at Strouhal
number 0.3 and tail amplitude to length ratio 0.1; we use plate Reynolds numbers Re = 6,
12 and 24 × 103, and focus on 12 000. As the roughness wavelength is decreased, we find
that the undulation wave speed must be increased to overcome the additional drag from
the roughness and maintain SPS. Correspondingly, the extra wave speed raises the power
required to maintain SPS, making the swimmer less efficient. To decouple the roughness
and the kinematics, we compare the rough plates to equivalent smooth cases by matching
the kinematic conditions. We find that all but the longest roughness wavelengths reduce
the required swimming power and the unsteady amplitude of the forces when compared to
a smooth plate undergoing identical kinematics. Additionally, roughness can enhance flow
enstrophy by up to 116 % compared to the smooth cases without a corresponding spike in
forces; this suggests that the increased mixing is not due to increased vorticity production
at the wall. Instead, the enstrophy is found to peak strongly when the roughness wavelength
is approximately twice the boundary layer thickness over the Re range, indicating the
roughness induces large-scale secondary flow structures that extend to the edge of the
boundary layer. This study reveals the nonlinear interaction between roughness and
kinematics beyond a simple increase or decrease in drag, illustrating that roughness studies
on static shapes do not transfer directly to unsteady swimmers.
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1. Introduction

Underwater propulsion is an area of research that brings together engineers and biologists
alike; it has fostered a deeper understanding of aquatic locomotion and inspired innovation
in underwater systems. The kinematics has the most significant effect on the locomotive
properties of marine animals (Lighthill 1960, 1971; Triantafyllou, Triantafyllou &
Gopalkrishnan 1991; Triantafyllou, Triantafyllou & Grosenbaugh 1993; Borazjani &
Sotiropoulos 2008; Eloy 2012; Saadat et al. 2017; Di Santo et al. 2021); however,
some intricacies of animal evolution, such as the skins of sharks and odontocetes, have
sparked research into the benefits of aquatic surface textures. Understanding the fluid
dynamic interaction between kinematics and surface textures will help us to elucidate the
contribution of surface textures to aquatic locomotion.

Previous work has identified important non-dimensional kinematic parameters for
efficient swimming. The Reynolds number (Re) affects the efficiency of swimmers, which
can be in the viscous (Re ≈ 102), transitional (Re ≈ 103) and inertial (Re → ∞) regime
(Borazjani & Sotiropoulos 2008, 2010). In this study, we focus on the transitional regime
with Re = [6, 24] × 103. The Strouhal number (St) describes the ratio between the product
of the wake width and the shedding frequency, and the flow velocity; Triantafyllou
et al. (1991, 1993) found that the optimal Strouhal number should be in the range
0.25–0.35. Eloy (2012) tested the kinematics of 53 different types of fish based on
Lighthill’s elongated body theory (Lighthill 1960, 1971), and found that for thin tails, the
optimal Strouhal number range was 0.2–0.4. Saadat et al. (2017) showed that the Strouhal
number was insufficient for efficient locomotion, and defined a range of optimum motion
amplitude to length ratio from 0.05 to 0.15. Di Santo et al. (2021) recently compared 44
species of fishes and found that despite fishes’ different morphologies – categorised as
anguilliform, subcarangiform, carangiform and thunniform – they shared a statistically
significant oscillation amplitude, a.k.a. kinematic envelope. This work is noteworthy as
previous work suggested that the presence of different kinematics was dependent on the
morphology.

While kinematics has received the majority of the literature’s attention, it is not the
only factor affecting the locomotive properties of swimmers. Many studies have identified
drag-reducing properties of certain textures. Although most of these studies are applied
on static geometries, it has been suggested that these effects could transfer to unsteady
aquatic propulsion. Bechert, Bruse & Hage (2000) showed that when shark-skin-like
denticles interlock, they can passively reduce the drag on the surface much like a riblet.
Riblets are small-scale two-dimensional transverse grooves whose heights scale with the
viscous scales of the flow, and can act as drag reduction devices (Walsh 1982; Park &
Wallace 1994; García-Mayoral and Jiménez 2011; Cui et al. 2019). However, if riblets
are not viscous scaled and/or have other larger-scale features (such as a larger pattern of
inclinations), then they create new flow features and perhaps increase drag (Bechert et al.
2000; Nugroho, Hutchins & Monty 2013; Boomsma & Sotiropoulos 2016; Rouhi et al.
2022; Von Deyn et al. 2022). The sensitivity of riblets to these specific flow conditions
calls into question their applicability to boost the performance of unsteady swimmers.

During a swim cycle, the surface of a swimmer might briefly encounter the viscous
scales set out by Bechert et al. (2000) for drag-reduction of riblets; however, the morphing
of the body and the fluctuating viscous length scales force the near-wall flow outside the
conditions that cause riblets to decrease drag the majority of the time. To comprehend
the potential hydrodynamic benefit of surface textures, we must look at them in the
context of a larger, dynamic system. For example, vortex generators are often low-profile
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Effect of roughness on swimming plates

roughness elements that can significantly effect the flow and stimulate massive increases of
aerodynamic performance when positioned correctly (Lin et al. 1994; Lin 2002). Similarly,
studies suggest that shark skin uses passive control in the flank region to bristle the skin
while swimming, increasing boundary layer mixing and helping to keep the flow attached
at areas of flow reversal (Lang et al. 2008; Afroz et al. 2016; Santos et al. 2021). In this
vein, Oeffner & Lauder (2012) tested samples of skin from the midsection of a short-fin
mako shark on both a rigid flapping plate and a flexible plate. They found that the skin
actually reduced the rigid plate’s propulsive effectiveness. They also found that adding
shark skin increased the flexible plate’s swimming speed by 12 %. However, they do not
provide the amplitude envelope for the flexible plate that would ensure constant kinematics
between the cases tested. Similarly, Wen, Weaver & Lauder (2014) covered an undulating
plate in three-dimensional printed denticles of 100× actual size, and measured a 6.6 %
efficiency increase. Again, they do not provide an amplitude envelope to ensure that the
kinematics between the smooth and the rough surfaces remains constant. The denticles
in the above-mentioned work (Oeffner & Lauder 2012; Wen et al. 2014) are not scaled
with local viscous scales, so they are within the drag-reducing regimes set out by Bechert
et al. (2000). Therefore, the physical mechanisms responsible for the differences between
rough and smooth surfaces remain unclear and illustrate the need for a systematic study to
examine the interaction between surface textures and kinematics.

The complex and multiscale shape of denticles does not lend itself to systematic
investigations into the interplay between surface textures and kinematics. Consequently,
we look to simplify the surface texture and focus on the first mode effects of roughness. We
need to span a relevant physical space, yet ensure that the parametrisation of the surface is
suited for the proposed problem. We look for inspiration in the surface textures/geometries
that have been explored in previous studies that have focused on developing methods
for predicting drag on flow over rough surfaces (Moody 1944; Jiménez 2004; Flack &
Schultz 2010, 2014; García-Mayoral, Gómez-De-Segura & Fairhall 2019; Chung et al.
2021). Previous studies have indicated that the ratio of the total projected frontal roughness
area to the wall-paralleled projected area (solidity, Λ; Schlichting 1936) and the mean
slope of the roughness texture (in the streamwise and spanwise directions, also known as
effective slope, ES; Napoli, Armenio & De Marchis 2008) are two geometric parameters
of a rough surface known to significantly affect the flow and forces. These two parameters
can be altered easily for structured surfaces where the surface geometry has a sinusoidal
shape. In fact, previous works have used sinusoidal roughness where the variation of the
two roughness properties can be achieved by altering only the wavelength of the sinusoidal
shape (Napoli et al. 2008; Chan et al. 2015; Ma et al. 2020; Ganju, Bailey & Brehm 2022).
This presents us with a surface that can be used to understand how the primary scales of
roughness (parametrised by a single quantity) interact with kinematics, with the hope that
the findings can be generalised to more complex geometries.

In this work, we study the interaction between kinematics and roughness topologies
through high-resolution simulations of a rough self-propelled swimming thin plate. We
consider three Reynolds numbers (Re = 6, 12 and 24 × 103) with a focus on Re = 12 000
(based on swimming speed and chord length) to access moderate Reynolds numbers
for the types of flows that are in line with previous efforts (Oeffner & Lauder 2012;
Wen et al. 2014; Saadat et al. 2017; Domel et al. 2018; Thekkethil, Sharma & Agrawal
2018). We also fix the kinematics of the plate to a simple travelling waveform with a
fixed Strouhal number St that is in the propulsive regime for flapping foils and has been
used extensively in previous studies (Dong & Lu 2007; Borazjani & Sotiropoulos 2008;
Maertens, Gao & Triantafyllou 2017; Muscutt, Weymouth & Ganapathisubramani 2017;
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Figure 1. (a) The geometry used, which has two defining parameters: λ, the wavelength of the roughness, and
h, the roughness amplitude. (b) A visual representation of the parameters that define the plate motion.

Thekkethil et al. 2018; Zurman-Nasution, Ganapathisubramani & Weymouth 2020).
As denticle geometries are complex with several potentially important length scales,
we focus on a simple roughness texture with a single length scale to assess how the
topology interacts with the kinematics and impacts the hydrodynamic properties of the
swimmer. By combining information from two different, but well-established topics, we
hope to understand the influence of one on the other. These dynamic simulations with
roughness elements are the first of their kind, allowing us to establish a link between
surface roughness and kinematics, and then – with comparison to a smooth kinematic
counterpart – isolate directly the nonlinear interaction of the roughness and kinematics.

2. Methodology

2.1. Geometry
We use a flat plate with thickness 3 % of the plate length L as the base model. Using a flat
plate couples the dynamics and the surface texture in the simplest possible set-up, similar
to thin aerofoil theory. Using a body with curvature would also make some bumps more
proud to the flow than others, changing the effective amplitude of the bumps along the
body. A thin plate enables the use of a constant bump amplitude h of 1 % of the plate
length all along the body.

For the roughness, we use a sinusoidal roughness, similar to Napoli et al. (2008), Chan
et al. (2015), Ma et al. (2020) and Ganju et al. (2022), that allows us to vary the roughness
topology systematically. Figure 1(a) illustrates the parameters affecting the roughness
topology. Normalising all lengths by the plate length L, the topography is defined as

y(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

h sin
(

2πx
λ

)
cos

(
2πz
λ

)
, for y ≥ 0.015 − h,

h sin
(

2πx
λ

− π

)
cos

(
2πz
λ

)
, for y ≤ −0.015 + h,

(2.1)

where y is the direction normal to the plate, x, z are the tangential directions, and λ is the
roughness wavelength.

2.2. Kinematics
Continuing to scale all lengths by L, using the swimming speed U to scale velocity and
L/U to scale time, we define the excursion of the body from the centreline as

y(x) = A(x) sin(2π[ ft − x/ζ ]), (2.2)
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Effect of roughness on swimming plates

where f is the frequency, ζ is the phase speed of the travelling wave, and A(x) is the
amplitude envelope, all of which are illustrated in figure 1(b). The Strouhal number is set
to peak propulsive value St = 0.3, which determines the scaled frequency as f = St/2A1,
where A1 = A(x = 1) is the trailing-edge amplitude and defines the wake width of the
system. We modify the recent result from Di Santo et al. (2021) for the envelope,

A(x) = A1(a2x2 + a1x + a0)

2∑
i=0

ai

(2.3)

using a0,1,2 = (0.05, 0.13, 0.28) and A1 = 0.1, as found to be optimal in Saadat et al.
(2017). The modification changes a1 from −0.13 (Di Santo et al. 2021) to 0.13, reducing
the amplitude of the leading edge, enabling self-propelled swimming over a wider range
of λ.

2.3. Numerical method
We simulate incompressible fluid flow with the dimensionless Navier–Stokes equation
combined with the continuity equation:

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u, (2.4)

∇ · u = 0, (2.5)

where u(x, t) = (u, v, w) is the scaled velocity of the flow, and p(x, t) is the scaled
pressure. We use Lotus, an in-house developed finite-volume implicit large eddy
simulation (iLES) code. The implicit modelling of iLES derives from a flux-limited
QUICK (quadratic upstream interpolation for convective kinematics) treatment of the
convective terms (Hendrickson et al. 2019). We use an adaptive time step based on the
Courant–Friedrichs–Lewy condition that has been shown to converge with O(2) (Lauber,
Weymouth & Limbert 2022).

The undulating plate was coupled to these flow equations using the boundary data
immersion method (BDIM) formulated in Weymouth & Yue (2011) and developed further
for higher Reynolds numbers in Maertens & Weymouth (2015) and thin geometries
in Lauber et al. (2022). The BDIM enforces the boundary condition on the body by
convolving together the fluid and body governing equations on a Cartesian background
grid. The BDIM has been validated extensively in those studies and converges at second
order in both time and space. The boundary condition that we enforce on the body is
the no-slip condition. Symmetry conditions are enforced on the upper and lower domain
extents, and there is a periodic condition in the spanwise direction.

Figure 2 details the grid and domain set-up. We used the smallest domain for which the
forces on the body remained invariant when the size increased. We define the force and
power coefficients as

CT =

∮
fx ds

0.5S
, CL =

∮
fy ds

0.5S
, CP =

∮
f · v ds

0.5S
, (2.6a–c)

where f = −pn̂ is the normal pressure stress on the body, v is the body velocity, and
S is the planform area of the smooth plate. We use a rectilinear grid over the domain
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Figure 2. Schematic for the domain and grid. The inner box shows the region where the grid is uniformly
rectilinear; from there, the grid stretches towards the domain extent. This is a representative grid for the x–y
plane on the geometry where λ = 1/16. We use a periodic boundary condition and max(6λ, 0.25) to define
the repeating spanwise domain size. The inset indicates the grid around the tail of the plate, showing that for
λ = 1/16, we have 16 cells resolving the roughness wavelength, and 5 cells resolving the amplitude of the
surface.

x ∈ [−2, 7], y ∈ [−2, 2], and vary the spanwise direction so that z ∈ [0, max(6λ, 0.25)]
(figure 2). For the area that contains the body motion and the immediate wake, we use a
uniform grid and then implement hyperbolic stretching of the grid cells away from this
area (figure 2). The grid is refined in y such that �y is half �x and �z (figure 2 inset). This
gives us a total number of grid points in the range [67.1, 403] × 106, which are distributed
as (nx, ny, nz) = (1536, 1536, [64, 384]). Careful consideration of the aspect ratio of the
maximum stretched cell meant that it did not exceed five times that of the uniform region
to avoid distorting the flow in the wake.

Further details of the numerical method verification and validation are given in the
appendices. We present the grid convergence results in Appendix A, and details of the
domain size convergence in Appendix B. The solver is then validated against experimental
oscillating plate results of Lucas et al. (2015), reproducing the thrust force to within 1.7 %,
in Appendix C.

3. Results

3.1. Self-propelled swimming
We find the self-propelled swimming (SPS) state by setting the wave speed ζ to zero
the mean net thrust 	CT . The wave speed is an effective control parameter to counter
roughness adjustments because increasing ζ increases the thrust production, as shown
for a smooth plate in figure 3(b). Figure 3(a) illustrates the change in body shape as the
wave speed increases, which is a product of fixing the frequency with St = 0.3 and letting
the wavelength change the wave speed. Changing ζ to achieve SPS allows us to keep Re,
St and A1 constant to test different surface conditions without changing these important
swimming parameters identified in the literature. We use Brent’s method (Brent 1971) to
find the 	CT(ζ ) = 0 root within a tolerance of 10−2, which allows us to balance precision
with the number of iterations; the tabulated solutions are presented in table 3.

Using this approach, we found that a decrease in the roughness wavelength λ requires
an increase of ζ to maintain SPS (figure 3c). Here, ζ changes with λ like the function
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2
0

0.1

0.2

1.5

2.0

0.1 0.2
ζ

ζ = 1.0 ζ = 1.5 ζ = 2.0

ζ

4

CT

λ

(a)

(b) (c)

Figure 3. The impact of ζ on (a) the shape of and (b) the forces on a smooth plate. (c) The required wave
speed ζ for SPS of a rough plate, given different wavelengths (λ).

(1/|λ|) + c (figure 3c). The ζ, λ relationship leads us to restrict λ in the range (1/4, 1/52)

as the limits are ill-conditioned. Longer wavelengths asymptote to the smooth SPS (ζ =
1.06) where λ ≡ 1/0, whilst all λ < 1/52 are drag-producing for our set-up.

3.2. Flow structures
The structures of the flow provide insight into the workings of the system. Figure 4 shows
equally spaced time instances making up a whole period of motion for two different
swimming modes at Re = 12 000. One swimming mode is ζ = 1.11, which is required
to achieve SPS for a surface with λ = 1/4; the other is ζ = 2.27 for λ = 1/52. The high
wave speed required to overcome roughness has resulted in strong coherent vortices, whilst
the lower wave speed has a much more dispersed vorticity field.

As ζ increases, the flow around the plate moves away from those typically associated
with swimming. Figure 5 shows four snapshots across the range of ζ associated with the
surfaces tested. Figure 5(a) is a smooth comparison and exhibits a two-pair plus two-single
(2P+2S) vortex wake structure (Schnipper, Andersen & Bohr 2009). For figure 5(b), there
is an increase in the boundary layer mixing, and the flow moves back to a more traditional
2P structure. As λ decreases further, the leading-edge vortex becomes more defined, with
figures 5(c,d) exhibiting well-defined vortices along the length of their body, which is
generally associated with a heaving instead of a swimming plate.

Figure 6 shows the flow structure visualised by isosurfaces of the Q-criterion (Hunt et al.
1988). For a direct comparison, the contour of the isosurface remains the same between
the figures. The flow exhibits a distinguishable transition as ζ increases. For low ζ , the
bumps dominate the flow structure, and we see distinct horseshoe vortices shed from each
element. These vortices persist downstream into counter-rotating streaks that compose the
near wake. The flow structures get smaller as ζ increases, and the horseshoe vortex around
each element becomes less distinct. From figure 6(c) onwards, we can see that the near
wake collects into a wavy vortex tube similar to those that categorise a two-dimensional
flow driven by kinematics Zurman-Nasution et al. (2020).

Next, we study the influence of Re on the SPS flow by extending the range to Re = 6, 12
and 24 × 103 (figure 7). The large-scale flow structures such as the leading-edge vortex and
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|ω|

0.112 0.096 0.080

t = 0.3

t = 0.6

t = 0.9

t = 0.3

t = 0.6

t = 0.9

0.064 0.048 0.032 0.016 0

(a) (b)

(c) (d)

(e) ( f )

Figure 4. Sequential snapshots of vorticity magnitude |ω| for SPS at Re = 12 000. The two columns represent
different roughness wavelengths: (a,c,d) λ = 1/4, requiring ζ = 1.11 for SPS; (b,d,e) λ = 1/52, requiring ζ =
2.26.

|ω|

0.112 0.096 0.080 0.064 0.048 0.032 0.016 0

λ = ∞
ζ = 1.06

λ = 1/32

ζ = 1.43

λ = 1/16

ζ = 1.22

λ = 1/48

ζ = 1.96

(a) (b)

(c) (d)

Figure 5. The change in vorticity magnitude with roughness wavelength. All instances are taken at the same
cycle time (t = 0.1) and show the spanwise-averaged vorticity magnitude: (a) a smooth plate; (b–d) rough
plates defined by decreasing λ.
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λ = 1/8

ζ = 1.14

λ = 1/24

ζ = 1.34

λ = 1/40

ζ = 1.54

λ = 1/48

ζ = 1.96

λ = 1/32

ζ = 1.43

λ = 1/16

ζ = 1.22

(a) (b)

(c) (d)

(e) ( f )

Figure 6. The Q-criterion of the flow around a flat plate with a decreasing roughness wavelength. For longer
wavelength roughness, the shedding off the bumps dominates the structures. As the wavelength decreases, the
flow transitions to a predominantly two-dimensional state as the influence of the bump perturbations gives way
to dominant kinematically driven structures.

wake vortices remain similar, but increasing Re is seen to greatly increase the production of
small-scale vortices – both on the surface and in the wake. This is because the large-scale
structures are driven by the kinematics and the surface topology, and the reduced viscosity
causes the structures to break down quickly.

3.3. Forces
We find that increasing ζ increases the power to maintain SPS (figure 8a) despite the strong
two-dimensionality of the flow structures, which are normally associated with efficient
power transfer (Zurman-Nasution et al. 2020) as no energy is lost to three-dimensional
effects. This means low ζ corresponding to the longer wavelength roughness, and
associated three-dimensional flow structures are more efficient.

Figure 8(b) shows that as ζ increases, so does RMS(CL). This signals ineffective
swimming as the side forces are balanced by the mass × acceleration of the body’s
motion, so larger side forces on an equally massive body cause the body to accelerate more
side to side, decreasing the smoothness. Similarly, increasing ζ also increases RMS(CT)

(figure 8d), leading to more of a surging motion, further decreasing the smoothness of the
swimming. These signs of ineffective swimming are reflected in the stated increase in 	CP.

To decouple the roughness and wave speed effects, we run a smooth simulation with
the same kinematics properties as in each rough case. This smooth kinematic counterpart
gives a base flow to compare against the rough simulations, and the cycled average power
and forces are shown in figure 8. Figure 8(c) illustrates that increasing ζ for the smooth
case increases 	CT , making the smooth-plate counterparts slightly thrust producing. The
power 	CP is reduced by adding roughness to the surface of the plate (figure 8a), for the
shorter wavelength roughness tested. Shorter wavelength roughness also reduces RMS(CL)
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Re = 6000

λ = 1/8

Re = 12000

λ = 1/12

Re = 24000

λ = 1/16

(a)

(b)

(c)

Figure 7. Flow structures of plates at Re = 6, 12 and 24 × 103 visualised by the same Q-criterion. The surface
topographies, defined by λ = 1/8, 1/12, 1/16, correspond to the enstrophy peaks discussed in § 3.4. The time
evolution of these three flow fields are available as supplementary movies, available at https://doi.org/10.
1017/jfm.2023.703.

(figure 8b) and RMS(CT) (figure 8d), making the swimming more effective compared to a
smooth, kinematic counterpart.

3.4. Enstrophy
So far, we have shown that surface roughness increases the drag on a surface, leading to
inefficient swimming, and have identified variations in the flow structures for different
textures and kinematics. To identify the separate fluid dynamic contributions of ζ and λ,
we look at scaled enstrophy of the rough surface and its smooth kinematic counterpart.
We define the scaled enstrophy as

E =

∫
0.5 |ω|2 dV

SA1
, (3.1)

where the scaling factor is the planform area times the motion amplitude to define an
appropriate reduced volume over which to evaluate the mixing. We use the subscripts r, s
to identify the rough and smooth cases, respectively.
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Figure 8. The key swimming performance and force characteristics of the plate at Re = 12 000. (a) The power
required to maintain SPS. (b) The side force RMS. (c) The time-averaged thrust. (d) The RMS thrust. The
points making up the solid line are the rough simulations, and the dash-dotted line is a kinematically equivalent
smooth simulation that matches ζ to the rough case.

In general, the enstrophy increases with Re because of the presence of smaller-scale
structures (figure 7). We show this in figures 9(a,b), which report the results of E against ζ

for three Re values. Figure 9(a) shows the results of the rough plate undergoing SPS, and
figure 9(b) shows the enstrophy for the smooth, kinematic counterparts. Both the smooth
and rough plates have an approximately linear increase that scales with log Re.

The positive gradient of both the smooth and rough enstrophies shows that enstrophy
increases with ζ , and the offset between the smooth and rough lines indicates that adding
roughness also increases enstrophy. As we increase ζ , the enstrophy increases for both
the smooth and rough cases. At the upper limit of ζ , the smooth and rough lines start
converging as the rough flow, like the smooth, becomes two-dimensional (figure 6).

One prominent feature of figure 9(a) is the peaks in enstrophy found for ζ = 1.1–1.3.
The peak in enstrophy coincides with the superposition of the flow features associated with
both the roughness and kinematics (figure 7). This is evident as surfaces with shorter λ are
increasingly dominated by the two-dimensional vortex tubes associated with the kinematic
flow as the structures shed of the roughness elements decrease in size (figures 6b–f ), and
surfaces with longer λ are dominated by the flow off the roughness elements (figures 6a,b).
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(c)

λ/2δs(Re)

Figure 9. (a) The ζ -dependent enstrophy for the rough SPS plates (Er) where higher ζ corresponds to lower
λ. The circle, diamond and triangle markers correspond to Re = 6, 12 and 24 × 103, respectively. (b) The
enstrophy for the kinematically identical smooth plate Es, where the dash-dotted line identifies the data as
smooth, and the markers relating to Re correspond as before. (c) The difference between the smooth and rough
enstrophies, �E, with respect to λ/2δ(Re). We take δ(Re) as the approximation of a laminar boundary layer
thickness on a smooth, flat plate. The same markers are used to distinguish Re, and the colours orange, blue
and green correspond to Re = 6, 12 and 24 × 103 to aid in the distinction.

The mechanisms driving the peak in enstrophy are analogous to an amplification of
flow structures found in Prandtl’s secondary motions of the second kind (Nikuradse
1926; Prandtl 1926), where secondary currents are induced when the surface texture
has features that scale with the outer length scale of the flow. In fact, Hinze (1967,
1973) found that secondary currents form when surface roughness has dominant scales
comparable to the boundary layer thickness (or pipe/channel height). These secondary
currents manifest as low- and high-momentum pathways in the flow (Barros & Christensen
2014) that are further sustained by spatial gradients (Anderson et al. 2015). Vanderwel
& Ganapathisubramani (2015) identified that the spatial gradients and the strength of
these secondary currents are maximised when the spanwise spacing between successive
roughness features is approximately equal to the boundary layer thickness. When the
spacing is small, the flow behaves more like a homogeneous rough surface. When the
spacing is much larger than the secondary motions, the currents are spatially confined
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(and small) to the location of the roughness. The analogy to the case presented in this
paper is not a direct comparison to Prandtl’s secondary motions of the second kind as
the flow is merely unsteady, although the system studied herein meets certain criteria –
specifically, large-scale streamwise vortical structures (figures 6 and 7) driven from torque
associated with anisotropy of the velocity fluctuations (Perkins 1970; Bottaro, Soueid &
Galletti 2006).

The increasing Re shifts the peak enstrophy in figure 9(a) towards higher ζ (lower
λ), resulting in flow fields shown in figure 7. The enstrophy peaks occur at λ = 1/8,
1/12 and 1/16 for Re = 6, 12 and 24 × 103, respectively. In fact, estimating the value
of δ(Re) by assuming a laminar boundary layer correlation (δ(Re) ≈ 4.91Re−0.5), and
leveraging an approximate scaling λ/2δ ≈ 1, yields results where λ(Re) = 1/7.9, 1/11.5
and 1/15.8 for Re = 6, 12 and 24 × 103. These estimations are remarkably close to the
true enstrophy peaking wavelengths, so future studies can use this estimation to assess the
importance of their dominant roughness length scales. The laminar boundary layer value
of δ is taken since it is difficult to estimate a value of δ for the swimming plate. At these
Reynolds numbers, δ could also be estimated using a turbulent boundary layer correlation
(δ ∝ Re0.2) since there is very little difference between the laminar and turbulent values.

Further, we can delineate the relationship between λ and the boundary layer thickness
by plotting the normalised difference in enstrophy between the smooth and rough plates
(�E = (Er − Es)) against λ/2δ(Re) (figure 9c). Figure 9(c) shows a strong collapse of
the �E/Es curves when plotted against λ/2δ(Re) for Re = 6 and 12 × 103. The scaled
maximum of both curves is 1.16 at λ/2δ(Re) just less than 1. The collapse breaks down at
the highest Re = 24 × 103 because the flow on the smooth plate experiences a jump in Es
at this Reynolds number, affecting the enstrophy differences.

Finally, in our study, the power increases almost linearly until ζ ≈ 1.8 (figure 8a), and
our enstrophy peak lies within this regime. This means that the accentuation of these
secondary flows is truly a boundary layer scaling, and not a result of increased vorticity
production at the wall, which would result in an increased force on the body. Therefore,
we can relate the system’s increase in mixing to scaling arguments defined previously in
turbulent wall flows.

4. Conclusion

In this paper, we examined the effect of an egg-carton-type rough surface on a
self-propelled swimming body. We varied the wavelength of the surface to understand
how different surface topologies change the flow and performance of the swimmer. We
found that a decrease in the roughness wavelength requires a greater wave speed to
maintain self-propelled swimming. The greater wave speed changed the vortex structures
and consolidated the vorticity into two-dimensional packets with a distinct leading-edge
vortex propagating down the body. The long-wavelength rough surfaces were dominated
by the shedding of horseshoe vortices from individual roughness elements that persisted
in the wake. The thrust of the plate increased with wave speed, which was needed to
overcome the drag induced by the roughness. The increased wave speed also increased
the required power and the amplitude of the non-propulsive lift force. These increases
implied that the plate was less efficient, less effective, and less steady in its swimming. To
decouple the effects of roughness and kinematics, we compared the forces and enstrophy
to a smooth swimmer with identical kinematics. We saw that, compared to the smooth
cases, the roughness reduced the power required, as well as the amplitude of the lift
and drag forces. There was a peak in enstrophy that coincided with a superposition of
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two flow modes, one dominated by three-dimensional structures and the other by the
two-dimensional vortex tubes. The peak in enstrophy persisted over all three Reynolds
numbers, and collapsed when the roughness wavelength was proportional to the boundary
layer thickness. This spike in enstrophy is not a result of increased vorticity production
at the wall because we do not have a corresponding increase in body force. Further, this
boundary layer relationship is analogous to scaling arguments defined for turbulent wall
flows (Vanderwel & Ganapathisubramani 2015).

These results show that you cannot ignore kinematics when assessing the performance
of a swimmer with surface texture. Oeffner & Lauder (2012) and Wen et al. (2014) reported
an increase in speed and efficiency for their experiments, but we have shown that a change
in wave speed dominates the thrust production of the plate. Adding a coating to a surface
could increase the stiffness and thus increase the wave speed, causing the plate to swim
faster. Another factor to consider is the structural resonance, which significantly affects the
performance of flexible plates undergoing swimming (Quinn, Lauder & Smits 2014). Any
study attributing performance changes to surface textures must show the independence of
their test cases to the kinematics.

We have identified nonlinear interactions between the roughness and kinematics that
amplify this mixing without a nonlinear force or power increase. Other studies (Lang et al.
2008; Afroz et al. 2016; Santos et al. 2021) have identified the bristling of shark skin
and conjectured that the increased mixing helps to keep flow attached in the flank region.
This work is significant in understanding the hydrodynamic effect of surface textures on
the flow and forces around a swimmer; it is the first study to look at surface textures on
undulating surfaces with realistic and well-defined kinematics. However, it is limited in
that the roughness elements are a hundred times larger than actual denticles, and Re is
representative only of a small, slow-swimming shark.

Supplementary movies. Supplementary movies is available at https://doi.org/10.1017/jfm.2023.703.
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Appendix A. Resolution convergence

We tested resolutions of increasing powers of two for two surfaces where λ = 1/16, 1/52
(figure 10). For figure 10(a), we measured the error against the value at the highest
resolution, which contained 2.4 × 109 grid cells. The pressure-based thrust 	CT oscillates
around a zero mean, so we measure the error in 	C2

T . We converge to below 4 % error for
both surfaces. Our working resolution is at the lowest limit �x = 0.004, and figure 10(b)
shows that the time history of CT also converges within this.

Figure 11 shows the convergence of the integral quantity of the x vorticity magnitude for
the two surfaces where λ = 1/16, 1/52. We choose the surface where λ = 1/16 because it
is near this value that significant increases in enstrophy were found. We also test the surface
where λ = 1/52 because this represents the lowest limit of our surface resolution; for
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Figure 10. Resolution convergence for the rough SPS plate. (a) Error convergence of 	C2
T . (b) Phase-averaged

cycle where λ = 1/16.
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ω
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λ = 1/16
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Figure 11. The convergence of
∫ | 	ωx| dV with simulation fidelity.

the proposed working resolution �x = 0.004, 5 grid cells resolve the surface wavelength
in the x and z directions. Furthermore, we measure

∫ |ωx| dV because it is zero for the
two-dimensional smooth cases and therefore allows us to quantify the grid resolution
independence of the topographic contribution to the flow. Again, we converged to within
a reasonable limit at our working resolution �x = 0.004.

Appendix B. Domain study

We show the domain invariance of the solution by comparing the cycle average time
series of CT . We compare the working domain (domain 1), of size (18, 20) and resolution
(1536, 1536), to a much larger domain (domain 2), size (9, 4) and resolution (3072, 3072)
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Figure 12. The domain invariance of CT . (a) The relative size of the two-dimensional domains. The dotted line
marks the extent of domain 2, where (x, y) ∈ ([−4, 14], [−10, 10]), and the solid line marks domain 1, where
(x, y) ∈ ([−2, 7], [−2, 2]). (b) The thrust coefficient for ζ = 1.06 and St = 0.3; the solid line for domain 1 and
the dotted line of domain 2 are plotted on top of each other.

(figure 12a). Figure 12(b) shows the cycle average time series of CT for the three Re
used in this study. For all three (Re = 6, 12, 24 × 103), CT is plotted for domain 1 (solid
line), and domain 2 (dotted line). For both domains, CT collapses, so the solution is
domain-invariant.
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Figure 13. The numerical convergence for the kinematic trajectory defined by (2.3) for ζ = 1.06 and

St = 0.3.

Appendix C. Experimental validation

First, we show that the method implemented in this study, set out in § 2.2, converges
to a grid-independent solution. We perform simulations at St = 0.3, ζ = 1.06 and
Re = 6, 12 and 24 × 103, with increasing resolution. In figure 13, we plot CT
(phase-averaged over four cycles) and show that the resolution affects the time series
minimally, to the point where different resolutions are barely distinguishable from each
other.

Next, we validate our model by showing consistency with an experimental study
(Lucas et al. 2015). We make minor alterations to our model to match the kinematic
trajectory, St and Re of a swimming plate. In Lucas et al. (2015), they test four different
plate stiffnesses and assess the swimming performance. Of these four plates, one (plate
‘1_3’) had an increasing amplitude envelope and a relatively constant wave speed, which
ensures that the changes we need to match their conditions are minimal. Although Lucas
et al. (2015) test a range of different St and Re, for the plate that we are matching,
they provide only the kinematic trajectory for Re = 77 000 and St = 0.31. Because of
the sensitivity of the kinematic mode shape of a flexible plate to different excitation
conditions (Quinn et al. 2014), we can consider only the data point where Re = 77 000 and
St = 0.31.

Figure 14 shows a comparison of the raw and matched kinematic trajectories. We match
the trajectory by minimising ‖y(x, t) − 〈y(x, t)〉‖2

2, where 〈y(x, t)〉 is the model for the
kinematics. We consider the amplitude envelope A(x) and the wave speed ζ separately,
and arrive at the functional form

〈y(x, t)〉 = aixi sin (2π(x/ζ − ft)), (C1)

where i0,1,2 = [0.072, 0.1685, −0.0701], and ζ = 2.15. Furthermore, we measured the
error in 〈y(x, t)〉 using

σ( y(x, t) − 〈y(x, t)〉)/σ ( y(x, t)) = 0.076, (C2)
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Figure 14. The difference between the kinematic trajectories reported in Lucas et al. (2015) and the fitted
functional form (C1).

�x 	CT Error

0.00391 0.183 0.131
0.00195 0.167 0.029
0.00098 0.165 0.017

Table 1. The convergence of 	CT to experimental results of Lucas et al. (2015).

λ ζ 	CT 	CT s 	CP 	CPs

1/0 1.06 −0.007 −0.007 0.088 0.088
1/4 1.11 −0.003 −0.000 0.103 0.102
1/8 1.14 −0.003 0.004 0.111 0.110
1/12 1.22 0.002 0.015 0.135 0.135
1/16 1.26 0.000 0.020 0.148 0.148
1/20 1.29 −0.003 0.023 0.156 0.156
1/24 1.34 −0.002 0.029 0.172 0.173
1/28 1.37 −0.002 0.031 0.179 0.180
1/32 1.45 −0.003 0.039 0.204 0.205
1/36 1.51 −0.000 0.045 0.221 0.224
1/40 1.54 −0.004 0.048 0.229 0.234
1/44 1.76 −0.001 0.064 0.287 0.299
1/48 1.96 0.000 0.074 0.340 0.355
1/52 2.26 −0.003 0.084 0.396 0.417

Table 2. Tabulated data of simulations at Re = 6000 with the input roughness defined by λ and corresponding
ζ that result in SPS. The table also reports the values for 	CT , 	CP where the subscript s refers to a smooth plate
for comparison.

where σ(x) =
√

(x − x̄)2 is the operator to compute the standard deviation. The raw data
in Lucas et al. (2015) do not match perfectly the idealised model of a swimmer, with slight
asymmetry (figure 14) introducing the reported error.

We have kept the domain size, grid refinement and time step constant in our working
model, and altered only the kinematic trajectory, St and Re. This allows us to assess the
accuracy of the computational set-up compared to Lucas et al. (2015). As we increase the
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λ ζ 	CT 	CT s 	CP 	CPs

1/0 1.06 −0.006 −0.006 0.095 0.095
1/4 1.11 −0.003 −0.001 0.107 0.107
1/8 1.14 −0.003 0.001 0.116 0.115
1/12 1.22 0.002 0.015 0.140 0.140
1/16 1.26 0.001 0.020 0.152 0.153
1/20 1.29 −0.002 0.024 0.160 0.162
1/24 1.34 −0.002 0.030 0.177 0.178
1/28 1.37 −0.000 0.033 0.185 0.185
1/32 1.45 −0.002 0.041 0.210 0.210
1/36 1.51 0.000 0.047 0.225 0.229
1/40 1.54 −0.003 0.050 0.233 0.239
1/44 1.76 −0.001 0.066 0.296 0.306
1/48 1.96 0.000 0.075 0.354 0.361
1/52 2.26 −0.001 0.087 0.415 0.444

Table 3. Tabulated data of simulations at Re = 12 000 with the input roughness defined by λ and
corresponding ζ that result in SPS. The table also reports the values for 	CT , 	CP, where the subscript s refers to
a smooth plate for comparison.

λ ζ 	CT 	CT s 	CP 	CPs

1/0 1.06 −0.011 −0.011 0.097 0.097
1/4 1.11 −0.003 −0.001 0.109 0.111
1/8 1.14 −0.002 0.000 0.117 0.119
1/12 1.22 0.002 0.015 0.141 0.147
1/16 1.26 0.000 0.019 0.153 0.161
1/20 1.29 −0.004 0.021 0.161 0.169
1/24 1.34 −0.004 0.026 0.176 0.183
1/28 1.37 −0.003 0.030 0.184 0.191
1/32 1.45 −0.005 0.040 0.212 0.217
1/36 1.51 −0.000 0.046 0.229 0.236
1/40 1.54 −0.004 0.049 0.238 0.246
1/44 1.76 −0.001 0.067 0.302 0.310
1/48 1.96 0.002 0.077 0.361 0.365
1/52 2.26 0.001 0.088 0.420 0.451

Table 4. Tabulated data of simulations at Re = 24 000 with the input roughness defined by λ and
corresponding ζ that result in SPS. The table also reports the values for 	CT , 	CP, where the subscript s refers to
a smooth plate for comparison.

resolution, 	CT converges to within 1.7 % of the reported experimental value (see table 1).
This gives us confidence that the computational set-up is accurate and that the kinematics
is implemented correctly.

Appendix D. Tabulated forces

Tables 2–4 show ζ, 	CT , 	CP for the rough and kinematically equivalent smooth simulations.
Figure 8 is the graphical representation, but for ease of comparison, we have also tabulated
the data.
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