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SETS OF GENERATORS OF A COMMUTATIVE 
AND ASSOCIATIVE ALGEBRAO) 

BY 

D. 2. DJOKOVIC 

ABSTRACT. Let A be a finite dimensional commutative and asso
ciative algebra with identity, over a field K. We assume also that 
A is generated by one element and consequently, isomorphic to 
a quotient algebra of the polynomial algebra K[X]. If A=K[a] 
and bi—fi(A)9 ft(X) e K[X], \<i<r we find necessary and suffi
cient conditions which should be satisfied by ft(X) in order that 

A = K[bU...9br]. 
The result can be stated as a theorem about matrices. As a special 
case we obtain a recent result of Thompson [4]. 
In fact this last result was established earlier by Mirsky and Rado 
[3]. I am grateful to the referee for supplying this reference. 

1. In this note K will denote a field and X an indeterminate over K. Let A be 
an associative algebra over K. If S^A then S* will denote the subalgebra of A 
generated by S. If A has identity element lA we define 

K[S] = (Su{lA})* = S*+KlA. 

LEMMA 1. Let A be a finite dimensional associative K-algebra with identity. 
Assume that there exists as A such that A=K[a] and, consequently, A is commuta
tive. Let 

m(X) = (X-X)m,\eK9m > 1 

be the minimal polynomial of a. 
Ifb=f(a),f(X) e K[X] then {6}*=rad A if and only i//(A)=0 andf'(X)^0. 

Proof. We can assume that A=0. Necessity. I f / ^ ^ O then b=f(a)^reidA. 
Hence, we must have/(0)=0. Since a e rad A we have a=g(b)=g(f(a)) for some 
g(X) e K[X]. If follows that 

X = g(f(X)) + Xmh(X) 

for some h(X) e K[X]. Differentiating and evaluating at Z= 0 we get 1 =g'(/(0))/'(0) 
and so/'(0) 7^0. 

Sufficiency. We have an isomorphism 

6:A-+K[X]/(Xm) 
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such that 

0(a) = X = X+(Xm). 

We find 

0(b) = 6(f(a)) = f(d(a)) = f(X) =]U) 
= f'(0)X+g(X) 

where g(x) e K[X] is divisible by X2. 
It follows that 6(b), 0(b)2,..., 6(b)m"1 are linearly independent. This implies 

that also b, b2,..., bm"1 are linearly independent. Since b e rad A and dim rad A 
= m—1 we must have {6}*=rad 4̂. 

THEOREM 1. Let A be a finite dimensional associative K-algebra with identity. 
Let A=K[a]for some ae A which implies that A is commutative. Let 

W(Z) = flmi(Z) 
i = l 

be the minimal polynomial of a where 

mx(X) = ( X - A p , mt > 1 

and Xt e K are distinct. 
Let bi=fi{a),f(X)eK[X],l<i<r. Then A=K[bu.. .,br] if and only if the 

following two conditions are satisfied: 

(i) Ifi^j there exists s such that fs(X^)^fs(X^), 
(ii) Ifmi>\ there exists t such that the derivative ff

t(Xt)^0. 

Proof. Necessity. If A=K[bl9..., br] there exists a polynomial F over K such 
that 

a = F(b1,...,bT) = F(f1(a),...,fr(a)). 

Hence, 

X = F(UX),. ..,fr(X)) + m(X)f(X) 

for some/(Z) e K[X]. This identity implies both conditions (i) and (ii). 
Sufficiency. The algebra A has decomposition into direct sum of ideals (see 

[2, p. 64]) 

such that 
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An element x e A is in the ideal Aj if and only if x=f(a),f(X) e K[X] implies that 

f(X)^0(modmi(X))9 i*j. 

For fixed i>2 let gi(X)=fs(X) where s is such t h a t / ^ ) ^ / ^ ) . Such s exists 
by (i). Let 

jt(Y\ - &W--gA) 

0W = fl0iWmf. 
i = 2 

If mx > 1 let 

# * ) = [/^J0-/i(AiMJr) 

where t is such that/t'(Ai)^0. 
Such t exists by (ii). 
We have $(a), <f>(a) e K[bu . . . , br] and 

I/J(X) = 0 (mod mlX)\ i > 2 

<l>(X) = 0(modmi(X))9 i>2 
0(A1)=l,^(A1) = O,f(A1)^O. 

These conditions imply that ip(a), <f>(a) e A±. If ^ = 1 then AxcK[bl9..., br] 
because ifj(a)^0 and dim Ax — 1. If m±> 1 then by Lemma 1 

Since 0(AX) #0 we have ^(a) £ rad ^ and consequently 

In both cases ^ ^ ^ [ i i , . . . , ftr]. Similarly we can prove that Ai<^K[bl9 . . . , i r ] for 
i>2. 

Theorem 1 is proved. 
Now we extend Theorem 1 to the case when the roots of m(X) are not neces

sarily in K. 

THEOREM 2. Let A be a finite dimensional associative K-algebra with identity. 
Let A — K[a\ for some aeA which implies that A is commutative. Let 

mW^fltf-W* m{> 1 
i = l 

be the minimal polynomial of a, where Af e L, L an extension field of K9 and Xi9 

\<i<k are distinct. 
Let b^fiia), f(X) e K[X]9 l<i<r. Then A=K[bl9 ...9br] if and only if the 

conditions (i) and (ii) of Theorem 1 are satisfied. 
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Proof. Tensor product L (x)^ A is an associative L-algebra with identity. The 
equality 

A = K[bl9...9br] 

is obviously equivalent to 

L®A=L[l®bl,...,l®br]. 

We still have 

l (g )6 i= / i ( l (g ) f l ) , l<i<r. 

Hence, we can apply Theorem 1. 

2. In this section we apply Theorem 2 to the algebra Mn(K) of n x n matrices 
over K. 

THEOREM 3. Let A e Mn{K) and Bi=f(A)9 f(X) e K[X]9 \<i<r. Let m(X) be 

the minimal polynomial of A and 

m(X) = f[(X^Xi)
m\ mt> 1 

i = l 

where \eL9L an extension field of K9 and \ are distinct. Then 

K[A] = K[Bl9...9Br] 

if and only if the conditions (i) and (ii) of Theorem 1 are satisfied. 

Proof. The algebra K[A] is of the type considered in Theorem 2. The case r— 1 
of Theorem 3 was proved recently by Thompson [4]. 

REMARK 1. If A, B e Mn(K)9 f(X) e K[X] and B=f(A) then Theorem 1 of [3] 
(i.e. case r= 1 of our Theorem 3) gives necessary and sufficient conditions for the 
existence of g(X) e K[X] such that A=g(B). These conditions are expressed in 
terms of f(X) and the minimal polynomial m(X) of A. 

More generally, if A, Be Mn(K) one can give necessary and sufficient conditions 
for existence o f / ( Z ) e K[X] such that B=f(A). These conditions can be easily 
obtained from [1, p. 158, Theorem 9]. They will be expressed in terms of elementary 
divisors of A and B. 

REMARK 2. One can generalize the problem, for instance, as follows. Let / be 
an ideal of the polynomial algebra K[Xl9..., Xn] in n indeterminates Xi9 l<i<n, 
over a field K. Let A be the factor algebra K[Xl9..., Xn]jl. The problem is to 
characterize the family of finite sets of generators of A. We have solved this 
problem for n— 1. The case n> 1 seems to be much more difficult to answer. 
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