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DIRAC DELTA FUNCTIONS VIA NONSTANDARD 
ANALYSIS 

BY 

A. H. LIGHTSTONE AND KAM WONG 

1. Introduction. We recall that a Dirac delta function ô(x) in the real number 
system 0t is the idealization of a function that vanishes outside a "short" interval 
and satisfies J ^ (5=1. It is conceived as a function ô for which (5(0)=+ oo, 
<5(7)=0 if 17*0, and J ^ (5=1. This function should possess the "sifting property" 
J^oo/(5=/(0) for any continuous function / . Even though certain sequences of 
functions are used, via a limit operation, to approximate a Dirac delta function 
(for details, see [3] and [4]), no function in & has these properties. 

Based on these intuitive ideas we shall define a Dirac delta function in Robinson's 
nonstandard number system *ffl (see [1]) and shall derive the sifting property as a 
consequence of the definition. (In [2], it is suggested that the sifting property must 
be included in the definition.). 

2. Dirac delta functions. We now show that certain internal functions of *J? 
can be regarded as Dirac delta functions. Let F be the set of all function in ^?; 
so *jPis the set of all internal functions in *^?. 

DEFINITION, <5 e *F is called a Dirac delta function if 

(1) dom ô = *jR; 

(2) (5(x) > 0 , for all xe*R; 

(3) 3e(e ~ 0 A Vx (x % 0 -> ô(x) < s)); 

(4) f* ô ~ 1, for each K e *N-N. 

From (3) it is clear that for all x e *R, x^O implies ô(x)c^Q. This expresses the 
idea that a Dirac delta function vanishes outside a "short" interval. Condition (2) 
is required to prove the sifting property of Dirac delta functions. The classical idea 
that (5(0)=+ oo is partially expressed by Lemma 2 below. 

LEMMA 1. For each he R, /*>0, jth <$—1, where ô is a Dirac delta function. 

Proof. For each heR, h>0, each K G *N-N, l~j**K ô=$Zh
K ô+$h_h <5+J* â; 

but 0 < j l ^ ô<e(K—h), where s e *R, sc^O, such that yf*Rx(x%0-+a(x)<e). Take 
K<\jje. Then )lh

K <5~0~j£ ô. It follows that j ^ <5~1. 
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LEMMA 2. For each heR, /z>0, the least upper bound of the values ofô on [—h, h] 
is infinite. 

Proof. If this lemma is false then there exists heR, A>0, such that 
fabXeL_hthl ô(x)<p, somep e R,p>0. Then by lemma 1, for each veR, v>0 

J-h/v J-hlv V 

Taking v=3ph, we get § ̂ 1 , a contradiction. 

We now present three different examples of Dirac delta functions to illustrate our 
definition. Throughout, co is an infinite natural number. 

EXAMPLE 1. L e t / : *R-+*R be defined by 

f(x) = - , < x < -
2 co co 

= 0 otherwise 

Clearly,/satisfies the four conditions of the Definition and hence is a Dirac delta 
function. 

EXAMPLE 2. Let g:*R->*R be defined by g(x)=(col<TT(co2x2+l)). Certainly (1) 
and (2) are trivially satisfied. We now show that (3) is satisfied. Indeed, for all 
x e *JR, xc^O, g(x)<(l/7rcox2)<(l/77A/co)^0. To establish (4) observe that for each 
K G *N—N, by the Fundamental Theorem of Integral Calculus in *«^, 

/ : 
g = (l/co77)(co *arctan(Acco)—co *arctan(—KCO)), 

= (2/77)*arctan(KCo) 

- (2/TT) • (ir/2) = 1 

EXAMPLE 3. Let h:*R-+*R be defined by h(x)=co[^/Tr*exp(co2x2) where *exp 
is the function in *F rooted in the exponential function. 

To show (4) apply the Transfer Theorem (see [2]) to 

( l -exp(-n 26 2 ) ) 1 / 2 ^ f ( n / ^ exp(nV)) dx < (l-exp(-2n2fc2))1/2, 

which is true in M for each n, b e N. Thus 

( l -*exp(-coV)) 1 / 2 < f (co dxUir *exp(co2x2)) < ( l-*exp(-2a>V))1 / 2 , 

is true in * ^ for each K e *N—N. But *exp(—co2K2)~0c^*exp(—2CO2K2) and so 
1 <°($-K (co dxlJ7T*exp(co2x2))<l. It follows that $K_K (co dx[j7r*exp(co2x2))~l. 
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3. The sifting property. To prove that each Dirac delta function possesses the 
sifting property we shall need the following lemma. 

LEMMA 3. For each K e *N-N, each heR, A>0, Jl* <5~0 and$K
h ô~0. 

Proof. For each K G *N—N, each heR, h>0 

I s «3= «5+ ô+ \ Ô 
J—K J—K J—h Jh 

By Lemma 1 and the fact that <5>0, we have Jl* dc^O^j^ <5. 

4. The sifting property of dirac delta functions. 

THEOREM. For each K E *N—N, eachfe F, such thatf\R->R and fis bounded and 
continuous on R, 

£ */<5~/(0). 
C 

Proof. For each K E *N—N, each heR, h>0, 

f*K f—h fh /»K 

*/<J = */<5 + *fô+ *fd 
J—K J—K J—h Jh 

= *f(h) (~*d+ f *fô+*f(t2) !"ô 
J-K J-h Jh 

by a Mean Value Theorem for integrals in *<^, where tx e (—K, —A) and t2 e (h, K). 
Since fis bounded, there exists me R, such that VRx(\f(x)\<m) is true for M\ 
it follows that V*Rx(\*f(x)\<m) is true for * ^ . Thus for each x e *i?, *f(x) is a 
finite number. Therefore 

for some e~0 (by Lemma 3). Similarly, VfoXR <5~0. Therefore 

ÇK rh Çh 

*fô~\ *fô = *f(t3)\ ô~*f(tz) 
J-K J-h J-h 

where tz e (—h, h). 
(by Lemma 1 and the fact that *f{tz) is finite). 
We claim that *f(tz)~*f(Q)=f(0). If possible, assume that *J{tz)4i*J{0). Then 

there is an r e R, r > 0 , such that 

(5) l*/( '3)-*/(0)| > r. 

Since/is continuous at 0, */is S-continuous at 0 (see [2]); i.e., 

V£ IP V* (|x| < p -> |*/(x)-*/(0) | < «) 
R>0 *R 
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is true for * ^ . Now let us take s=r/2. Then there exists j? e R, p>0, such that 

M V* (M < P - l*/(x)-*/(0)| < r/2) 

is true for * ^ . But 

where ?4 e (-p,p). Hence *f(t3)~*f(ti). But |f4 |<p and so by (6) 

(7) l*/(O-*/(0)l < r/2. 

From (5) and (7), 

\*f(ts)-*f(0)\ - | * / (O-* / (0 ) | > r - ( r /2 ) = r/2. 

Thus !*/(?3)—*/(f4)I > r / 2 contradicting the fact that *f(t3)~ *f(tl). Therefore 
*f(ts)~*f(0)=f(0), hence j ^ */5~/(0). 

COROLLARY. For each KE *N—N, each feF such that f is continuous and 
bounded on R, $1K *f(t—x) ô(x) dxc^.f(t), each t e R. 
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