SETS OF GENERATORS OF A COMMUTATIVE AND ASSOCIATIVE ALGEBRA ${ }^{(1)}$

BY
D. Ž. DJOKOVIĆ

Abstract

Let A be a finite dimensional commutative and associative algebra with identity, over a field K. We assume also that A is generated by one element and consequently, isomorphic to a quotient algebra of the polynomial algebra $K[X]$. If $A=K[a]$ and $b_{i}=f_{t}(A), f_{i}(X) \in K[X], 1 \leq i \leq r$ we find necessary and sufficient conditions which should be satisfied by $f_{i}(X)$ in order that $A=K\left[b_{1}, \ldots, b_{r}\right]$. The result can be stated as a theorem about matrices. As a special case we obtain a recent result of Thompson [4]. In fact this last result was established earlier by Mirsky and Rado [3]. I am grateful to the referee for supplying this reference.

1. In this note K will denote a field and X an indeterminate over K. Let A be an associative algebra over K. If $S \subset A$ then S^{*} will denote the subalgebra of A generated by S. If A has identity element 1_{A} we define

$$
K[S]=\left(S \cup\left\{1_{A}\right\}\right)^{*}=S^{*}+K 1_{A} .
$$

Lemma 1. Let A be a finite dimensional associative K-algebra with identity. Assume that there exists $a \in A$ such that $A=K[a]$ and, consequently, A is commutative. Let

$$
m(X)=(X-\lambda)^{m}, \lambda \in K, m>1
$$

be the minimal polynomial of a.
If $b=f(a), f(X) \in K[X]$ then $\{b\}^{*}=\operatorname{rad} A$ if and only if $f(\lambda)=0$ and $f^{\prime}(\lambda) \neq 0$.
Proof. We can assume that $\lambda=0$. Necessity. If $f(0) \neq 0$ then $b=f(a) \notin \operatorname{rad} A$. Hence, we must have $f(0)=0$. Since $a \in \operatorname{rad} A$ we have $a=g(b)=g(f(a))$ for some $g(X) \in K[X]$. If follows that

$$
X=g(f(X))+X^{m} h(X)
$$

for some $h(X) \in K[X]$. Differentiating and evaluating at $X=0$ we get $1=g^{\prime}(f(0)) f^{\prime}(0)$ and so $f^{\prime}(0) \neq 0$.

Sufficiency. We have an isomorphism

$$
\theta: A \rightarrow K[X] /\left(X^{m}\right)
$$

Received by the editors February 3, 1970 and, in revised form, December 16, 1970.
$\left.{ }^{1}\right)$ The preparation of this paper was supported in part by National Research Council Grant A-5285.
such that

$$
\theta(a)=\bar{X}=X+\left(X^{m}\right) .
$$

We find

$$
\begin{aligned}
\theta(b) & =\theta(f(a))=f(\theta(a))=f(\bar{X})=\overline{f(X)} \\
& =f^{\prime}(0) \bar{X}+\overline{g(X)}
\end{aligned}
$$

where $g(x) \in K[X]$ is divisible by X^{2}.
It follows that $\theta(b), \theta(b)^{2}, \ldots, \theta(b)^{m-1}$ are linearly independent. This implies that also $b, b^{2}, \ldots, b^{m-1}$ are linearly independent. Since $b \in \operatorname{rad} A$ and $\operatorname{dim} \operatorname{rad} A$ $=m-1$ we must have $\{b\}^{*}=\operatorname{rad} A$.

Theorem 1. Let A be a finite dimensional associative K-algebra with identity. Let $A=K[a]$ for some $a \in A$ which implies that A is commutative. Let

$$
m(X)=\prod_{i=1}^{k} m_{i}(X)
$$

be the minimal polynomial of a where

$$
m_{i}(X)=\left(X-\lambda_{i}\right)^{m_{i}}, \quad m_{i} \geq 1
$$

and $\lambda_{i} \in K$ are distinct.
Let $b_{i}=f_{i}(a), f_{i}(X) \in K[X], 1 \leq i \leq r$. Then $A=K\left[b_{1}, \ldots, b_{r}\right]$ if and only if the following two conditions are satisfied:
(i) If $i \neq j$ there exists s such that $f_{s}\left(\lambda_{i}\right) \neq f_{s}\left(\lambda_{j}\right)$,
(ii) If $m_{i}>1$ there exists t such that the derivative $f_{t}^{\prime}\left(\lambda_{i}\right) \neq 0$.

Proof. Necessity. If $A=K\left[b_{1}, \ldots, b_{r}\right]$ there exists a polynomial F over K such that

$$
a=F\left(b_{1}, \ldots, b_{r}\right)=F\left(f_{1}(a), \ldots, f_{r}(a)\right)
$$

Hence,

$$
X=F\left(f_{1}(X), \ldots, f_{r}(X)\right)+m(X) f(X)
$$

for some $f(X) \in K[X]$. This identity implies both conditions (i) and (ii).
Sufficiency. The algebra A has decomposition into direct sum of ideals (see [2, p. 64])

$$
A=\stackrel{k}{\oplus} A_{i=1}
$$

such that

$$
A_{i} \cong K[X] /\left(m_{i}(X)\right)
$$

An element $x \in A$ is in the ideal A_{j} if and only if $x=f(a), f(X) \in K[X]$ implies that

$$
f(X) \equiv 0\left(\bmod m_{i}(X)\right), \quad i \neq j
$$

For fixed $i \geq 2$ let $g_{i}(X)=f_{s}(X)$ where s is such that $f_{s}\left(\lambda_{i}\right) \neq f_{s}\left(\lambda_{1}\right)$. Such s exists by (i). Let

$$
\begin{gathered}
\psi_{i}(X)=\frac{g_{i}(X)-g_{i}\left(\lambda_{i}\right)}{g_{i}\left(\lambda_{1}\right)-g_{i}\left(\lambda_{i}\right)} \\
\psi(X)=\prod_{i=2}^{k} \psi_{i}(X)^{m_{i}} .
\end{gathered}
$$

If $m_{1}>1$ let

$$
\phi(X)=\left[f_{t}(X)-f_{t}\left(\lambda_{1}\right)\right] \psi(X)
$$

where t is such that $f_{t}^{\prime}\left(\lambda_{1}\right) \neq 0$.
Such t exists by (ii).
We have $\psi(a), \phi(a) \in K\left[b_{1}, \ldots, b_{r}\right]$ and

$$
\begin{aligned}
& \psi(X) \equiv 0\left(\bmod m_{i}(X)\right), \quad i \geq 2 \\
& \phi(X) \equiv 0\left(\bmod m_{i}(X)\right), \quad i \geq 2 \\
& \psi\left(\lambda_{1}\right)=1, \phi\left(\lambda_{1}\right)=0, \phi^{\prime}\left(\lambda_{1}\right) \neq 0 .
\end{aligned}
$$

These conditions imply that $\psi(a), \phi(a) \in A_{1}$. If $m_{1}=1$ then $A_{1} \subset K\left[b_{1}, \ldots, b_{r}\right]$ because $\psi(a) \neq 0$ and $\operatorname{dim} A_{1}=1$. If $m_{1}>1$ then by Lemma 1

$$
K[\phi(a)]=\operatorname{rad} A_{1} .
$$

Since $\psi\left(\lambda_{1}\right) \neq 0$ we have $\psi(a) \notin \operatorname{rad} A_{1}$ and consequently

$$
K[\phi(a), \psi(a)]=A_{1} .
$$

In both cases $A_{1} \subset K\left[b_{1}, \ldots, b_{r}\right]$. Similarly we can prove that $A_{i} \subset K\left[b_{1}, \ldots, b_{r}\right]$ for $i \geq 2$.

Theorem 1 is proved.
Now we extend Theorem 1 to the case when the roots of $m(X)$ are not necessarily in K.

Theorem 2. Let A be a finite dimensional associative K-algebra with identity. Let $A=K[a]$ for some $a \in A$ which implies that A is commutative. Let

$$
m(X)=\prod_{i=1}^{k}\left(X-\lambda_{i}\right)^{m_{i}}, \quad m_{i} \geq 1
$$

be the minimal polynomial of a, where $\lambda_{i} \in L, L$ an extension field of K, and λ_{i}, $1 \leq i \leq k$ are distinct.

Let $b_{i}=f_{i}(a), f_{i}(X) \in K[X], 1 \leq i \leq r$. Then $A=K\left[b_{1}, \ldots, b_{r}\right]$ if and only if the conditions (i) and (ii) of Theorem 1 are satisfied.

Proof. Tensor product $L \bigotimes_{K} A$ is an associative L-algebra with identity. The equality

$$
A=K\left[b_{1}, \ldots, b_{r}\right]
$$

is obviously equivalent to

$$
L \otimes A=L\left[1 \otimes b_{1}, \ldots, 1 \otimes b_{r}\right]
$$

We still have

$$
1 \otimes b_{i}=f_{i}(1 \otimes a), \quad 1 \leq i \leq r
$$

Hence, we can apply Theorem 1.
2. In this section we apply Theorem 2 to the algebra $M_{n}(K)$ of $n \times n$ matrices over K.

Theorem 3. Let $A \in M_{n}(K)$ and $B_{i}=f_{i}(A), f_{i}(X) \in K[X], 1 \leq i \leq r$. Let $m(X)$ be the minimal polynomial of A and

$$
m(X)=\prod_{i=1}^{k}\left(X-\lambda_{i}\right)^{m_{i}}, \quad m_{i} \geq 1
$$

where $\lambda_{i} \in L, L$ an extension field of K, and λ_{i} are distinct. Then

$$
K[A]=K\left[B_{1}, \ldots, B_{r}\right]
$$

if and only if the conditions (i) and (ii) of Theorem 1 are satisfied.
Proof. The algebra $K[A]$ is of the type considered in Theorem 2. The case $r=1$ of Theorem 3 was proved recently by Thompson [4].

Remark 1. If $A, B \in M_{n}(K), f(X) \in K[X]$ and $B=f(A)$ then Theorem 1 of [3] (i.e. case $r=1$ of our Theorem 3) gives necessary and sufficient conditions for the existence of $g(X) \in K[X]$ such that $A=g(B)$. These conditions are expressed in terms of $f(X)$ and the minimal polynomial $m(X)$ of A.

More generally, if $A, B \in M_{n}(K)$ one can give necessary and sufficient conditions for existence of $f(X) \in K[X]$ such that $B=f(A)$. These conditions can be easily obtained from [1, p. 158, Theorem 9]. They will be expressed in terms of elementary divisors of A and B.

Remark 2. One can generalize the problem, for instance, as follows. Let I be an ideal of the polynomial algebra $K\left[X_{1}, \ldots, X_{n}\right]$ in n indeterminates $X_{i}, 1 \leq i \leq n$, over a field K. Let A be the factor algebra $K\left[X_{1}, \ldots, X_{n}\right] / I$. The problem is to characterize the family of finite sets of generators of A. We have solved this problem for $n=1$. The case $n>1$ seems to be much more difficult to answer.

References

1. F. R. Gantmacher, The theory of matrices, Vol. 1, Chelsea, New York, 1960.
2. S. Lang, Algebra, Addison Wesley, New York, 1965.
3. L. Mirsky and R. Rado, A note on matrix polynomials, Quart. J. Math. Oxford Ser. (2) 8 (1957), 128-132.
4. R. C. Thompson, On the matrices A and $f(A)$, Canad. Math. Bull. 12 (1969), 581-587. University of Waterloo,

Waterloo, Ontario

