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Instability in strongly stratified plane Couette
flow with application to supercritical fluids
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This paper addresses the stability of plane Couette flow in the presence of strong density
and viscosity stratifications. It demonstrates the existence of a generalised inflection
point that satisfies the generalised Fjørtoft criterion of instability when a minimum of
kinematic viscosity is present in the base flow. The characteristic scales associated with
this minimum are identified as the primary controlling parameters of the associated
instability, regardless of the type of stratification. To support this finding, analytical
stability models are derived in the long-wave approximation using piecewise linear base
flows. Numerical stability calculations are carried out to validate these models and to
provide further information on the production of disturbance vorticity. All instabilities are
interpreted as arising from the interaction between two vorticity waves. Depending on
the type of stratification, these two waves are produced by different physical mechanisms.
When both strong density and viscosity stratifications are present, we show that they result
from the concurrent action of shear and inertial baroclinic effects. The stability models
developed for simple fluid models ultimately shed light on a recently observed unstable
mode in supercritical fluids (Ren et al., J. Fluid Mech., vol. 871, 2019, pp. 831–864),
providing a quantitative prediction of the stability diagram and identifying the dominant
mechanisms at play. Furthermore, our study suggests that the minimum of kinematic
viscosity reached at the Widom line in these fluids is the leading cause of their instability.
The existence of similar instabilities in different fluids and flows (e.g. miscible fluids) is
finally discussed.

Key words: stratified flows, shear-flow instability

† Email address for correspondence: benjamin.bugeat@gmail.com

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 984 A31-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:benjamin.bugeat@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.193&domain=pdf
https://doi.org/10.1017/jfm.2024.193


B. Bugeat, P.C. Boldini, A.M. Hasan and R. Pecnik

1. Introduction

1.1. Strongly stratified flows
The stability of stratified parallel shear flows, in which fluid properties such as density
and viscosity vary in the direction perpendicular to that of the base flow, is a problem
encountered in several geophysical phenomena (e.g. dynamics of the atmosphere and
the ocean) and industrial applications. For example, fluids operating at pressure and
temperature in the region of the critical point, which are employed in chemical and
mechanical engineering (Brunner 2010; Liu, Wang & Huang 2019), may exhibit large
variations of viscosity and density in flows involving heat transfers. Stratified flows can
be examined in different regimes. In this paper, the variations of fluid properties will
not be restricted to small amplitudes, justifying the term of strongly stratified flow.
Besides, gravity, and therefore buoyancy effects, will be neglected by assuming large
Froude numbers; more details on the flow assumptions will be given in § 1.3. Density
variations can nevertheless play a significant role in the flow dynamics through inertial
effects. Menkes (1959) was perhaps the first to tackle the stability of such a flow,
considering a hyperbolic tangent velocity profile with an exponential density stratification,
which was found to be stabilising in this particular configuration. Soteriou & Ghoniem
(1995) more comprehensively studied an incompressible mixing layer of two fluids of
different densities. Depending on the density ratio, the primary instability was shown
to exhibit either weaker or larger growth rates, to have its phase speed shifted and its
nonlinear development altered. This last point was subsequently examined via secondary
stability analysis (Reinaud, Joly & Chassaing 2000; Fontane & Joly 2008) and direct
numerical simulation (DNS) (Almagro, García-Villalba & Flores 2017). The mechanism
responsible for the modified dynamics of this flow is the inertial baroclinic torque, which
generates vorticity from misalignments between pressure and density gradients (Soteriou
& Ghoniem 1995; Reinaud, Joly & Chassaing 1999; Dixit & Govindarajan 2010). It is
also at play in compressible flows (Lesshafft & Huerre 2007) but is classically neglected
in buoyant flows modelled via the Boussinesq approximation, which ignores density
variations in inertial terms (Drazin 1958; Guha & Raj 2018).

Strong viscosity stratifications will also be central in our problem, greatly affecting the
base flow profile. Considering a parallel shear flow of two fluids of different viscosities
separated by an interface, Yih (1967) showed that a long-wave instability exists at low
Reynolds numbers. This instability does not require density gradients or surface tension
effects: the jump in viscosity at the interface is sufficient to destabilise the flow. Hooper
& Boyd (1983), in a similar configuration, revealed that a short-wave instability also
grows at low Reynolds numbers. The mechanisms of these instabilities were discussed
by Hinch (1984) and Charru & Hinch (2000). The effect of an interface of finite thickness
was studied by Ern, Charru & Luchini (2003). The authors recovered the presence of
low-Reynolds instabilities and furthermore showed that certain thicknesses could induce
larger growth rates than an infinitely small one. Finally, another viscous instability exists
at larger but finite Reynolds numbers (Hooper & Boyd 1987). It is fundamentally different
from the previous one as its mechanism is not directly associated with the presence of the
viscosity interface but, rather, of the wall. A comprehensive review of these instabilities
for different flow configurations can be found in Govindarajan & Sahu (2014).

Plane Couette flow, which is linearly modally stable in the absence of stratification,
was studied by Joseph (1964) in the presence of viscous heating, inducing temperature
gradients and hence viscosity stratification. A linear inviscid instability was shown to
develop if a liquid, rather than a gas, was considered. This observation was linked to the
viscosity law, which decreases with temperature in liquids but increases in gas. While

984 A31-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.193


Instability in strongly stratified plane Couette flow

this result, as the authors themselves stressed, did not proceed from a rigorous stability
analysis as the linearised energy equation was decoupled from hydrodynamic effects,
this instability was recovered by numerical calculations in subsequent works (Sukanek,
Goldstein & Laurence 1973; Yueh & Weng 1996). However, these studies did not consider
density variations, which may arise when considering viscous heating in gases. Duck,
Erlebacher & Hussaini (1994) carried out a stability analysis of plane Couette in a fully
compressible framework. The authors mostly focused on acoustic instabilities appearing
at supersonic Mach numbers, as also later studied by Malik, Dey & Alam (2008) and
Saikia et al. (2017). In addition to the acoustic modes, Hu & Zhong (1998) recovered the
existence of a viscous mode similar to that found in the aforementioned incompressible,
viscosity-stratified studies.

1.2. Recent developments in the hydrodynamics of supercritical fluids
Research on the hydrodynamics of fluids exhibiting non-ideal thermodynamic behaviour is
actively progressing. A great deal of attention has recently been directed to understanding
how the properties of these fluids affect turbulence, in particular turbulent heat transfer
(Yoo 2013). Recent studies have investigated the statistics of turbulence in different shear
flows by means of DNS, for example in channel (Nemati et al. 2015; Patel, Boersma
& Pecnik 2016; Sciacovelli, Cinnella & Gloerfelt 2017), pipe (Peeters et al. 2016; He
et al. 2021), jet (Sharan & Bellan 2021) or flat-plate boundary layer flows (Kawai 2019;
Sciacovelli et al. 2020). However, little is known about stability and transition to turbulence
in these fluids (Robinet & Gloerfelt 2019).

Gloerfelt et al. (2020) examined the linear stability of dense gas at large Mach numbers.
Due to the large heat capacity of these fluids, very weak temperature gradients were
observed and nearly incompressible velocity profiles were recovered. The authors showed
the stabilisation of the viscous mode and the existence of radiating supersonic instabilities.
From a different perspective, Ren, Fu & Pecnik (2019a) carried out a linear stability
analysis of supercritical fluids in plane Poiseuille flow. Having a lower heat capacity,
significant viscous heating was present at reduced but non-negligible Mach numbers,
generating temperature gradients in the base-flow profile. The authors concluded that
non-ideal effects may induce larger destabilisation of the flow in terms of growth rate
magnitude and critical Reynolds number. In a subsequent study, Ren, Marxen & Pecnik
(2019b) explored the linear stability of supercritical CO2 in a flat-plate boundary layer
flow. As viscous heating was increased, a second unstable mode, in addition to the classical
Tollmien–Schlichting (TS) wave, was observed. This mode exhibits growth rates of more
than one order of magnitude larger than the TS waves, which could imply new rapid modal
routes of transition to turbulence in these fluids. The authors rigorously showed that this
mode was not linked to the Mack modes (Mack 1984) found in high-speed boundary layers.
Bugeat, Boldini & Pecnik (2022) confirmed the inviscid nature of this instability and ruled
out an acoustic origin. Recently, Ly & Ihme (2022) studied a binary compressible mixing
layer at supercritical pressures and also found evidence of this instability, pointing out that
its strength decreases as the reduced pressure is increased away from the critical point.
But much remains to be understood about this instability as the driving parameters and the
physical mechanism remain unclear.

Importantly, Ren et al. (2019b) observed that the additional mode only appears when
the temperature profile of the base flow crosses the Widom line. The concept of Widom
line is specific to supercritical fluids. It distinguishes the liquid-like from the gas-like
region within the supercritical fluid domain. In each of these regions, fluid properties
exhibit different behaviours (Simeoni et al. 2010). As such, the Widom line can be seen
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as the continuation of the coexistence line which separates the gas and liquid phases at
sub-critical pressure, with the crucial difference that thermodynamic quantities smoothly
vary across it (Banuti 2015; Banuti, Raju & Ihme 2017). These smooth variations can
nonetheless exhibit remarkable behaviours. At constant pressure, the density and dynamic
viscosity, as functions of temperature, feature strong gradients near the Widom line, while
the kinematic viscosity can reach a minimum; see the introduction of Ren et al. (2019a) for
more details on these behaviours and their implication for hydrodynamics. Therefore, for a
supercritical fluid operating at pressure and temperature near the Widom line, the presence
of a temperature gradient in the flow leads to large density and viscosity variations; the
flow is strongly stratified.

1.3. Objectives, method and assumptions
We aim to show that inviscid instabilities can be caused by the presence of a minimum
of kinematic viscosity in strongly stratified shear flows, and that the scales associated
with this minimum control the different properties of these instabilities. In particular, our
objective is to provide evidence that the recently found unstable mode in supercritical
fluids is related to the minimum of kinematic viscosity reached at the Widom line. We
also aim to identify the driving physical mechanisms at play in these instabilities.

A differentially heated plane Couette flow will be considered. Three fluid models will
first be examined, with different density and dynamic viscosity laws that strongly vary with
temperature. Different types of stratification will then be observed in the flow; however,
the three fluid models are designed to all feature a minimum of kinematic viscosity. In
doing so, we aim to demonstrate the central role played by this minimum in the stability
of the systems, regardless of the other property variations in the flow. Using piecewise
linear base-flow approximations, analytical results will be derived by solving the Rayleigh
equation in the presence of strong density gradients, which governs the inviscid linear
stability of these flows. A more realistic fluid model based on the van der Waals equation
of state and diffusion laws at supercritical pressures will be used to ultimately discuss the
instability in supercritical fluids.

The different hypotheses on the flow regime that we will consider in this work are
summarised here. No assumption regarding the magnitude of the viscosity and density
variations will be made. Buoyancy will be ignored, but density variations will be retained
in the inertial terms. Acoustics will not be taken into account in order to remove potential
ambiguities in the physical interpretation of the results with the aforementioned acoustic
instabilities. The low-Mach approximation (Rehm & Baum 1978; Paolucci 1982) will
be used. As a result, no viscous heating will be at play; temperature gradients will be
generated in the flow by boundary conditions. Finally, only inviscid perturbations are
considered. Note that this is not inconsistent with the presence of viscosity-stratification
effects in the base flow which, because it is parallel, is not affected by inertia. The
aforementioned instabilities induced by viscosity stratification at low Reynolds number
will therefore not be embedded in our analysis. However, it should be kept in mind that
a competition may take place at finite Reynolds numbers, where the inviscid instability is
damped by viscous effects.

The paper is organised as follows. The fluid and flow models, along with numerical
procedures, are detailed in § 2. The condition of existence of an inviscid instability in
stratified plane Couette flow is examined in § 3, leading to a criterion based on a minimum
of kinematic viscosity. The base flows of the fluid models are presented in § 4. Analytical
stability results, based on piecewise linear models of these base flows, are derived in § 5.
Comparison with numerical calculations is provided in § 6. The generation of disturbance
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Figure 1. The four fluid models considered in this paper. The definition of ν∞, used to normalise ν, is given
in Appendix B in the particular case of fluid VdW.

vorticity by different physical mechanisms is also examined, and an interpretation of
the different instabilities is proposed. Section 7 eventually focuses on the stability of a
supercritical fluid. A summary and a discussion on the application of these results to other
fluids and flows conclude this paper (§ 8).

2. Theoretical and numerical framework

2.1. Fluid models
Four fluids will be considered throughout this paper, each of them being associated with a
different equation of state and viscosity law. However, they all share the common property
of assuming an extremum of kinematic viscosity ν at a given temperature. Recalling that
ν = μ/ρ, where μ and ρ are the dynamic viscosity and the density, respectively, different
ways to generate a minimum of ν can be imagined. Three theoretical fluid models will
be used to control and study a restricted number of parameters. A fourth more realistic
model for supercritical fluids, based on the van der Waals equation of state, will also be
considered. A summary of the different fluids is provided in figure 1 while a detailed
description is given in the next subsections.

2.1.1. Fluid VB: bump of dynamic viscosity with constant density
In this model, density is assumed constant, while the viscosity is chosen to locally exhibit
a bump at a temperature T∗

m, using a Gaussian function (in this paper, all dimensional
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quantities are noted using the superscript ‘*’). Note that, in this case, the non-dimensional
kinematic viscosity is equal to the non-dimensional dynamic viscosity, both reading

μ = ν = 1 + Aν exp

(
−
(

T − 1
δTν

)2
)

, (2.1)

using T∗
m as the reference temperature. The reference viscosities are μ∗∞ and ν∗∞, which

are the asymptotic values away from the bump. The parameter Aν controls the amplitude
of the bump, and its sign determines whether the kinematic viscosity admits a minimum
(Aν < 0) or a maximum (Aν > 0). The characteristic width of the bump is set through
δTν , which is again made non-dimensional using T∗

m. Finally, the thermal conductivity λ
is assumed to be constant.

2.1.2. Fluid DB: bump of density with constant dynamic viscosity
Inversely to fluid VB, μ is kept constant in fluid DB while a bump is introduced in the
density profile. This bump is chosen such that the resulting kinematic viscosity has the
same expression as in (2.1). Hence, the density law simply reads

ρ = 1

1 + Aν exp

(
−
(

T − 1
δTν

)2
) , (2.2)

and since, in this case, ν = 1/ρ, ν is the same as in fluid VB. The conductivity λ is again
chosen to be constant.

2.1.3. Fluid HT: hyperbolic tangent laws
In fluid HT, thermal conductivity is also kept constant, while dynamic viscosity and
density are now both allowed to vary according to hyperbolic tangent laws. In order to
generate an extremum of kinematic viscosity, a small shift is introduced between the
two hyperbolic tangents, controlled by the non-dimensional parameter εT . This choice
is inspired by supercritical fluids and represents an attempt to mimic some of their features
in the vicinity of the pseudo-boiling region. This will be discussed in more detail in § 2.1.4
after the supercritical fluid laws are introduced. The non-dimensional governing laws for
fluid HT are formally written as

ρ = 1 − γ tanh
[

T − 1
δTμ,ρ

]
, (2.3)

μ = 1 − γ tanh
[

T − (1 + εT)

δTμ,ρ

]
. (2.4)

The reference temperature T∗
m is here defined as the point of anti-symmetry of the density

profile. The density at T = 1 and the viscosity at T = 1 + εT are used as the reference
scales. The parameter γ controls the jump of density and dynamic viscosity while δTμ,ρ

sets the temperature range over which this jump takes place. The fluid properties are shown
in figure 1, where it is verified that the kinematic viscosity admits a minimum around
T = 1. By analogy with fluids VB and DB, it is possible to estimate the amplitude Aν of
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this minimum, as well as the characteristic width δTν of the temperature range onto which
it occurs. The following relations will be used in this paper:

Aν = γ εT

δTμ,ρ

, (2.5)

δTν = 1.2δTμ,ρ. (2.6)

The derivation and verification of these expressions are detailed in Appendix A.

2.1.4. Fluid VdW: a model for supercritical fluids
The reduced van der Waals equation of state is used and reads

p̌ = 8ρŤ
3 − ρ̌

− 3ρ̌2, (2.7)

where the reduced variables p̌ = p∗/p∗
c , ρ̌ = ρ∗/ρ∗

c and Ť = T∗/T∗
c have been introduced,

with p∗
c , ρ∗

c and T∗
c being the critical pressure, density and temperature, respectively.

A choice of diffusion laws is required in addition to this equation of state. The
models proposed by Jossi, Stiel & Thodos (1962) and Stiel & Thodos (1964) are
used for the dynamic viscosity and the thermal conductivity, respectively. They provide
analytical expressions for non-polar supercritical fluids based on theoretical scalings and
experimental fittings. In supercritical fluids, these diffusion laws depend both on Ť and
ρ̌. The density, dynamic and kinematic viscosity profiles are plotted in figure 1. Note that
the reference temperature, here again noted T∗

m to maintain consistency with the previous
fluids, is usually termed pseudo-boiling or pseudo-critical temperature in supercritical
fluids (Banuti 2015). Density and dynamic viscosity are strongly correlated, and both
exhibit strong gradients in the pseudo-boiling region. This motivated the choice of fluid
HT, where density and viscosity are both defined using a hyperbolic tangent function,
aiming at capturing these gradients while neglecting other variations away from them. The
kinematic viscosity admits a minimum around the pseudo-critical temperature but is not
localised, as opposed to the other fluids. The relatively simple model of fluid HT is found
to decently reproduce this minimum as a result of the shift εT introduced between the
hyperbolic tangent laws, but differs away from the point where ν remains strictly constant
in fluid HT.

In analogy to the previous fluids, we would like to extract the characteristic scales δTν

and Aν from the kinematic viscosity law. However, while ν does have a minimum in fluid
VdW, it is not clear that this minimum is localised over a finite, identified range δTν . Still,
it can be observed, after calculation, that ν(T) admits two inflection points in the vicinity
of the pseudo-boiling temperature – one below and one above this temperature. This can
be used to define the scale δTν as the width between these two inflection points. From
this, an amplitude Aν can be naturally defined. The procedure is thoroughly described
in Appendix B. Finally, note that the reduced pressure is the control parameter of the
kinematic viscosity seen as a function of the temperature. In other words, ν(T) is different
for each p̌ and, consequently, so are δTν and Aν .

2.2. Base flow
Linear stability analysis requires the knowledge of a base flow, defined as a steady solution
of the nonlinear Navier–Stokes equations. After recasting the nonlinear Navier–Stokes
equations given the physical assumptions associated with this flow, the equations are
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numerically solved. Plane Couette flow occurs between two plates and is driven by the
upper plate moving at speed u∗

1, which is used as the reference velocity scale. The
streamwise and wall-normal directions are noted with x and y, respectively. The flow
is assumed to be parallel: the streamwise velocity u does not depend on x, and the
wall-normal and spanwise components of the velocity v and w, respectively, are zero.
The lower plate is fixed and, given the no-slip conditions, the non-dimensional streamwise
velocity at the boundaries verifies u(0) = 0 and u(1) = 1. The distance h∗ between the
two plates is used as the reference length scale. The lower plate is kept at temperature
T0

∗, chosen as the reference temperature. We choose to consider the non-dimensional
temperature gradient τ between the two plates as an input parameter, which in turn
sets the temperature of the upper plate. The boundary conditions for the temperature
are then T(0) = 1 and T(1) = 1 + τ . Under the assumption of a steady flow without
pressure gradient – the flow is driven by the top wall – the non-dimensional Navier–Stokes
equations reduce to a system of ordinary differential equations:

(μ̄ū′)′ = 0, (2.8)

(λ̄T̄ ′)′ = 0, (2.9)

where the superscript ′ denotes the wall-normal derivative and the overbars identify
base-flow variables. The inertial terms are zero given the parallel flow assumption, and the
problem does not depend on the Reynolds and Prandtl numbers. Besides, the temperature
is decoupled from the velocity field. When λ is constant, as it is supposed to be in fluids
VB, DB and HT, the temperature profile is readily obtained as T( y) = 1 + τy. As for
fluid VdW, (2.9) is solved using Newton’s method by setting the initial guess as the
aforementioned linear profile. Once T is obtained, the density profile is also known via
the equation of state. The velocity profile is finally obtained by integration of (2.8) with
the knowledge of the dynamic viscosity profile as a function of T and ρ. Finally, note that
we make the arbitrary choice to locate the extremum of kinematic viscosity at the centre
line of the flow, y = 1/2. This is achieved by accordingly setting T∗

m/T0
∗ = 1 + τ/2 under

the assumption that the temperature profile is linear – which is indeed the case for fluids
VB, DB and HT.

2.3. Inviscid linear stability theory

2.3.1. Rayleigh equation with density gradients
Assuming infinitely small, inviscid, two-dimensional perturbations, the linearised
Navier–Stokes equations in the low-Mach approximation (Rehm & Baum 1978; Paolucci
1982) can be written

∂u
∂x

+ ∂v

∂y
= 0, (2.10)

ρ̄

(
∂u
∂t

+ ū
∂u
∂x

)
= −∂p

∂x
− ρ̄

∂ ū
∂y

v, (2.11)

ρ̄

(
∂v

∂t
+ ū

∂v

∂x

)
= −∂p

∂y
, (2.12)

∂T
∂t

+ ū
∂T
∂x

= −∂T̄
∂y

v. (2.13)
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Perturbations of the form q(x, y, t) = �{q̂( y) exp(i(αx − ωt))} are now considered, with
q = [u, v, T] being the state vector of the perturbations and �{} the real part. These
linearised equations can then be recast into the Rayleigh equation governing the linear
dynamics of incompressible flows with density gradients (see also Fontane & Joly 2008):

ρ̄(ū − c)
[
v̂′′ + ρ̄′

ρ̄
v̂′ − α2v̂

]
− (ρ̄ū′)′v̂ = 0, (2.14)

where c = ω/α is the complex phase velocity. Note that the disturbance temperature does
not appear in (2.14) since the linearised mass and momentum equations are decoupled from
the energy equation (2.13). Temperature disturbances are deduced from the hydrodynamic
disturbances, which can be calculated independently. Thermal effects are, however, at play
in the velocity and density profiles of base flow, which the momentum equations (2.11)
and (2.12), and ultimately the Rayleigh equation (2.14), depend on. A temporal framework
is adopted: the wavenumber α is a real parameter while the frequency ω is a complex
number that is to be determined. The temporal growth rate is given by its imaginary part,
ωi. A positive value corresponds to an inviscid instability. The (real) phase velocity cϕ of
the perturbation is simply cr, the real part of c.

Equation (2.14) can be classically solved numerically as an eigenvalue problem. The
boundary condition v̂ = 0 is used at the wall. A pseudo-spectral method is employed to
discretise the system and to obtain the derivative matrices (Orszag 1971). In order to avoid
the singularity at the critical layer for neutral modes, a parabolic complex mapping is used,
following Boyd (1985). This allows the growth rate to be computed even when it reaches
small values, while a real mapping would produce spurious numerical oscillations.

2.3.2. Vorticity
In order to interpret some results, it can be useful to consider an alternative formulation of
the problem in terms of the disturbance vorticity ξ = ∂v/∂x − ∂u/∂y. For a parallel base
flow without pressure gradients, ξ is governed, in the physical space, by the linear equation

∂ξ

∂t
+ ū

∂ξ

∂x
= −Ω ′v︸ ︷︷ ︸

Sξ

− ρ̄′

ρ̄2
∂p
∂x︸ ︷︷ ︸

Bξ

, (2.15)

where Ω is the vorticity of the base flow. The left-hand side represents the material
derivative of ξ by the base flow. The right-hand side corresponds to vorticity sources,
which may induce an instability. The term Sξ is the production of vorticity responsible for
shear flow instabilities. The second term, Bξ , is the inertial baroclinic torque, which may
generate vorticity when the density and pressure gradients are not aligned. In the absence
of density gradients, this term is evidently zero.

3. Criterion of instability based on the kinematic viscosity profile

A necessary condition for an inviscid instability to exist was given by Rayleigh (1880)
for constant-density flows. It requires the existence of an inflection point in the velocity
profile of the base flow ū′′ = 0. In the presence of a density gradient, a generalisation
of Rayleigh’s theorem can be derived, often called the generalised inflection point
(GIP) criterion in non-zero Mach number flow studies (Lees & Lin 1946; Mack 1984).
Introducing the quantity Φ = −ρ̄ū′, a necessary condition of inviscid instability is that
Φ ′ = 0 somewhere in the base-flow profile. The location where this condition is verified
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is termed GIP. Assuming that a GIP exists, an additional, more restrictive necessary
condition of instability was given by Fjørtoft (1950). This criterion can be generalised
to varying-density flows, stating that a region where

Φ ′(ū − ūs) > 0, (3.1)

with ūs the velocity at the GIP, is required in the base-flow profile in order to observe
an inviscid instability. The proofs of these two results, stated in the case where density
gradients are non-zero, straightforwardly follow those given in Schmid & Henningson
(2001) for constant-density flows by considering (2.14). For a monotonic velocity profile
such as that of plane Couette flow, (3.1) must be verified everywhere (except at locations
where Φ ′(ū − ūs) = 0). In this case, it is shown in Appendix C that the generalised
Fjørtoft criterion (3.1) is equivalent to observing a maximum of |Φ| in the base-flow
profile. This extends the well-known interpretation of a maximum of absolute vorticity
in constant-density flows. Indeed, noting that, under the parallel flow assumption, the
vorticity of the base flow Ω is simply Ω = −ū′, the quantity Φ can be interpreted as
the density-weighted vorticity:

Φ = ρ̄Ω. (3.2)

For constant-density flows, the usual interpretation of the Fjørtoft criterion is then
recovered, since |Φ| = |Ω| in this case. However, in the presence of density variations, a
maximum of vorticity is no longer a necessary condition of instability, and the existence of
a maximum of |Φ| should instead be examined. Combining ρ = μ/ν and the streamwise
momentum equation (2.8), it follows that

(ν̄Φ)′ = 0, (3.3)

which, after distributing the wall-normal derivative, can be recast as

Φ ′

Φ
= − ν̄′

ν̄
. (3.4)

The important result follows: in stratified plane Couette flow, the existence of a maximum
of |Φ| is equivalent to the existence of a minimum of ν̄. Because of the generalised Fjørtoft
criterion, a minimum of kinematic viscosity in the base-flow profile is then a necessary
condition of inviscid instability. This motivated the choice of the fluid models considered
in this paper (§ 2.1), which all feature a minimum of ν and, therefore, potentially exhibit
an instability. Finally, note that (3.4) is specific to plane Couette flow. Different criteria
may be expected for other shear flows, as discussed in Appendix D.

4. Base flows of fluids VB, DB and HT

The base flows associated with the three fluid models VB, DB and HT are presented in
figure 2(a–c). The density and dynamic viscosity profiles have the same behaviour as those
presented in § 2.1 – the constant temperature gradient of the base flow (§ 2.2) providing a
linear mapping from T to y. Different velocity profiles are observed. In fluid VB, stronger
gradients are present in the centre, where dynamic viscosity decreases. This is a result of
the conservation of μ̄ū′ across the flow, yielding ū′ ∝ 1/μ̄. While almost imperceptible in
figure 2(a), the presence of these stronger gradients is clearly visible in figure 2(d), where
the profile of |Φ|, as defined in (3.2), is shown. Indeed, in the case of fluid VB, density is
constant and |Φ| reduces |Ω|. As for fluid DB, the velocity profile is linear (figure 2b) since
the viscosity is constant. Vorticity is therefore constant, but |Φ| still assumes a maximum
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Figure 2. (a–c) Base-flow profiles of fluids VB, DB and HT, for δTν = 10−2, Aν = −10−1 and τ = 0.2. The
inset in (a) is a close up of the velocity profile in the central region, with a comparison with the linear function
f ( y) = y shown by the black dashed line. (d) Resulting profile of |Φ| for each fluid.

at the centre as it now follows the density profile. Turning to fluid HT, the velocity profile
features two regions of distinct gradient, which are, again, a consequence of the viscosity
distribution (figure 2c). The resulting profile |Φ|, exhibiting a maximum in the central
region as in the two previous fluids, is here a combination of the variations of density
and vorticity. In summary, all fluids feature an excess of |Φ| in the central region. This is
more generally understood because of the presence of a minimum of kinematic viscosity
in each fluid as the integration of (3.4) leads to |Φ| ∝ 1/ν̄. The normalised profiles of |Φ|
all collapse (figure 2d) since identical parameters Aν and δTν are chosen for each fluid.
Note that we will only consider Aν < 0 in order to generate a maximum of |Φ|, since no
instability can occur otherwise according to the generalised Fjørtoft criterion.

5. Stability models

5.1. Piecewise linear base flows
Piecewise linear base flows have been extensively used to study a variety of stability
problems with constant density as well as variable density – usually in the framework
of the Taylor–Goldstein equation, under the Boussinesq approximation (Drazin & Howard
1966). While being simple approximations, useful analytical predictions can be derived
from these models, especially predicting the linear stability of long waves (Gallaire 2015).
We will here consider arbitrary large variations of density.

The base flows of fluids VB, DB and HT are divided into three layers. The central layer,
centred around y = 1/2, has a width δ (figure 3). This approach follows that proposed by
Rayleigh (1887) for bounded, constant-density flows. Velocity profiles are continuous at
the interfaces between layers, but their gradient may not be; a vorticity jump may occur
at the interface. This is the case of fluid VB, where the viscosity bump is modelled by a
discontinuous jump in the central layer (figure 3a). This generates a stronger shear rate
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Figure 3. Piecewise linear base-flow profiles for fluids VB, DB and HT. The central layer (layer 2) is centred
around y = 1/2.

(i.e. vorticity) in the central layer. Note that this is precisely the configuration studied by
Rayleigh (1887). In fluid DB, the shear rate is constant throughout the flow, but density
exhibits a jump in the central layer (figure 3b). In fluid HT, density linearly varies in the
central layer but remains constant in the two other ones (figure 3c). The same profile is
used for the dynamic viscosity. All fluids feature an excess �Φ > 0 of |Φ| in the central
layer in order to model the smooth profile of |Φ| that was observed in the previous section
(figure 3d).

5.2. Expressions of δ and �Φ

The relations between the parameters δ and �Φ of the sought stability model and the
physical input parameters of our system Aν , δTν and τ are now examined. The region
of the smooth base-flow profiles across which Φ varies is the same as that across which
kinematic viscosity varies, as expressed in (3.4). The characteristic length of this region
in the base-flow profile is proportional to δTν , which is related to the fluid property, and
inversely proportional to the temperature gradient τ of the flow. The thickness of the layer
δ thus follows the proportionality relation:

δ ∝ (1 + τ/2)
δTν

τ
, (5.1)

where the factor (1 + τ/2) results from the factor T∗
m/T∗

0 (see § 2.2) that appears when δTν

is made dimensionless with T∗
0 . A choice of a prefactor is ultimately required in order to

assign a definitive value to δ in (5.1), and will be specified for each fluid.
We define the quantity �Φ as the jump of |Φ| at the interface: �Φ = Δ(| − ρ̄ū′|).

The following convention is used: �Φ > 0 corresponds to configurations in which the
magnitude of |Φ| is larger in the central layer than in the other layers. Given that ρ̄ū′ =
μ̄ū′/ν̄ and that integrating the momentum equation (2.8) yields μ̄ū′ = K, with K a positive
constant, we can express �Φ as

�Φ = KΔ

(
1
ν̄

)
. (5.2)
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The characteristic value of ν̄ being 1 + Aν in the central region and 1 elsewhere, the jump
of 1/ν̄ at the interface reads

Δ

(
1
ν̄

)
= − Aν

1 + Aν

. (5.3)

An excess of |Φ| in the central layer (�Φ > 0) is associated with a minimum of ν (Aν <

0), consistent with § 3. The derivation of the different expressions of the constant K and
the final expression of �Φ associated with each fluid model is detailed in Appendix E.

5.3. Stability calculations in the long-wave approximation

5.3.1. Derivation
The Rayleigh equation (2.14) is solved for the three piecewise linear base flows introduced
in § 5.1. We will restrict our analysis to long waves (α � 1). Following Rayleigh (1887)
(see also Drazin & Reid 2004; Charru 2011), (2.14) is first solved separately in each of the
three layers of the piecewise linear base flows. As Φ is constant in each layer, the last term
of the Rayleigh equation vanishes. Furthermore, assuming α � 1 and writing v̂ and c as a
power series of α, (2.14) reduces, at the order α0, to

(ρ̄v̂′)′ = 0. (5.4)

This equation can be solved in each layer. When density is constant across a layer, the
solution is simply

v̂i = Aiy + Bi, (5.5)

where the index ‘i’ refers to the layer 1, 2 or 3 (see figure 3). In the central layer of fluid HT,
where density varies, only the first derivative of v̂ will be needed. This is because interface
conditions, described hereafter, set the value of v̂2 using v̂1 and v̂3 (readily obtained from
(5.5)). The following expression is immediately found:

v̂′
2 = A2y

ρ̄
. (5.6)

At each interface between the layers, the kinematic and dynamic conditions (Charru 2011)
read

Δ

[
v̂

ū − c

]
= 0, (5.7)

Δ[(ū − c)v̂′ + Φv̂] = 0. (5.8)

Note that (5.7) reduces to �v̂ = 0 as ū is continuous. Using (5.7) and (5.8) as well as the
boundary conditions v̂ = 0 at the walls lead to a linear system on the coefficients Ai and
Bi. Equating the determinant to zero provides an expression of c2. The system is unstable
for c2 < 0 and stable for c2 > 0. In this section, derivations are carried out in the frame of
reference moving with ū( y = 1/2) = ū1/2.

5.3.2. Results for fluid VB
As previously mentioned, the dispersion relation for fluid VB corresponds to that derived
by Rayleigh (1887). We will use his result in the long-wave regime. Using geometrical
reasoning on the piecewise linear base flow of fluid VB (figure 3), �u can be written
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as �u = δ[1 + �Φ(1 − δ)], recalling that �Φ = �Ω for this fluid. Injecting this into
Rayleigh’s result yields

c2 = δ

4
(δ − �Φ(1 − δ)2). (5.9)

Note that �Φ was defined as �Φ = Δ(|Φ|) in § 5.2, and that �Φ > 0 corresponds to an
excess of |Φ| in the central layer. The instability criterion �Φ > �Φc is deduced, with
the instability threshold �Φc:

�Φc = δ

(1 − δ)2 . (5.10)

5.3.3. Results for fluid DB
The expression for c2 in fluid DB is solved by first remarking that �u = δ, given that
ū( y) = y in this case. It is also noticed that �ρ = �Φ. Analytical calculations lead to the
relation

c2 = δ[δ − �Φ(1 − δ)]
4[1 + �Φ(1 − δ)]

. (5.11)

Because δ < 1 and �Φ > −1 (since ρ̄ > 0), the denominator is always strictly positive.
The instability criterion is thus deduced from the sign of the numerator, leading to �Φ >

�Φc, with

�Φc = δ

(1 − δ)
. (5.12)

5.3.4. Results for fluid HT
In fluid HT, the transformation of �ρ into the parameters δ and �Φ cannot be found.
We will then use �ρ = 2γ /(1 + γ ), which comes from the definition �ρ = ρ̄(0) − ρ̄(1)

introduced in figure 3 while using ρ̄∗(0) as the reference scale. The stability model will
then depend on γ in addition to δ and �Φ, but will become independent of γ in some
regimes of interest. The approximation �u = δ will be used, which is valid when the
central layer or the viscosity jump are small. This will be shown to be of practical interest
for the more realistic fluid VdW. Under these considerations, the following expression can
be derived:

c2 = 1
4 {
√

δ[1 − �Φ0(1 − δ)][δ − �Φ0(1 − δ) + γ 2�Φ0(1 − δ)2] + δγ�Φ0(1 − δ)}2,

(5.13)
where the quantity

�Φ0 = �Φ

1 − γ
, (5.14)

is introduced to simplify (5.13). It will also be shown to be of practical interest for fluid
VdW as �Φ0 only depends on the jump of kinematic viscosity Δ(1/ν̄) (Appendix E).
A criterion of instability is obtained by examining the sign of the expression under the
square root in (5.13). Given that the factor 1 − �Φ0(1 − δ) is always positive, the criterion
of instability is given by the third factor, reading �Φ > �Φc with

�Φc = δ(1 − γ )

(1 − δ)[1 + γ 2(1 − δ)]
. (5.15)
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5.3.5. Comments and limiting case
The three different criteria all state that a certain excess of |Φ| is required in the central
layer (�Φ > �Φc) to generate an instability. This can be seen as an improvement of the
Fjørtoft criterion, which states that an instability may occur only if �Φ > 0, but does not
specify the magnitude of the excess of |Φ| that is sufficient to make the system unstable. It
can be noticed that the derived instability thresholds always increase with δ. In the limit of
small γ , fluid DB and fluid HT possess the same criterion of instability, (5.15) reducing to
(5.12). Furthermore, in this regime, these equations differ from that of fluid VB (5.10) only
at order O(δ2). At order O(δ), all three fluids share the common criterion of instability:

�Φ > δ. (5.16)

Moreover, the growth rate near the instability threshold can be calculated from the different
expressions of c2, using �Φ = O(δ) � 1. A general expression is obtained for the
unstable modes of all fluids:

ωi = α
√

δ(�Φ − δ). (5.17)

This shows the fundamental role the quantities �Φ and δ play in modelling these
instabilities, regardless of the types of stratifications.

5.3.6. Phase velocity
The equations on c2 obtained for each fluid also provide interesting results regarding
the phase velocity of the unstable modes. For fluids VB and DB, if c2 < 0, then c is
purely imaginary. Therefore, an unstable mode will have a phase velocity ū1/2, which, by
symmetry, is equal to 1/2 for these fluids. This does not hold for fluid HT, for which the
phase velocity is shifted from ū1/2 by δγ�Φ0(1 − δ). By integrating the conservation of
shear stress in the three layers, the following expression can be obtained for fluid HT:

ū1/2 = 1
2

− γ (1 − δ)

2
. (5.18)

Note that the departure from 1/2 in (5.18) is of order γ , while the aforementioned
additional shift is at most γ 2 for small �Φ0 given that �Φ0 ∼ γ |εT/δTμ,ρ | < γ

(Appendix E). Equation (5.18) is therefore expected to be a good approximation of the
phase velocity.

6. Numerical stability calculations for fluids VB, DB and HT

6.1. Growth rate and phase velocity
Numerical stability calculations are carried out for fluids VB, DB and HT using three
different thicknesses of the central layer δ. Note that δ is initially not an input parameter of
the problem: it is calculated from (5.1), which requires a prefactor. This prefactor, which
is a priori different for each fluid, is set so as to yield the best agreement between the
calculated and predicted stability diagram, which will be presented in the next subsection.
The value 1.12 is used for fluids VB and DB. While not fully predictive – this value is
not obtained by the model and requires one calculation point in order to be calibrated, it
remains close to one: the model can provide order-of-magnitude predictions even without
further knowledge. A prefactor equal to 1 is used for HT, requiring no external data.

First, a constant value of Aν = −0.04, which sets the magnitude of �Φ for small δ

(E9), is chosen for all fluids. Table 1 indicates the corresponding values of �Φ/�Φc,
providing a useful reference when comparing with figure 5, which will be presented later.
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Fluids δ = 3 × 10−3 δ = 10−2 δ = 3 × 10−2

VB 13.8 4.08 1.31
DB 13.8 4.13 1.35
HT 14.3 4.26 1.39

Table 1. Values of �Φ/�Φc for the different fluids and values of δ presented in figure 4.
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Figure 4. Growth rate, as a function of α, of the fluid models VB, DB and HT obtained for Aν = −0.04 and
different thicknesses of the central layer δ.

As shown in figure 4(a–c), similar behaviours as well as close quantitative values of the
growth rate are found for all fluids, despite the fundamentally different stratifications in
each fluid. All fluids exhibit a long-wave instability: low wavenumbers are always unstable,
while a cutoff wavenumber αc exists beyond which the system is stable. This observation
justifies the restricted analysis to long waves to predict the stability of the system (§ 5.3).
As δ increases, αc decreases, as it would for a constant-density, unbounded shear layer
for which αc ∼ 1/δ (Charru 2011). At constant Aν , the maximum growth rate increases
as δ is reduced. However, this does not hold for the growth rate of long waves, for which
confinement can have a destabilising effect – increasing δ being equivalent to approaching
the walls closer to the central layer. This behaviour is not unexpected given that c2 depends
on polynomials of δ of degree larger than 1 (§ 5.3). Differentiating (5.17) with respect to
δ, a general estimate of the value δm that yields the maximum growth rate is found to be
δm = �Φ/2. Using (E9) for �Φ, we find that δm 	 0.02, which is consistent with the
observations. Note that a different behaviour is observed in a bounded, constant-density
mixing layer, in which Healey (2009) found that confinement reduces the temporal growth
rate of the instability.

The growth rate of long waves is presented in figure 5(a–c). The quantity ωi/α is plotted,
which corresponds to the slope of the growth rate at α = 0. For all fluids, the instability
threshold is well predicted. The behaviour of the growth rate past the threshold is also
reasonably well captured, but piecewise linear models do not yield exact quantitative
matches. The validity of the general approximation of the growth rate (5.17) is verified
for δ = 0.003. At δ = 0.01, this approximation still captures the threshold well. Yet,
significant departures from the full theoretical prediction are observed for fluids DB and
HT; for these fluids, more terms are indeed neglected in the derivation leading to (5.17).
At larger δ, noticeable differences appear for all fluids. Finally, the phase velocity of the
unstable mode in each fluid is very well predicted by theoretical models (figure 5d–f ). It is
equal to 1/2 for fluids VB and DB, and does not depend on δ and �Φ. The phase velocity
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Figure 5. (a–c) Growth rate, normalised by α, of long waves, obtained at α = 10−2. (d–f ) Associated phase
velocities. Solid lines are the numerical results and dashed lines are the theoretical predictions given, for each
fluid, in (5.9), (5.11) and (5.13). Black dashed lines correspond to the theoretical general growth rate of (5.17),
obtained for δ � 1 near the instability threshold. Instability thresholds �Φc are given in (5.10), (5.12) and
(5.15). Theoretical phase velocities are given in the frame of reference associated with the lower wall using the
values of ū1/2 discussed in § 5.3.6. For all figures, each colour is associated with a size δ of the central layer
and each column is associated with a fluid (VB, DB or HT).

markedly differs from 1/2 in fluid HT as the velocity of the base flow ū1/2 depends on
both δ and the viscosity ratio γ (on which �Φ depends), as discussed § 5.3.6.

6.2. Stability diagrams
The stability diagram of each fluid is represented in the space (δ, �Φ) in figure 6. Neutral
curves are calculated by detecting, for each �Φ, the value of δ for which ωi/α becomes
close to zero – the threshold being set to 10−4. Calculations are carried out for long waves
at α = 10−2. Theoretical predictions are generally in good agreement with the numerical
results for all fluids. For fluid VB, good predictions are observed at low δ, but important
discrepancies appear for δ > 0.2. Such a mismatch is not observed in fluid DB, for which
the neutral curve is still accurately predicted for δ = 0.5, corresponding to a configuration
in which the central layer occupies half of the flow. As for fluid HT, the prediction is also
excellent. Note that, for this fluid, the range of �Φ that can be studied is limited by the
range of Aν (Appendix E), which is itself limited by γ < 1 and the set value of εT/δTμ,ρ

(Appendix A). As predicted in (5.16), the neutral curve of all fluids collapses in the limit of
δ � 1, following �Φ = δ. As δ increases, higher-order terms in δ destabilise fluid HT: the
magnitude of �Φ required to produce an instability becomes smaller than δ. Conversely,
higher-order terms stabilise fluids VB and DB.

6.3. The different sources of vorticity production
The generation of disturbance vorticity can be examined from the structure of the unstable
modes in the physical space. The wall-normal velocity perturbations are made of a plane
progressive wave along x (figure 7a). A peak is observed in the central region of the flow,
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δ

Figure 6. Neutral curves in the space (δ, �Φ), obtained for fluids VB, DB and HT. Solid lines are numerical
calculations. Dashed lines with circles are theoretical predictions, given in (5.10), (5.12) and (5.15).
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Figure 7. Wall-normal velocity (a) and pressure (b) of the unstable mode in fluid HT at α = 10−2, δ = 10−2

and Aν = −0.04, plotted in the physical space (x, y) at an arbitrary time t.

consistent with the linear increase from zero at the wall predicted in the outer regions in
(5.5). The associated pressure field is a plane progressive wave with a phase shift of π/2
with respect to v. Note that results are here presented for fluid HT, but nearly identical
fields are obtained for fluids VB and DB.

In fluid VB, vorticity production only results from the shear term Sξ in (2.15), given
that ρ̄′ = 0. Given its mathematical expression, Sξ follows the same wave structure as v,
multiplied by the factor −Ω ′. The vorticity profile |Ω| of the base flow, which is equal
to |Φ| for this fluid, is only non-zero around the central layer. It features strong positive
and negative gradients around the lower and upper interfaces, respectively (figure 2d). As
a result, the structure of Sξ contains two out-of-phase waves that are localised around each
interface of the central layer, as seen in figure 8(a). The field of total vorticity production,
Sξ + Bξ , has the same structure as Sξ since Bξ = 0.

A similar reasoning can be applied to fluid DB, in which only inertial baroclinic effects
are at play given that the base-flow vorticity is constant. The structure of the inertial
baroclinic term Bξ (2.15) is deduced from that of p and the profile of −ρ̄′/ρ̄2. Given
that ρ̄ = Φ for this fluid, the Bξ field presented in figure 8(e) is found to be similar to
that of Sξ observed for fluid VB (figure 8a). As Sξ = 0, it follows that the total vorticity
production Sξ + Bξ also resembles that of fluid VB (figure 8g,h).

As for fluid HT, both Sξ and Bξ are active in the generation of disturbance vorticity, and
their structure (figure 8c, f ) is markedly different from that of two previous fluids. Both
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Figure 8. Terms of the vorticity equation (2.15), plotted in the physical space (x, y) at an arbitrary time t,
for the unstable modes presented in figure 7. The shear term, the baroclinic term, their sum and the resulting
vorticity are shown from top to bottom, in that order. Each column corresponds to one fluid. In each panel,
fields are normalised by their maximum absolute value, and colour bars are the same as in figure 7. The central
layer of thickness δ = 10−2 is shown in (a) by the red dashed line; its location is identical in each figure, albeit
not reproduced in order to ease visualisation. The location y = 1/2 is indicated by the black solid line in (c, f ),
revealing an offset of the wave below and above this line, respectively.

feature a peak around the central region. This is again a result of the profiles of −Ω and
−ρ̄′/ρ̄2. Moreover, Sξ and Bξ exhibit a phase difference of π. This is readily understood
from the phase difference of π/2 between v and p, another phase shift of π/2 being added
to Bξ as it contains ∂p/∂x (2.15). Despite being out of phase and having a similar structure,
the sum of Sξ and Bξ is not zero. Instead, Sξ + Bξ is composed of two out-of-phase waves
around each interface (figure 8i), similar to what was observed for fluids DB and VB.
This behaviour can be linked to the profile of Φ with the following arguments. Around
the central region, the x-momentum equation (2.11) can be approximated to Φv 	 ∂p/∂x.
This results from ∂u/∂t + ū∂u/∂x being much smaller than Φv in this region, given that
the phase velocity of u is here close to ū, and that the growth rate ωi is small (this is
more evident in the spectral space, where this term is simply iα(ū − c)u). Under this
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Fluids MS/MB+S MB/MB+S

VB 1 0
DB 0 1
HT 6.1 6.2

Table 2. Relative maximum amplitudes of the fields shown in figure 8.

approximation, the linearised vorticity equation (2.15) can be recast as

∂ξ

∂t
+ ū

∂ξ

∂x
	 −Φ ′

ρ̄
v, (6.1)

where the right-hand side corresponds to Sξ + Bξ ; this shows how the quantity Φ

encapsulates both shear and inertial baroclinic effects. The profile of Φ ′ and the structure
of v ultimately explain the structure of Sξ + Bξ in fluid HT (figure 8i). Note that the
denominator ρ̄, attached to Φ ′ in (6.1), modulates the amplitude of the minimum and
maximum of Φ ′; it can be seen, in figure 8(i), that larger peaks observed around the
upper interface than those around the lower interface, given that ρ̄ is smaller in the
upper region.

Overall, the structure of the total vorticity production Sξ + Bξ is similar for each fluid,
regardless of the fluid stratification. The associated vorticity fields are finally displayed
in figure 8( j–l). Their structure follows that of Sξ + Bξ , with an alteration resulting from
advection effects (left-hand side of the vorticity equation (2.15)). The final picture is two
vorticity waves travelling along each interface, with a phase difference of π minus a phase
shift induced by advection. It can also be noted that these waves are generated around the
critical layer yc, defined as ū( yc) = cϕ . In fluids VB and DB, cϕ = 1/2 (§ 5.3.6) which,
by symmetry of the base flow, leads to yc = 1/2. In fluid HT, the phase speed of the mode
presented in figure 8 is cϕ 	 0.45; we have verified that ū(1/2) 	 0.45.

The relative amplitudes of the terms plotted in figure 8 are hidden by the normalisation
of each field. The maximum absolute value that each field reaches within the physical
space (x, y) is used in the normalisation procedure. The relative values are indicated
in table 2, noting by MS, MB and MB+S the maxima reached by Sξ , Bξ and (Sξ + Bξ ),
respectively. Results are straightforward for fluids VB and DB for which Bξ = 0 and Sξ =
0, respectively. As for fluid HT, it is shown that the shear and baroclinic effects act with
similar strengths. Furthermore, the total source of vorticity (Sξ + Bξ ) is approximately
six times weaker than these effects as it proceeds from the interference of the two waves,
cancelling out a large part of their amplitude.

6.4. Interpretation
These results can be interpreted within the wave-interaction theory as reviewed by
Carpenter et al. (2011). In this framework, instabilities are seen as a result of vorticity
waves developing along two interfaces that are located close enough so that each wave
modifies the velocity field of the other. The modified velocity field further deforms each
interface, which yields additional vorticity production. This forms a positive feedback
loop in which the two vorticity waves are amplified, constituting an instability. In order
to achieve amplification, these waves have to be phase locked, which was indeed observed
for the three fluids in figure 8( j–l). The appearance of vorticity waves along each interface
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has been shown to be driven by the structure of Φ (6.1). The physical mechanisms giving
rise to these vorticity waves are now further examined.

In fluid VB, the instability arises from an excess of vorticity in a localised layer.
This is the essential ingredient of the Kelvin–Helmholtz instability, which is well
known and will not be further discussed. The mechanism of this instability has indeed
been given following either kinematic (Batchelor 2000) or dynamic (Charru 2011)
arguments. Carpenter et al. (2011) also examined this instability from a wave-interaction
perspective.

In fluid DB, only inertial baroclinic effects produce vorticity disturbance. This originates
from misalignments between gradients of density and pressure (Soteriou & Ghoniem
1995). More precisely, given the flow assumptions, this misalignment can only be
generated via the density stratification of the base flow and the gradient of pressure
perturbations in the streamwise direction. Physically, two parcels of fluids at different
wall-normal locations, having two different densities (that of the base flow), do not have
the same streamwise acceleration when submitted to a streamwise perturbation of pressure
(Reinaud et al. 1999). This induces a wall-normal gradient of streamwise velocity, i.e.
vorticity. In fluid DB, the central region has an excess of density. The above mechanism
of vorticity production, therefore, occurs between the lower and central layer, as well as
between the upper and central layer. This results in the two vorticity waves that have been
observed in figure 8(h).

As for fluid HT, the generation of the two vorticity waves is not as straightforward.
A sketch of the mechanism is shown in figure 9(a–c). On the one hand, disturbance
vorticity is generated following the inertial baroclinic mechanism described in the previous
paragraph. However, contrary to fluid DB, this occurs only between two regions of the flow,
the lower and the upper ones, which have different densities (figure 2c) – the central layer
playing the role of an interface between them. This idealised representation is illustrated
in figure 9(b). Therefore, only one interface is felt by the baroclinic perturbations, instead
of two as in fluid DB. This results in only one vorticity wave, which is generated along
the central region, as previously observed in figure 8( f ). On the other hand, disturbance
vorticity is also produced by a shear mechanism, which consists in the wall-normal
transport of base-flow vorticity by the perturbations. The base flow can also be divided
into two regions of vorticity – smaller and larger magnitudes of the shear rate are indeed
observed in the lower and upper part of the flow, respectively (figure 2c). The central layer
again plays the role of an interface between these two regions, and only one interface
is felt by the shear perturbations, as sketched in figure 9(a). As a result, only one wave
is generated by the shear mechanism, as previously observed in figure 8(c). This is a
consequence of the plane wave structure of v, which, as it takes positive and negative
values along x, alternatively transports parcels of fluid that contain smaller and larger
magnitudes of Ω towards the central region. At this point, each mechanism generates one
wave that is localised in the central layer. These two waves are out of phase, as discussed
in the previous section. Moreover, because of the existing shift between the viscosity and
density profiles in fluid HT (figure 2c), a small shift �y ∼ εT/τ also exists between the
interface at play in each mechanism (figure 9). As a result, the two central waves are in
fact slightly shifted from each other, such that their superposition gives rise to two waves
that are localised along each side of the central layer (figure 9c). Ultimately, it is these two
phase-locked, interacting vorticity waves that produce the instability in fluid HT, following
the interpretation of the wave-interaction theory.
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Ω2 Ω2

Ω1 Ω1 Ω1

�y

(Ω < 0)
v < 0

v > 0 v < 0

∂p
∂x < 0

∂p
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∂p
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∂p
∂x > 0

u

ρ̄

(b)(a) (c)
Shear Inertial baroclinic Linear superposition

Figure 9. Sketch illustrating the mechanism generating the two vorticity waves in fluid HT. Red and blue
vortices indicate positive and negative values of the vorticity disturbance ξ , respectively. These disturbances are
generated by shear (a) and inertial baroclinic (b) mechanisms. Solid black lines represent the vorticity (a) and
density (b) profiles of the base flow, Ω and ρ̄, respectively. Note that Ω < 0 and that a shift �y exists between
the interfaces of Ω and ρ̄. Vertical green arrows in (a) represent the transport of Ω by the disturbance v in
and out of a control volume centred around the interface. Horizontal orange arrows in (b) show the disturbance
streamwise velocity of a fluid parcel that is induced by a streamwise gradient of disturbance pressure. The
magnitude of this velocity depends on ρ̄, which modifies the inertia of the fluid parcel whether it is located in
the lower or upper region. The linear superposition of the waves generated in (a) and (b) is shown in (c).

7. Application to supercritical fluids

7.1. Base flow
A typical base flow of fluid VdW is shown in figure 10(a). The general behaviour is
similar to that observed for fluid HT in figure 2(c), the latter being, indeed, an attempt
to model some important features of the former. Two regions of markedly different shear
rate can be identified. The density and dynamic viscosity profiles are not as simple as
in fluid HT: strong gradients are present in the central region, but properties also exhibit
weaker variations away from it. The resulting profile of |Φ| figure 10(b) follows that of
the kinematic viscosity profile, presented in § 2.1.4. As noted, the extremum of ν (and
therefore |Φ|) is seemingly not as localised as in the other fluid models. Modelling it
with a piecewise view of the Φ profile, as proposed in figure 3(d), does not appear as
an obvious choice. However, it was also noted that scales associated with the width and
amplitude of the minimum of ν could be introduced for fluid VdW (Appendix B). By using
them, we will show that the piecewise linear model of fluid HT can indeed provide a good
representation of fluid VdW, allowing some stability features to be predicted, and thereby
providing useful elements to interpret the instability. Note that, contrary to the previous
fluids, the minimum of ν is not exactly reached at y = 1/2 but is shifted upwards. This
is linked to the procedure used to set the location of the minimum through the reference
temperature at the wall and based on the assumption of a constant temperature gradient
(see § 2.2). This assumption is not exact for fluid VdW as thermal conductivity varies,
causing the observed shift.

7.2. Numerical stability calculations: comparison with the model of fluid HT
The stability diagram of fluid VdW can be calculated in the space (δ, �Φ) by varying
both the reduced pressure p̌ and the temperature gradient τ . Results are compared with the
following theoretical predictions obtained for fluid HT in § 5.3.4. For small γ , (5.15) leads
to the theoretical criterion of instability

�Φ0 >
δ

1 − δ
. (7.1)
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Figure 10. Base-flow profile of fluid VdW at p̌ = 1.06 and τ = 0.5. (a) Velocity, density and dynamic
viscosity profiles. (b) Normalised density-weighted vorticity profile.

Unstable

10–1

10–2

�Φ0

δ
10–2 10–1

Stable

Figure 11. Stability diagram of fluid VdW for p̌ ∈ [1.03; 1.095] and τ ∈ [0.005; 0.045]. Red circles and blue
squares are numerical results and indicate instability and stability, respectively. The black line is the theoretical
prediction given in (7.1).

This equation is of interest for fluid VdW as it does not involve γ (since �Φ0 only
depends on Aν , as shown in Appendix E), which would have had to be defined for such
a fluid. Note that (7.1) has an error of order O(γ 2) (and not O(γ ), as might have been
expected), widening the validity of this approximation. A generally good agreement is
obtained between the numerical calculations and the theoretical prediction (figure 11).
This shows the robustness of the model based on fluid HT with respect to the property
variations outside the central layer and to the upward shift of this layer. Furthermore, the
definition of δTν and Aν by the inflection point of ν(T) (Appendix B) is proved to be
relevant, leading to a quantitative prediction of the neutral curve. Note that the prefactor
used in the definition of δ (5.1) is here equal to 1.

The different terms of the vorticity equation (2.15) for the unstable mode in fluid VdW
are now examined. The shear term Sξ (figure 12a) and the inertial baroclinic term Bξ

(figure 12b) are each composed of a unique wave, which reaches a maximum in the central
region (following the discussion of § 7.1, the central region is here defined as being centred
around the minimum of kinematic viscosity). This is similar to the observations made
for fluid HT in figures 8(c) and 8( f ). But because non-zero gradients of μ̄ and ρ̄ persist
away from the central region in fluid VdW (figure 10a), these terms are not as localised
in the centre as in fluid HT. This is particularly noticeable for Bξ , which extends further
in the upper region, as ρ̄′ is non-zero and ρ̄ is much smaller than in the lower region.
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Figure 12. Terms of the vorticity equation (2.15) for the unstable mode in fluid VdW at α = 10−2, p̌ = 1.06
and τ = 0.5. Normalisation, colour bars and annotations are identical to those detailed in figure 8. Note that,
in fluid VdW, the central region is defined as being centred around the minimum of kinematic viscosity.
(a) Shear production term. (b) Baroclinic production term. (c) Sum of the shear and baroclinic production
terms. (d) Vorticity.

The sum Sξ + Bξ contains two out-of-phase waves (figure 12c) given that as Sξ and Bξ

are themselves out of phase and are slightly shifted from each other in the wall-normal
direction; see the discussion for fluid HT in § 6.4. However, because of the aforementioned
asymmetrical structure of Bξ , the upper wave is not localised around the upper interface
of the central layer. This constitutes a significant difference with fluid HT (figure 8i).
Nevertheless, the final picture is essentially identical: after advection is accounted for, the
vorticity field contains two waves localised around each interface, with an additional phase
shift leading to a phase difference smaller than π between them (figure 12d). The role
played by advection into the localisation of Sξ + Bξ in the central region can be understood
from the vorticity equation (2.15), which can be recast, in the spectral space, as

|ξ | = |Sξ + Bξ |
α|ū − c| . (7.2)

Therefore, |ξ | increases as the phase velocity of the disturbance approaches that of the
base flow – which occurs in the central region, as will be shown in the next subsection.

Overall, the theoretical stability model developed for fluid HT predicts important
features of the stability fluid VdW. This indicates that the main ingredients of the inviscid
instability developing in supercritical fluids are indeed contained in fluid HT. These
ingredients are the presence of strong, localised gradients of density and viscosity and
the associated existence of a localised minimum of viscosity – whose characteristic scales
control the instability through the more general parameters δ and �Φ. The inviscid
instability in supercritical fluids can ultimately be interpreted, like in fluid HT, as a
result of the combination of shear and inertial baroclinic mechanisms which generate two
interacting waves around the central layer (§ 6.4).
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Figure 13. Growth rate (a) and phase velocity (b) of the unstable mode in fluid VdW. Results in solid lines are
obtained for different values of τ at p̌ = 1.03. For τ = 1, results at p̌ = 1.06 and p̌ = 1.09 are also presented by
dashed lines. The circles, the square and the triangle in (b) indicate the value of ūm (see text) at p̌ = 1.03, p̌ =
1.06 and p̌ = 1.09, respectively (these values are not a function of α and are added to this plot for comparison
purposes).

7.3. Growth rate and phase velocity
Having shown the correspondence between the stability of fluids HT and VdW, further
numerical results of fluid VdW can now be examined through the lens of the stability
model. The growth rate of the unstable mode is shown in figure 13(a) for different
supercritical pressures (p̌ > 1) and temperature gradients τ . The long-wave nature of the
instability is recovered. At constant p̌, the maximum of the growth rate and the cutoff
wavenumber increase with τ . This is consistent with the observations in figure 4(c) for
fluid HT, since increasing τ alone only affects δ, decreasing it. Note that the potential
destabilisation of long waves by confinement effects (§ 6.1) is not observed in the present
range of parameters. When τ is fixed, the growth rate is reduced as the supercritical
pressure increases. The interpretation is not straightforward since p̌ affects both Aν and
δTν (Appendix B), and therefore both �Φ and δ in the stability model. Equation (5.17),
which can reasonably be invoked given that the magnitudes of �Φ and δ are here of the
order of 10−2, can shed light on this behaviour. Both �Φ, which can be approximated by
|Aν | in this regime, and δ, which is proportional to δTν , increase with p̌. Therefore, the
reduction of the growth rate with p̌ proceeds from a faster decrease of (�Φ − δ) than the
increase of δ.

Note that negative growth rates are obtained in figure 13(a) despite carrying out an
inviscid stability analysis, in which only neutral modes are usually expected in the absence
of an instability. This is a consequence of the use of a complex mapping for y (see § 2.3.1),
which is used to remove the singularity of the critical layer for neutral modes. Whilst these
negative growth rates do not carry any physical significance, this approach allows us to
compute accurate cutoff wavenumbers, presented later in this section.

The phase velocity of the unstable mode is displayed in figure 13(b). It is found to be
reasonably constant for all wavenumbers. The velocity of the base flow at the minimum
of ν̄, ūm, provides a good prediction of the phase velocity. This is consistent with the
results of § 5.3.6, substituting ū1/2 by ūm because of the aforementioned upward shift of
the central layer. This is also consistent with defining the location of the central layer
around the minimum of ν̄, as used in the previous subsection. A noticeable departure
from ūm can, however, be observed as τ increases, i.e. δ decreases. This behaviour is
qualitatively unexpected as the additional shift predicted by the theoretical model should
decrease with δ.

984 A31-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.193


B. Bugeat, P.C. Boldini, A.M. Hasan and R. Pecnik

102

101αc

100

10–3 10–2

p̌ = 1.03
p̌ = 1.09

δ

⁓ δ–1

10–1

Figure 14. Cutoff wavenumber obtained for fluid VdW at two reduced pressures.

The cutoff wavenumber αc can be plotted from the growth rate calculations by detecting
the value of α /= 0 where ωi = 0. Results at two pressures are presented in figure 14. For
each pressure, the cutoff wavenumber is calculated for a range of temperature gradients τ

in order to vary δ. The scaling αc ∼ δ−1 is found. While this scaling was not derived from
the stability models – the long-wave approximation does not allow αc to be examined, this
result is analogous to that of constant-density mixing layers (Charru 2011). Note that the
scaling is not valid as δ increases towards the stability threshold. Indeed, as δ is finite, it
would predict finite values of αc near the threshold, when αc tends to zero.

8. Summary and discussion

8.1. Summary
The stability of strongly density- and viscosity-stratified plane Couette flow was examined.
It was shown that a minimum of kinematic viscosity in the base-flow profile produces a
GIP, which furthermore satisfies the generalised Fjørtoft criterion. We first consider three
fluid models (termed VB, DB and HT) which were designed to all exhibit a minimum
of ν, while having different stratifications of density and dynamic viscosity. Modelling
their base flow via piecewise linear profiles, the Rayleigh equation that accounts for strong
density gradients was solved for each of them in the long-wave approximation. Expressions
of the growth rate and phase velocity were derived, as well as a criterion of instability for
each fluid. All these criteria express that a sufficient excess of |Φ|, the density-weighted
vorticity of the base flow, shall be localised in a layer of thickness δ. This improves, for
the specific flow studied in this paper, the generalised Fjørtoft criterion – which does not
provide such an instability threshold. A general criterion was obtained for all fluids in the
limit of small δ, regardless of the type of stratification.

Theoretical predictions were compared with numerical stability calculations.
A qualitatively good agreement was found for the growth rate, while an excellent match
was observed for the phase velocity. Stability diagrams are also generally well predicted
by the models, and the collapse of the neutral curves for small δ was indeed observed
in the calculations. The physical mechanisms responsible for the instability in each fluid
were then examined. For all fluids, two phase-locked vorticity waves travelling along
each interface of the central layer were found. The growth of the instability is ultimately
interpreted as a result of the interaction between these two waves. These waves are
generated by either shear effects in fluid VB or inertial baroclinic effects in fluid DB. In
fluid HT, which features strong stratifications of both density and viscosity, the two waves
were shown to result from a combination of shear and inertial baroclinic mechanisms.
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The stability of a fluid governed by the van der Waals equation of state at supercritical
pressure was finally examined. The stability model was found to quantitatively predict
the neutral curve of this more realistic fluid. The concurrent action of shear and inertial
baroclinic effects in the vorticity production was shown to produce two vorticity waves
around the central layer. This suggests that the physical interpretation proposed for
fluid HT also provides the essential mechanism of the instability in supercritical fluids.
Ultimately, our study provides evidence that the minimum of kinematic viscosity, reached
at the Widom line, is the leading cause of this instability.

8.2. Supercritical fluids and beyond
We finally address the link between the present paper and the unstable mode recently
found in supercritical fluids by Ren et al. (2019b), before discussing how this study may
be relevant to other types of fluid and flow. It has been shown that, in plane Couette flow, a
heated supercritical fluid features a similar instability to that developing in simpler fluids,
whose only common property was to assume a minimum of kinematic viscosity. This
indicates that other non-ideal thermodynamic effects, such as non-unity compressibility
factor Z, large values of cp exhibited near the Widom line or non-monotonic large
variations of the speed of sound, are unlikely to play a decisive role in the instability
mechanism. In the original study of Ren et al. (2019b), the existence of the additional
unstable mode was reported for a flat-plate boundary layer flow, considering supercritical
CO2 at non-negligible Mach numbers. We aimed at simplifying their configuration by
considering a simpler flow (plane Couette), a simpler supercritical fluid model (VdW
equation of state and simple analytical diffusion laws) and by neglecting acoustic
phenomena. In this more canonical framework, the instability could be recovered and
further analysed. The role played by the minimum of kinematic viscosity remains to be
clearly demonstrated in flat-plate boundary layer flows as studied by Ren et al. (2019b),
since the theoretical development presented in § 3 cannot directly apply to this flow.
However, the authors observed the additional unstable mode only when the temperature
profile crosses the Widom line, about which the presence of a minimum of ν is a common
property (see figure 15a). This indicates strong links with our results. Bugeat et al. (2022)
furthermore pointed out how, in some cases, inertial effects can be neglected around
the pseudo-boiling region, resulting in the correct prediction of a GIP in the boundary
layer. In this case, the momentum equation reduces to that of Couette flow, making the
aforementioned theoretical result valid for a flat-plate boundary layer flow. However, a
rigorous understanding of the conditions of the existence of a GIP is so far missing in
this flow, and further efforts could be directed towards the search for a sufficient condition
which would factor in inertial effects. The link with an excess layer of Φ should also be
analysed in this case, as the criterion of instability in (7.1), involving �Φ and δ, may be
altered for a different flow configuration.

Other types of flow may exhibit a localised minimum of viscosity, hence, potentially,
a similar instability. In the present study, the scalar quantity that controls the spatial
distribution of ν is the temperature. Other quantities could play an analogous role. The case
of a shear flow made of two miscible fluids, mentioned in the introduction, is an interesting
example. The mole fraction is constant in each fluid but varies through the interface, which
can be assumed to have a small, finite thickness. Ern et al. (2003) studied the instability
developing in this system at low Reynolds numbers. It can be noted that certain fluid
mixtures may exhibit a minimum of kinematic viscosity for intermediate mole fraction
(between 0 and 1), as shown in figure 15(b). For these fluids, a minimum of ν would
then exist within the diffused interface, as it does for supercritical fluids in the region of
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Figure 15. (a) Kinematic viscosity of different real fluids at supercritical pressure p̌ = 1.1 as a function of
temperature. The subscript ‘pb’ refers to the pseudo-boiling point. (b) Kinematic viscosity of a mixture of
methanol and toluene as a function of the mole fraction for different temperatures, from McAllister (1960).

the Widom line. An inviscid instability can be expected in this case, which may compete
with other instability at low Reynolds numbers if viscous damping does not stabilise it too
quickly. As pointed out by Ern et al. (2003), a stability analysis of such a system is valid
as long as the time scale associated with the diffusion of this interface is large compared
with that of the instability. Similarly, in a single (not necessarily supercritical) fluid flow,
heating or cooling a small layer of liquid or gas, respectively, would produce a localised
minimum of ν. An instability could then appear, provided that its associated time scale
is small compared with that of thermal diffusion of the cooled or heated layer. Note that
these time scale considerations were avoided in the present study, as the temperature field
strictly was a steady solution of the Navier–Stokes equations. A comparison between the
viscous time scale of the perturbations and that of the instability could, however, evaluate
the potential of prediction of the inviscid analysis at finite Reynolds numbers.

Finally, the case of non-Newtonian fluids can be mentioned as dynamic viscosity,
and hence kinematic viscosity, may vary as a function of the stress profile. In a
canonical plane Couette, no variation of stress would be observed, and the flow would
be linearly stable. Introducing temperature gradients through viscous heating can alter
the stability of the flow (Eldabe, El-Sabbagh & El-Sayed 2007). In an isothermal
configuration, Nouar & Frigaard (2009) added a streamwise pressure gradient, leading
to a plane Couette–Poiseuille flow. The presence of a maximum (minimum) of stress for
a shear-thinning (shear-thickening) fluids may then generate a minimum of kinematic
viscosity. However, the criterion of instability derived in the present paper would not
apply because of the presence of a pressure gradient, and an isothermal parallel flow of
non-Newtonian fluid may therefore not experience this instability.

Funding. This work was funded by the European Research Council grant no. ERC-2019-CoG-864660,
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Figure 16. Verification of the scaling of Aν (a) and δTν (b) for fluid HT, given in (A3) and (A4), respectively.
This is achieved by first computing the kinematic viscosity for γ ∈ [10−2; 7 × 10−1], δTμ,ρ ∈ [10−2; 1] and
εT ∈ [−5 × 10−3;−5 × 10−4]. For each set of parameters, |Aν | is calculated as |νe − 1|, where νe is the
minimum of ν. The quantity δT̃ν is the full width at half-minimum.
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Appendix A. Definition of δTν and Aν in fluid HT

The amplitude of the extremum of kinematic viscosity was previously defined for fluids
VB and DB as νe = 1 + Aν , where νe is the extremum of ν. Supposing νe is reached
around T = Tm = 1, we have

νe 	 μm

ρm
= 1 − γ tanh

(
− εT

δTμ,ρ

)
. (A1)

Assuming that εT/δTμ,ρ is small,

νe 	 1 + γ εT

δTμ,ρ

. (A2)

By definition of Aν , it results that

Aν = γ εT

δTμ,ρ

. (A3)

This equation is verified in figure 16(a) over a large range of parameters. It is interesting
to note that the direction of the shift between ρ and μ, i.e. the sign of εT , determines the
nature of the extremum.

The range of temperature δTν containing kinematic viscosity variations must vary as

δTν ∝ δTμ,ρ, (A4)

since gradients of ρ and μ are non-zero only over this characteristic range of temperatures.
An overlap of the ranges of variation of ρ and μ is ensured as we assume εT to be small
compared with δT . To check this result, we calculate the quantity δT̃ν defined as the width
at half-maximum or minimum of ν. This is formally defined as the temperature range
where |ν − 1| > |Aν |/2. The scaling of (A4) is confirmed in figure 16(b). An arbitrary
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choice of prefactor must be made in (A4) in order to set the definitive expression of δTν .
We note that a factor of approximately 2 was observed in figure 16(b), such that δT̃ν 	
2δTμ,ρ . Besides, in order to maintain consistency with the Gaussian laws in fluids VB
and DB, in which the full width at half-minimum is approximately 2.35δTν/

√
2 given

the definition of δTν in (2.1) and (2.2), we will ultimately define δTν (for fluid HT) as
δTν 	 δT̃ν

√
2/2.35. After round-off, this results in the definition

δTν = 1.2 δTμ,ρ. (A5)

Appendix B. Definition of δTν and Aν in fluid VdW

In fluid VdW, the kinematic viscosity profile as a function of temperature depends on the
reduced pressure p̌ (figure 17a). For each pressure, a minimum of ν is reached around the
pseudo-boiling point Tm. For a given p̌, two inflection points of ν(T) can be calculated.
We note their corresponding temperatures and viscosity T1 and T2 (with T1 < Tm < T2)
and ν1 and ν2, respectively. The scale δTν can then simply be defined as

δTν = T2 − T1. (B1)

The definition of Aν is not as straightforward, and we propose the following procedure to
extract it. First, the value of the minimum νe, which lies between T1 and T2, is calculated.
Afterwards, we consider δTν to be the width at half-minimum of ν as in § A for fluid
HT. But contrary to fluid HT, this approach is now used to define Aν knowing δTν rather
than the other way round. Another issue to deal with is the lack of symmetry of ν(T),
resulting in ν1 /= ν2. To circumvent this, an average νav = (ν1 + ν2)/2 is defined. The
bump of viscosity is then assumed to be 2(νav − νe), the factor 2 appearing because of
the aforementioned ‘half-minimum’ approach. Given the definition of Aν and using νe +
2(νav − νe) as the reference viscosity (which can be noted ν∞ in analogy with the other
fluids), the amplitude Aν can eventually be defined as

Aν = νe

νe + 2(νav − νe)
− 1, (B2)

with Aν < 0 indicating that a minimum is reached. The values of δTν and |Aν | calculated
following the above procedure are presented in figure 17(b). Both decrease as the
supercritical pressure p̌ decreases towards 1, meaning that the minimum of ν becomes
more and more localised as the fluid approaches the critical point.

Appendix C. Proof of the ‘maximum of |Φ|’ criterion in stratified flows

Let us show that verifying (3.1) throughout the base flow, except where Φ ′(ū − ūs) = 0,
leads to the presence of a maximum of |Φ|. The subscript ‘s’ refers to the variables at
the location y = ys, where Φ ′

s = 0 as required by the GIP criterion. A Taylor expansion of
(3.1) can be performed about ys, leading to

Φ ′′
s ( y − ys)(ūs + ū′

s( y − ys) − ūs) > 0. (C1)

Simplifying (C1) and multiplying by ρ̄s yields

− Φ ′′
s Φs( y − ys)

2 > 0. (C2)

If Φs > 0, (C2) requires that Φ ′′
s < 0, meaning that a maximum of Φ must exist at ys given

that Φ ′
s = 0. Doing an analogous reasoning if Φs < 0, we then conclude that the necessary

condition for an inviscid instability to exist, given by the generalised Fjørtoft criterion, is
equivalent to the presence of a maximum of |Φ| at the GIP.
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Figure 17. (a) Kinematic viscosity around the pseudo-boiling point of fluid VdW at supercritical pressures
p̌ = 1.03, p̌ = 1.06 and p̌ = 1.09. (b) Calculation of the scales δTν and Aν associated with the minimum of ν

in fluid VdW, for p̌ ∈ [1.02; 1.10].

Appendix D. Notes on the existence of a GIP in pressure-driven flows

The link between the existence of a GIP that fulfils the generalised Fjørtoft criterion and
the existence of a minimum of kinematic viscosity was theoretically investigated in § 3 for
plane Couette flow. This result is not expected to hold a priori in any other shear flows. The
case of the flat-plate boundary layer flow will be discussed later in § 8.2. In this section,
plane Poiseuille flow is examined in order to point out some major differences.

Contrary to Couette flow, Poiseuille flow is driven by a constant pressure gradient G∗
in the streamwise direction. The velocity scale u∗

r = G∗(h∗)2/μ∗
0 can be introduced since

the flow results from a balance between friction forces and the pressure gradient. The
parameter h∗ is the distance between the two fixed plates and μ∗

0 is a reference dynamic
viscosity, for example at the lower plate. The non-dimensional streamwise momentum
equation then reads

(μ̄ū′)′ = 1. (D1)

Proceeding similarly to § 3, it follows that

(νΦ)′ = −1. (D2)

The right-hand side is equal to 1 whereas it was zero in plane Couette flow. This is due to
the pressure gradient driving Poiseuille flow, and this difference will modify the criterion
of instability. To show this, let us first integrate (D2), yielding

Φ = y0 − y
ν̄

, (D3)

with y ∈ [−1/2, 1/2], using h∗ as the reference length scale. y0 is the location where
Φ = 0, i.e. ū′ = 0. The existence of such a point inside the domain is guaranteed given the
boundary conditions on the velocity profile ū(−1/2) = ū(1/2) = 0. Differentiating (D3)
leads to

Φ ′ = −1
ν̄

(
1 + ( y0 − y)ν̄′

ν̄

)
. (D4)

The GIP criterion of instability, Φ ′ = 0, eventually reduces to

ν̄′

ν̄
= 1

( y − y0)
, (D5)
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where we ignore the point y = y0 at which no GIP can exist, since Φ ′( y0) = 1/ν̄( y0) > 0.
Besides, because 1/( y − y0) is strictly non-zero, a minimum of kinematic viscosity is not
a condition for the existence of a GIP in plane Poiseuille flow, contrary to plane Couette
flow.

Equation (D5) can be further examined. Unlike non-heated, constant viscosity Poiseuille
flow, the viscosity profile may here break the centre axis symmetry of the velocity profile,
which may prevent y0 from necessarily being zero. As a result, the inequality |y − y0| < 1
holds. Therefore, the condition (D5) can only be satisfied if strong enough gradients of
viscosity are present in the flow, verifying∣∣∣∣ ν̄′

ν̄

∣∣∣∣ > 1. (D6)

We can further write that

ν̄′ = ∂ν̄

∂T

∣∣∣∣
p

dT̄
dy

, (D7)

which, estimating the non-dimensional temperature gradient as dT̄/dy ∼ �T , gives a
necessary condition for the existence of a GIP in plane Poiseuille flow:∣∣∣∣∣1ν̄ ∂ν̄

∂T

∣∣∣∣
p

∣∣∣∣∣ >
1

�T
. (D8)

This can be interpreted as the need for the kinematic viscosity law of the fluid to contain a
temperature scale, defined as �Tν = ν/(∂ν/∂T), that is smaller than the temperature scale
�T of the flow.

Appendix E. Expression of K and �Φ for different fluids

Integrating ū′ = K/μ̄ between 0 and 1 and using the boundary conditions on the
streamwise velocity provides an expression of K:

K = 1∫ 1
0

dy
μ̄

. (E1)

The value of K only depends on the profile of the dynamic viscosity.

E.1. Fluid VB
Since ρ̄ is constant, the profile of dynamic viscosity is the same as that of kinematic
viscosity. The integral in (E1) can be approximated supposing that μ̄ = 1 + Aν on a layer
δ while μ̄ = 1 elsewhere. This leads to

K = 1 + Aν

1 + Aν(1 − δ)
. (E2)

The jump of |Φ| given by (5.2) can finally be expressed, for fluid VB, as

�Φ(VB) = − Aν

1 + Aν(1 − δ)
. (E3)
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E.2. Fluid DB
Dynamic viscosity is constant, which immediately gives K = 1. The jump of Φ for fluid
DB is therefore

�Φ(DB) = − Aν

1 + Aν

. (E4)

E.3. Fluid HT
The profile of dynamic viscosity is assumed piecewise linear and equal to the profile of
density of fluid HT in figure 3. In the lower wall region, μ̄ = 1, In the upper wall region,
μ̄ = (1 − γ )/(1 + γ ), after renormalising μ∗ with μ∗

0 in (2.4). The central region linearly
matches these two regions. It follows that

1
K

=
∫ (1−δ)/2

0
dy +

∫ δ

0

dη

1 − 2γ η

δ(1 + γ )

+
∫ 1

(1+δ)/2

dy
1 − γ

1 + γ

, (E5)

where the change of variable η = y − (1 + δ)/2 was performed for the second integral.
After integration, we find

1
K

= 1 − δ

1 − γ
− δ(1 + γ )

2γ
ln
(

1 − 2γ

1 + γ

)
. (E6)

We will approximate this expression in the limit of small δ, which will prove useful when
applied to fluid VdW. Under this assumption, we simply have K = 1 − γ , and �Φ reads

�Φ(HT) = −Aν(1 − γ )

1 + Aν

. (E7)

Note the expression of the quantity �Φ0, introduced in (5.14), is simply

�Φ0 = − Aν

1 + Aν

, (E8)

which does not depend on γ . Using �Φ0 is then found of practical interest for fluid VdW
as the parameter γ does not need to be introduced and defined for this fluid.

E.4. Limiting case
In the limit of δ � 1, Aν � 1 and γ � 1, all fluids exhibit the same expression:

�Φ ∼ −Aν. (E9)

This limit is of interest since it corresponds to parameters near the neutral curve when
δ � 1, since �Φ = O(δ) in this region.
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