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Abstract

In this paper we consider the groups G = G(a, n) defined by the presentations

{a, b:a2 = *" = ab~iab(abab~1)a~lab2ab~2 = 1).

We derive a formula for [G1: G"] and determine the order of G whenever n < 1. We show
that G is a finite soluble group if n is odd, but that G can be infinite when n is even, n > 8 .
We also show that G(6, 10) is a finite insoluble group involving PSU(3, 4), and that the group
H with presentation

(a, b:a2 = b10, ab~Xab(abab~xy'abZab~2 = 1)

is a finite group of deficiency zero of order at least 114,967,210,176,000.

1991 Mathematics subject classification (Amer. Math. Soc): 20 F 05.

1. Introduction

In this paper, we consider certain one relator products of cyclic groups. In
general, a one-relator product of groups {A(: i el} is a quotient (*Ai)IN(R)
where (*At) is the free product of the groups At (/' e / ) , R is a cyclically
reduced word, and N(R) is the normal closure of R in (*Af). We are
particularly interested here in the case where the Ai are finite cyclic groups,
especially in the case where |/| = 2 . In that case, if Ax and A2 are cyclic
of orders m and n respectively, we have a presentation of the form

{a,b:am = b" =R(a,b)= 1).
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[2] Finite one-relator products of two cyclic groups 353

We shall normally assume that R(a,b) is a word of the form

fl'
(V(1)...fl

i(rV{r),
where r > 2, 0 < i(p) < m for all p and 0 < j(q) < n for all q. If
R = Sk is a proper power, then we have a generalized triangle group, and
such a group is infinite if (1/w) + (1/w) + (l/k) < 1 by [2]; this was proved
independently and generalized in [19]. On a connected theme, it was shown
in [32] that a group X defined by a presentation of the form

(xl,x2,..., xm: W(x{, x2) = W{x2, x3) = • • • = W(xm , *,) = 1)

with m > 4 is either cyclic or infinite. Given that result, it is natural to ask
what happens if m — 2 or m = 3 .

A group such as X is an example of a cyclically presented group, and
admits an automorphism of order dividing m which permutes the x( in a
cycle of length m . Such groups are of particular interest, in that many of the
known finite groups of deficiency zero (that is finite groups with a presentation
in which there is an equal number of generators and relators) are of this type;
see [25] for a general survey. Forming the semi-direct product of X with a
cyclic group (a) of order m yields the presentation

{a,b:am = W(b,a~lba) = 1),

which can be rewritten in the form (a, b: am = 1, b" = R(a, b)), where b
has exponent sum zero in R(a, b). If the corresponding group is finite, then
the group defined by the presentation

(a,b:am = b" = R(a,b) = 1)

is also finite. So we would like to know what happens when we have a
presentation of the form (a,b:am = 1, b" - R{a, b)) or of the form
{a, b:am - b" — R(a, b) = 1), where R is not necessarily a proper power.
In the latter case, we shall assume that n > 0 , and we shall normally assume
that b has exponent sum zero in R(a, b). We concentrate on the case
m = 2.

If we have a presentation of the form (a, b:a2 = b" — ab'ab~' = 1),
then the corresponding group is easily seen to be abelian of order 2« or else
infinite. On the other hand, the structure of a group defined by a presentation
of the form (a, b:a2 = b" - ab'abjabk = 1) was determined in [4], and
further results on these, and the related deficiency zero groups defined by
the presentations of the form (a, b:a2 = ab'abJabk = 1), may be found in
[8, 9, 10, 11, 31]. The structure of the groups G(n; h,i,j,k) defined by
the presentations

(a, b:a2 = b" = abhabiabjabk = 1)
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with h+i+j+k-0 and h, i, j , k € {±1, ±2} was determined in [14],
and further results on such groups may be found in [13, 18]. Returning to
the theme of cyclically presented groups, the Fibonacci group F = F(2, n)
is denned by the presentation

\ X j , X^ , • • • , -*fl- -^j-^2 3 ' - ^ 2 3 — 4 > • • • > n \ — 2' '

see [35] for a recent survey of these and related groups. It is known [17] that
F{2, 1) and F(2, 2) are trivial, F(2, 3) is the quaternion group of order 8,
F(2, 4) is cyclic of order 5, F{2, 5) is cyclic of order 11 and that F(2, 6) is
infinite. Also, F(2, 7) is cyclic of order 29 [3, 16, 21] and F(2, n) is infinite
for n > 8 [3, 27, 29]; see also [23, 34]. Forming a semi-direct product of F
with a cyclic group (b) of order n permuting the generators cyclically yields
the group E — E(2, n) with presentation (x, b:xb2 = bx2, b" = 1). If
n is even, then the relation x" = 1 also holds, since (x~lb2)~lb2(x~lb2) -
b~2xb2x~lb2 = b~ixb2 = x2. If we add the relation x" = 1 in any case,
and then the automorphism a of order 2 interchanging b and x, we get
the group with presentation {a, b:a2 = b" = ab~labab2ab~2 = 1). This
has been shown [12, 14] to be metabelian of order 2ngn if n is odd, where
(gn) is the sequence of Lucas numbers defined by g, = 1, g2 = 3 and
8n = 8n-\ + 8n-2 f° r n > 3. (Since it contains F(2, n) as a subgroup of
index 2« for n even, the group is infinite if n = 2m > 6.)

In this paper, we consider the groups G — G(a, n) defined by the presen-
tations

( a , b : a = b" = a b ~ a b { a b a b ~ )a~ a b a b ~ = 1 )

for n > 1 and a > 1. Clearly [G: G'] = 2n, and we show that [<?': G"] =
v
n(

a) > where vn = vn(a) is defined by v0 = 0, v{ = 1 and

for n > 2, and we point out some connections between these groups and the
groups F(2, n). We also investigate the structure of the groups G(a, n) for
small values of n , and we have

THEOREM A. Let G(a, n) be the group defined by the presentation

(a, b:a = b" = ab~ ab{abab~ )a~ ab ab~ = 1),

where n > 1 and a > 1. Then
(i) G(a, 2) is dihedral of order 4a;
(ii) G(a, 3) is metabelian of order 6v3(a) = 6(a2 + 3) if a = 0, I or

2 (mod 4), but has order I2vi(a) — 12(a2 + 3) and derived length 3 if
a = 3 (mod 4);
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(iii) G(a,4) is metabelian of order 8V4(Q) = &a(a + 4 ) ;
(iv) G(a, 5) is metabelian of order Wv5(a) = 10(Q4 + 5a2 + 5);
(v) G(a, 6) is metabelian of order I2v6(a) = I2a(a2 + 3)2 if a is even,

is infinite of derived length 3 if a = 1, but has order 24((Q - l)/2)3v6(a) =
3(a - l)3a(a2 + 3)2 and derived length 3 if a > 1 and a is odd;

(vi) G(a, 1) is metabelian of order 14«7(a) = 14(a6 + 7a4 + 14a2 + 7).

Part (i) of Theorem A is clear; we prove part (ii) in Section 3, parts (iii),
(iv) and (vi) in Section 4, and part (v) in Section 5. The results given in
Theorem A for n odd are not atypical, as we also have

THEOREM B. Let G = G(a, n) be the group defined by the presentation

{a,b:a = b" = ab~ ab(abab~ )Q~ ab ab~ — 1),

where n > 1 and a > 1. When n is odd, G is a finite soluble group of
derived length at most 3. If, in addition, (gn, a— \) — I, then G(a, n) is a
metabelian group of order 2nvn(a).

Theorem B is proved in Section 4. However, not all the groups G(a, n)
are finite; we show in Sections 6 and 7 that some of the groups G(a, 8) and
G(a, 10) are infinite. Also, not all the finite groups G{a, n) are soluble; for
example, the group G(6, 10) is a finite insoluble group involving PSU(3, 4)
(see Proposition 7.1). We summarize some results we have obtained concern-
ing the groups G ( Q , 8) and G(a, 10) for small values of a in the following
table.

TABLE 1

a

2

3

4

5

6

7

8

9

10

11

G(a,8)

metabelian order 9,216

metabelian order 75,504

derived length 3, order 11,197,440

metabelian of order 1,691,280

infinite soluble group

finite, derived length 4 or 5

metabelian order 37,914,624

metabelian order 84, 321, 360

infinite

infinite

G(a, 10)

metabelian order 67,240

metabelian order 1,029,660

metabelian order 9, 302,480

metabelian order 57,002, 500

finite group involving PSU(i, 4)

infinite group involving HS
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Here HS denotes the Higman-Sims simple group of order 44,352,000. Sub-
sequently, Newman and O'Brien [30] have extended our results and have
shown that G[l, 8) is soluble of order 21'• 35 • 7 • 172•53 and derived length
5 and that G(6, 10) has order 20\PSU(3, 4)|u,0(6) = 29-32-53-13-14812 .

It is interesting to note that, if G(a, n) is finite, then certain related de-
ficiency zero groups are also finite. For example, the group H = H(a, n)
with presentation

(a, b, z:a = b" = z, ab~ ab(abab~ )a~ ab ab~ = 1)

is finite, since za+l e H' n Z(H) < Q>(H), where O(77) denotes the Frat-
tini subgroup of H. So, for example, H(6, 10) is a finite group of de-
ficiency zero involving PSU(3, 4) of order at least 7|G(6, 10)|. (Subse-
quently, Newman and O'Brien [30] have shown that H(6, 10) has order
14|G(6, 10)| = 229,934,420,352,000. Given that G{1, 8) has derived
length 5, we immediately see that H{1, 8) is a finite soluble group of defi-
ciency zero with derived length at least 5; in fact, H(l, 8) has derived length
precisely 5 and order 24 • 3 • |G(7, 8)| = 215 • 36 • 7 • 172 • 53.)

The relationship explored in Section 4 between the groups G{a, n) and
the Fibonacci groups F{2, n) is of great help in determining which of the
groups G{a, n) are finite. Also, the proofs of the above results show that
PSU(3, 4) and HS are homomorphic images of F(2, 10). It was pointed
out in [26] that every finite 2-generator group G (and therefore, in particular,
every finite simple group—see [1, 33]) is a homomorphic image of F{2, n)
for some value of n. However, while some results are known for specific
groups as to which value of n will suffice [5, 18, 36], it does not seem to
be easy, in general, to calculate the least value of n that will suffice for a
particular group G.

2. The groups G(a, n)

Throughout this section, let G - G(a, n) be the group defined by the
presentation

{ a , b : a - b" = a b ~ a b ( a b a b ~ )a~ a b a b ~ = 1 ) ,

where n > 1 and a > 1. Let c := aba and N be the normal subgroup
(b, c) of G. We see that [G:N] = 2, and N has presentation

,i »/! n - l i , i - K a - 1 2 , - 2 ,—1 , , - K o - 1 , 2 —2 , ,

(b,c:b —c -c b(cb ) cb =b c(bc ) be = 1 ) .

Introduce a new generator e := cb~x, delete the generator c = eb, and then
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introduce the generator d := beb~ , to get

(b,d,e:bn = (eb)n = 1, b~xdb = e, b~leb = ead,
, - i , , - 1 - l . - I - i , - i , .
b ebd e = d e b eb).

The last relation is equivalent to eadd~ie~l = d~ie~lead via the fourth,
that is to [d, ea~l] = 1, and so we have the presentation

(b,d,e:b" = (eb)n = [d,ea~l]=l, b~ldb = e, b~leb = ead).

So G' = {d, e). If a = 2, the relation [d, e] = 1 holds, and we have

PROPOSITION 2.1. G(2,n) is metabelian.

We also have

PROPOSITION 2.2. If G = G(a, n), then [G1, G"] = vn(a).

In the proof of Proposition 2.2, we may assume that G' is abelian, so that
[d,e]=l,&nd

b~ldb = e, b~2db2 = dea, b~idb3 = e(dea)a = daea2+l, etc.

In general, we have b~kdbk = d"k-le"k, where the sequence (un) is denned
by M0 = 0, Mt = 1 and un — aun_1 + un_2 for n > 2. The relation

{eb)n = 1 may be replaced by (d~xb~x)n — 1, which, since bn = 1, may be
rewritten as d~l(b~ld~lb)(b~2d~lb2)(b~id~1b3)---(b~(n~l)d~lbn~l) = 1,

which becomes d~1e~\deay\daea2+l)~l •• • ( r f " -^" ' - ' ) " 1 = 1. Let (wn)
be the sequence denned by w0 = 0 , wl = 1 and wn = awn_l +wn_2 + 1 for

n > 2. Since [rf, e] = 1, we may collect terms and invert to get d e = 1,
where

/ := 1 + M,(a) + K2(a) + M3(a) + • • • + un_2(a) = 1 + wn_2(a),

J := u,(a) + M2(a) + «3(a) + • • • + Mn_2(a) + M^^a) = wn_x{a)

by [7, Corollary 9]. We now have the following presentation for the largest
metabelian quotient of N

(b,d,e:b~1db = e, b~xeb = dea, bn = [d,e\=\, d'eJ=\).

Since b~"dbn = dKeL, where K := un_l(a) and L :- un(a) the relation

b" = 1 gives that dKeL — d, and we have

(b,d,e:b~ldb = e, b^eb = dea, b" = [d, e] = d1 e = dK~leL = 1).
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The normal abelian subgroup G' of index n in N is then seen to have order

K- 1 L
wn_2(a)+l wn_x{a
" „ _ , ( « ) - ! un{a)

Replacing the first row of the determinant by the sum of the two rows, it
follows from [7, Corollary 9 and Proposition 10] that the determinant has
value v (a), and Proposition 2.2 follows.

3. The groups G(a, 3)

In this section, we describe the structure of the groups G — G(a, 3). Here
we have the presentation {a, b:a2 = b3 = ab~x ab(abab~x)a~x ab2 ab~2 = 1)
for G, and, as in Section 2, the presentation

(b,d,e:b3 = (ebf = [d,ea~x]=l, b~xdb = e, b~xeb = ead)

for the normal subgroup N := {b, aba) of index 2 in G. The relation
(ebf = 1 is equivalent to d'x b'x d~x bb~2 d~x b2 = 1, that is d~1e~l{ead)~1

= 1, which, given that ea~x is central in (d, e), is equivalent to the rela-
tion {edf = e~(a~x). So ead = (ed)~2ed = d~xe~x, and we have the
presentation

(b,d,e:b3 = [d, ea'x] = 1, (ed)2 = e~(a~X), b'xdb = e, b'xeb = d~xe'x).

We let / denote b~ db , and we have the following presentation for G' =
(d,e,f)

(d,e,f:[d, ea~x] = [e, f~x] = [f, da~x] = fed = 1, {edf = e ' ^ ,

Delete the generator f = d~ e~x to get

(d, e:[d, ea~x] = [e, (edf'1] = [e,da~x] = 1, (edf = e~(a-X),

Since e~2 = rf"'"'1', the relation [e, da~x] = 1 is redundant, and, since
(edf = e~(a~x), we have that [ed, ea~x] = 1, so that [d, ea~x] = 1 is also
redundant. Since d~2 = (d~~xe~x)~~(a~X), we have that [d, (ed)a'x] = 1,
and so [d(ed)~x, (ed)a~x] = 1, so that [e, (ed)a~x] = 1 is redundant. We
now have the presentation

/j / j \ 2 - (a-1) , - 2 . . - I - K - ( a - l ) - 2 »-(a-l)v

( d , e : ( e d ) = e y ', d = (d e ) v ', e = d ').
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Since da~x, ea~x and {ed)a~x are central in G', e~ldecTl = e~2{edfd~2

is also ce ral, and hence z := e~xded~x — d~xe~xde is central. Now
{ed)2 = e(de)d = e{edz)d = e2d2z, and so we have

, d~2 = (

As d is central, we have that

z2 = (d~xe~xde)(e'xded~x) = d~xe~xd2ed~x = d~xe~xed~xd2 = 1.

The relation d'2 = {d~xe~x)~(a~x) is equivalent to d~2 = (ed){a~x) =

. , . - I - 1 , 2 . ,2 -(a+1)
{d,e,z:z-d e de,z=l,dz-e ,

j-ia+l) = ga-l z{a-l){a-2)/2 g-2 _ ^"(«-l)v

We may modify the fourth relation via the fifth to get

2 1 d 2 z e~{a+X) d~2 ea+Xz{a~l)(o"
, z = 1, = e~{a+X), d~2 = ea+Xz{

and then replace the fourth relation, using the second and third, by z =
z(a-i)(a-2)/2 I f Q = t o r Q s 2 (mod 4), we immediately have that z = 1,
and G(a, 3) is metabelian of order 6i>3(a). If a = 0 (mod 4), then a + 1
is odd, and, as e~ = d z and e are central, we have that e is central,
and so z = 1, so that G(a, 3) is metabelian of order 6v3(a). So assume
that a = 3 (mod 4), in which case the relation z = z

(a~')<a~2)/2 is redundant
via z2 - 1. We now have

z2 =

Since e-( a + 1 )=rf2z, we have that ^ ( a + 1 ) ( a - 1 ) / 2 = (rf2z)(Q-1»/2 = ^ - 1 z ( a - 1 ) / 2

- e2z, so that e(a2+3)/2 = z and / + 3 = 1. Given this, d~{a-x) = (d2y{a-i)/2

z2 =

redundant. So we have

We replace the relation d2z = e~(a+x) by f = e

we then replace the relation z2 = 1 by ea +3 = 1 to get

;j J-1 -lj ("2+3)/2 a2+3 , ,2 (a-l)2/2>

(d, e, z: z - d e de, e " = z, e = 1, d = e ) .
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The relation z = d~xe~xde is equivalent to d~led = ez = e(a + 5 ) / 2 . We
now delete the redundant generator z to get

u J-1 J (<*2+5)/2 a2+3 , ,2 (a-l)2/2,
{d, e:d ed = e , e = \, d = e ) .

Since a = 3 (mod 4), we have that

f a 2 + 5 \ 2 . , ( a - I ) 2 ( a 2 + 5) ( a - I ) 2 . , i . .
I — 2 ~ l = ! a n d 2 2 2 (mod a +3) ,

and so A/ is metabelian of order 2(a2 + 3) = 2v3(a). This completes the
proof of Theorem A (ii).

4. The connection with the Fibonacci groups

Let G = G{a, n). With presentation for N as in Section 2, we add a new
generator y := ea~x to get

(b, d, e, y.b" = (eb)" = [d, y] = I, ea~l = y, b~xdb = e, b~xeb = yed).

Clearly y is central in G1 = (d, e). Since [G'.G"] is finite by Proposition
2.2, y e G" for some / > 1, and then y' e G" n Z(G'). Thus G' is a stem
extension of G'/{y'), and hence G' is finite if and only if G'/(y') is finite;
thus G' is finite if and only if G'/(y) is finite. Since (y) is central in G',
which is normal in N,

Y:=(y) =(y,b yb,... ,b 'yb )

is a finitely generated abelian group. So G' is finite if and only if G' / Y is
finite, and hence N is finite if and only if N/ Y is finite. So we have

PROPOSITION 4.1. G(a, n) is finite if and only if the group ~N with pre-
sentation

= ea~x - 1, p~l8fi = e, ft~\fl = ed)

is finite.

The relation (e/?)" = 1 is equivalent to (30)" = 1 via P"xSfi = e, and
hence to (fi~xd~x)n = 1. If we introduce y := S~x and r\:- e~x, and then
delete 5 = y~x and e = n~x, we get the presentation

{P,y,r,:pn = (f}-Xy)n = t,a-X = l, p-'y!i = n, P'^P = yrj).
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The relation rf~x — 1 is equivalent to ya~x — 1 via P~xyP = r\. Now use
the relation P~xyP = r\ to delete the generator n and get

(p, T.pn = (f}-xy)n = ya~x = i , P~2yP2 = yp~xyp)-

Introduce a new generator x := y~x 0 , and then delete y = 0x~x, to get

(0, r.0" = x" = ( A T " ' ) " " ' = 1, / T V 1 / ? 2 = ft%-20).

So we have proved part (i) of the following result.

PROPOSITION 4.2. (i) G(a, n) is finite if and only if the group N with
presentation

is finite;
(ii) if~N has derived length t, then G(a, n) has derived length t or t+l.

To prove (ii), note that, if N has derived length t, then N' = {S, e) has
derived length t - 1, so that the subgroup (d, e) of N1 has derived length
t - 1 or t. But (d,e) = G', so that G has derived length t or t + 1.

If n is odd, we adjoin the automorphism 6 of order 2 interchanging /?
and T to the presentation of Proposition 4.2 (i) to get the group K with
presentation

(d,p:d2 = p" = (d~1p-iQP)a~i = dpep2ep~2dp~l = i > ,
which is a homomorphic image of the group H with presentation

2 p" epep2ep~2ep'x i)(d, p: B2 = p" =
Now H' is abelian of index 2n in H (for n odd) by either [12] or [14], so
that {d, e) is an abelian subgroup of N/Y, and, using the same argument
as in the proof of Proposition 4.2 (ii), we see that (d, e) is a metabelian
subgroup of N. Since G' = (d, e), we have proved the first part of Theorem
B. Now [12] shows that / / ' is abelian of order gn by finding the presentation

( x , y : j c / - J + 2 / " " r ' = x / - 2 ~ V " - | + l = [JC, y] = 1) for H1, where (/„) is
the sequence of Fibonacci numbers. Applying the same argument to K gives
the following presentation for K'.

( j c , y : A ' + y n - r l = ^ - r l / " - 1 + 1 = / " ' =y"~l = [x,y]=l).
So, if (gn, a -1 ) = 1, then \K'\ = 1 and the proof of Theorem B is complete.

If n = 2m is even, then, given P" = 1 and xP = P% , we have

T2m = (P^TPY = {p~2pX2X~Xp2)m

= (p'2xp2x-l02)m = (x-Xp2)-lplm(x-Xp2) - 1,
so that the relation x" - 1 is redundant in Proposition 4.2 (i), and we have
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PROPOSITION 4.3. If n is even, then G(a, n) is finite if and only if the
group JV with presentation (fi, v.p" = {px~x)a~x = 1, xp2 = fir2) is finite.

The Fibonacci group F(2, n) admits an automorphism permuting the
generators in a cycle of length n . Forming the semi-direct product of F(2, n)
with the cyclic group of order n acting on F{2, n) in this way yields the
group E(2, n) with presentation (b, f.t" = 1, tb2 = bt2). Proposition 4.2
then gives

PROPOSITION 4.4. If F(2, n) is finite, then G(a, n) is finite for all a.

We can say rather more. Recall that Y := (y)N < G" n Z(G') < 4>(<7').
So, if G :- G'/Y is cyclic, then G'/Q>(G') , and hence G', is cyclic. Now, in
the homomorphism from E(2, n) onto N, F(2, n) maps onto G ; hence,
if F(2, n) is cyclic, then G' is cyclic. Since F(2, n) is cyclic for n = 4, 5
or 7, this gives

PROPOSITION 4.5. If n = 4, 5 or 1, then G(a, n) is metabelian for all
a.

Combining Propositions 2.2 and 4.5 yields Theorem A (iii), (iv) and (vi).
Now let E := E(2, n) and F := F(2, n). Notice that E1 = F and, if
8:E -+ N is the natural homomorphism, then the kernel K of 8 is contained
in E'. So 77' ̂  E'/K = F/K and F/K has presentation

( a l , a 2 , . . . , a n : a l a 2 = a 3 , a 2 a ^ = a 4 , . . . , a n _ 2 a n _ x = a n , a n _ x a n = a x ,

a n a x = a 2 , a " ' 1 = a a
2 ~ l = ••• = a a ~ x = a { a 2 • • • a n = \ ) .

For convenience, we replace each at by x~_!/+1 to get the presentation

(xx, x2, ... , xn:x2x3 — Xj, x3x4 = x2, ... , xn_xxn = xn_2, xnxx = xn_x,
a—1 a—1 a—1 . .

xxx2 — xn,xx = x2 = • • • = xn = xxx2 • • -xn = i).

This leads to the following result, which strengthens Proposition 4.4.
PROPOSITION 4.6. G(a, n) is finite if and only if the homomorphic image

M{a,n) ofF(2,n) with presentation

n — a~ — i —Xj = xt = i , xt = xi+xxi+2

7=1 /
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is finite. Moreover, if M(a,n) is soluble of derived length t, then G(a,n)
is soluble of derived length t + 1 or t + 2. If n is even, then M(a, n) has
presentation (xl, x2, ... , xn: x°~l = 1, xt = xi+xxi+2).

5. The groups G(a, 6)

In this section, we consider the group G := G(a, 6) with presentation

(a, b:a2 = b6 = ab~X ab(abab~~Xf~X ab2ab~2 = 1).

By Proposition 4.3, G is finite if and only if the group N with presentation

is finite. It is not difficult to check that 1? has presentation

, a—\ a—I a—I a—1 a—1 a —1 .

( a , , a2, a 3 , a4, a5, a6: ax = a2 = a3 = a4 = a5 = a6 = 1,

a{a2 = a 3 , a2a3 - a 4 , a 3 a 4 = a 5 , a4a5 = a6, a5a6 = a , , a6a{ = a2).

We may delete the generators a3, a4, a6 and a5 in turn to get

, a—I a—I f \t*— 1 / 2-.a—1 / 2 — Ka— 1 / — K Q - 1

(al,a2:al = a2 = (a,a2) = (a{a2) = (a ,a2 ) =(a2ax )
- 1 2 2 2 2 - 1 . ,

= flj a2ala2 = ala2ala2 = l ) .

If a is even, so that a-l is odd, then the relations a"~l = 1 and a\x a\ax —
a2

2 give that a\ = a^01'^ a\d\~l = a2
2, and so we have that a2~

l = a2 - 1,
and hence that a2 — 1. By symmetry, N is trivial, and hence ./V is cyclic
of order 6. So, with notation as in Section 4, we have that N/ Y is cyclic of
order 6. Now Y < (d, e) = G' and [N: G'] = 6, so that Y = G', and hence
G' is abelian. Thus G is metabelian of order llv^a) by Proposition 2.2.

Let us now consider the case where a = 2t + 1 is odd. In this case, ./V
has the presentation

(b,d,e:b6 = {eb)6 = [d,e2'] = 1, b~ldb = e, b~leb = e2t+xd)

as in Section 2. We may delete the generator e = b~ db = b db~ , and then
rewrite the presentation as

(b,d:b6 = (db)6 = [d, (b5db~5)2'] = 1 , bAdb~4 = (b5db~5)2t+ld).

If d.t := b'db~l (0 < i < 5 ) , then G' = (d0, d{, d2, d3, d4, ds) has presen-
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tation

{d0,dl,d2,d3,d4, dyd^dxd2d3d4d5 = [d0, df]

= W4, d3'] = [d5, d4'] = 1 , d4 = d5
t+ d0, d5 = dQ

t+ dx,

do = dx
 + d2,di= d2

t+ d3, d2- d3
t+ d4, d-i = d4

 + d5).

We add new generators zQ, zl, ... , z5 , where z( := d2' for each / . Since
G' = (dj+l, dt) for any / , the relation [di+l, d2'] = 1 simply expresses the
fact that zi is central in G'. We eliminate d5, d4, d2, d3 and z5 in turn,
and then simplify, to get

\ « 0 > " l » Z 0 > Z l ' Z 2 ' Z 3 > Z 4 : « 0 = Z 0 ' " l = Z 1 ' ( " l « o ) = Z 1 Z 2 '
t t t -\ 2t t 2t+\ t+\ t+\ , - 1 , 2 , ,2 - 2 - 1

Z l Z 4 = Z 0 Z 3 ' Z 0 Z l Z 2 Z 3 Z 4 = Z 0 Z 1 Z 3 Z 4 = « 0 « l « 0 « l Z l Z 2 Z 4

= d~xd\dxd\z^z\2z~x = 1, z. central (0 < /<4)};

full details may be found in [6]. Since d~ld2dQ = d~2z~lz\z4 and d~xd\dx

= dQ2ZQlz2z3, A := (dl, d2, z 0 , z{, z2, z 3 , z 4 , G") is a normal subgroup

of index 4 in G'. We may calculate that A has presentation

(w, v , w , x, c, z 0 , z , , z 2 , z 3 , z4: M' = « ' = z 0 , to' = x ' = z , ,
,. - 1 N< < , - 1 x r -t 2t t t t - 1 2t t 2(+l
(u; M ) C = ( X V)C = z , z 2 , z , z 4 = z 0 z 3 , z o z , z2 z 3 z 4
(+1 t+1 , -1 -1 -1 2

= ZQ Z J Z J Z4 = 1 , iyX = JCMlOM = XVWV = Zj Z2
Z4>

UM = wuw~lv - xux~lv = ZQ1 Z2Z3 , c central, z; central).

It follows easily now that A is abelian, and we then derive, after deleting x
and v , the presentation

(u, w, c, z 0 , z , , z 2 , z 3 , Z 4 :M' = z 0 , z~ '~ 2 zf z3 = 1, w' = z{,
-t-2 2t t _ -2 4t+2 2 _ t -I 2t t 2t+l _ t+l (+1 _

Z l Z2 Z4 ~ Z0 Z l Z2 ~ Z 0 Z l Z2 Z3Z4 ~ Z0 Z1Z3 Z4 ~ ^ '
( -1 2(+l t t

c = z0 Zj z 2 , z{z4 = zQz3,

If t = 0 , then zf. = 1 for each / and A is isomorphic to C^ x C^ x C^ ; so
assume that t # 0. If Z := (z0, z t , z2, z3, z4), then A/Z is isomorphic
to Ct x Ct x Ct, so that ^ has order t3\Z\, where Z has presentation

, - r -2 2/ t , -t-2 2t t , - 2 4/+2 2 ,
( z 0 , z , , z 2 , z 3 , z4: z0 z, z3 = 1, z, z2 z4 = 1, z0 z, z2 = 1,

< / « -1 2; r 2*+i (+1 (+1 , „ , . . .
zxzA = zoz3, zozl z2 z3z4 = z0 ZjZ3 z4 = 1, Z abelian).
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Since [G1':^] = 4 , we see that G' has order 4t3\Z\, which a routine, but
tedious calculation, shows to be 24 ((a - l)/2)3w6(a) as required; again, the
details may be found in [6].

6. The groups G(a, 8)

In this section, we mention some results about the groups G(a, 8). Some
of these results were originally obtained by using a computer, and have subse-
quently been provided with hand proofs, and some still rely on the computer
proofs. In general, we used a Todd-Coxeter program, to which the third au-
thor has added a Reidemeister-Schreier routine based on [20] and the Tietze
transformation program described in [22].

The group G(2, 8) is metabelian of order 16vg(2) = 9,216 by Propo-
sitions 2.1 and 2.2. The group (7(3, 8) is metabelian of order 16vg(3) =
75,504 and G{5, 8) is metabelian of order 16vg(5) = 1,691,280; this may
be easily verified by means of Reidemeister-Schreier and Tietze transforma-
tion programs, and hand proofs are given in [6]. The group (7(4, 8) is not
metabelian, however, as G(4, 8)" is elementary abelian of order 27, so that
G(4, 8) has derived length 3 and order 16.27.ug(4) = 11,197,440; again,
this may be verified using the programs mentioned above.

In contrast to the situation with n < 1, the groups G{a, 8) are not nec-
essarily finite. For example, if a = 6, we have the group (7(6, 8) defined
by the presentation

(a, b:a = b = ab~ ab(abab~ ) ab ab~ = 1).

We give a hand proof in [6] that (7(6, 8) is infinite, though one can read-
ily verify this using Proposition 4.3 and the computer programs mentioned
above, which show that N is soluble of derived length 4 with derived factors
Cg, C5, (C2)

4 and (C^) 5 . Newman and O'Brien [30] have since pushed
this further; they deduce that (7(6, 8) has derived length 5 and that it has a
polycyclic series with 5 infinite sections. Note that, by Proposition 4.4, this
result gives yet another proof that F(l, 8) is infinite.

If a = 7, then N can be shown to have derived length 4 with derived
factors Cg, C3 x C3, C3 and (C2)6 ; so G(l, 8) has derived length 4 or 5 by
Proposition 4.2 (ii); however, as we mentioned in the introduction, Newman
and O'Brien [30] have since shown that (7(7, 8) has derived length 5, and full
details of the computational techniques are included in their paper. On the
other hand, if a = 8 or a = 9, then Todd-Coxeter shows that N is cyclic of
order 8 in each case, so that G(8, 8) and (7(9, 8) are metabelian of orders
16ug(8) = 37,914,624 and 16vg(9) = 84,321,360 respectively. We may
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use similar computational techniques to show that the groups G(IO, 8) and
G( 11, 8) are infinite.

7. The groups G(a, 10)

In this section we mention some rather surprising results concerning the
groups G(a, 10), and show that certain of these groups are insoluble. Now,
by Proposition 4.3, G(a ,10) is finite if and only if the group N with pre-
sentation (fi, T : £ 1 0 = {px~l)a~X = 1, xf = px2) is finite. If a = 2, 3, 4
or 5, it is reasonably easy to check that N is cyclic of order 10. However, if
a = 6, then Reidemeister-Schreier yields the following presentation for N :

i 5 5 , .5 , - 1 , 5 / 2 ,5 - - 2 , 5

(x,y.x = y =(xy) = (xy ) = (x y) = {xy )

= (x2yxyf = {xy~lxy~2)5

i 2 -2 N 5 , - 1 2 - 1 - 2 , 5 ,

= (xy xy ) = {xyx y x yxy ) = 1,
2 2 - 1 - 1 - 1 - 1 2 ,

x yxy x yxy xy xyx y xy = 1,
2 2 - 1 - 2 - 1 2 - 1 - 2 - 1 , ,

x yx y xy xyx y x yxy xy - 1).
A coset enumeration shows that N has order 62,400, which is the same as
that of PSU(3, 4); it follows immediately from [24] that Jf is isomorphic
to PSU(S, 4). So we have

PROPOSITION 7.1. If a = 6, n= 10, then TV is an extension of PSV'(3, 4)
by C10. In particular, PSU(3, 4) is a homomorphic image of the Fibonacci
group F(2,10), and (7(6,10) is a finite insoluble group involving PSU(3,4).

We can relate this presentation of PSU(3, 4) to previously obtained pre-
sentations, since a computer calculation shows that N1 = (u, v), where u :=
y~lx~ly~2xy~lx~2y~2xy~1x~lyx~ly3x~l a n d v := yx2y, a n d {u,v} is
a minimal generating pair for PSU(3, 4) satisfying the relations u2 = v3 =
(uv)15 = [u, v]5 = ((uv)\uv~l)3f = (uv~\uv)5)4 = 1 as detailed in [28].
Further details about G(6, 10) are provided in [30].

If we repeat the above computations with a = 1, we again get that N is an
extension of a perfect group by C10 . This time, computer calculations show
that there is a group T of order 44,352,000 which is a homomorphic image
of iV , and T acts as a permutation group on the cosets of a subgroup K of
index 100 in N . We have verified using Cayley [15] that T is the Higman-
Sims simple group HS; however, the subgroup K has KjK isomorphic to
C , so that G(l, 10) is infinite.
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