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Abstract

Existence and properties of incompressible surfaces in 3-dimensional manifolds are surveyed.
Some conjectures of Waldhausen and Thurston concerning such surfaces are stated. An outline
is given of the proof that such surfaces can be pulled back by non-zero degree maps between
3-manifolds. The effect of surgery on immersed, incompressible surfaces and on hierarchies
is discussed. A characterisation is given of the immersed, incompressible surfaces previously
studied by Hass and Scott, which arise naturally with cubings of non-positive curvature.

1991 Mathematics subject classification (Amer. Math. Soc): 57 N 10, 57 M 35, 57 M 50.

1. Introduction

We give a brief, eclectic survey of the role of incompressible surfaces in the
study of 3-dimensional manifolds.

The solution of Dehn's Lemma and its extension to the Loop Theorem by
Papakyriakopoulos in 1957, [34, 35], ushered in a period of intense activity.
Incompressible embedded surfaces and hierarchies were introduced by Haken
[12, 14] (see also Schubert [37]) and used by Waldhausen [48] to show that
members of the class of Haken 3-manifolds are completely determined by their
fundamental group. Jaco and Shalen [23] and Johannson [24] independently
gave the characteristic variety decomposition of Haken 3-manifolds, as sugges-
ted by Waldhausen [50]. This is obtained by splitting such 3-manifolds along
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embedded incompressible annuli and tori. Finally Thurston [45, 46, 47] used
the hierarchy of incompressible surfaces in simple Haken 3-manifolds to ob-
tain his celebrated uniformisation theorem: such 3-manifolds have hyperbolic
metrics. More generally he described special Riemannian metrics based on his
eight geometries, which occur for basic classes of 3-manifolds (see Scott [39]
for an excellent survey of Thurston's geometrisation program).

To progress beyond the class of Haken manifolds, Waldhausen and Thurston
have suggested that immersed incompressible surfaces should play a pivotal
role. In this paper, we begin in Section 1 with a very rapid review of the basic
theory of embedded incompressible surfaces. In the second section, special
classes and properties of immersed incompressible surfaces are discussed, in-
cluding well-known conjectures of Waldhausen and Thurston. In the last section
recent results are described, including unpublished work about immersed incom-
pressible surfaces arising from the polyhedral metrics of non-positive curvature
studied by the authors in [ 1,2,3,4,5]. The two key theorems are a combinatorial
version of the Loop Theorem applying to immersed surfaces and a necessary and
sufficient condition for the existence of an immersed, incompressible surface in
a 3-dimensional manifold. Applications are given to the survival of immersed,
incompressible surfaces and hierarchies under surgery, and also under pull-back
by non-zero degree maps between 3-manifolds.

We would like to thank G.A. Swarup for helpful comments.

2. Embedded incompressible surfaces

A classical result of Moise [31] is that every 3-dimensional manifold has
a triangulation which is unique up to subdivision. So we will view each 3-
manifold M as a simplicial complex, that is, a union of tetrahedra (3-simplices)
which possibly intersect in vertices, edges or faces. A 3-simplex is oriented
by a choice of ordering of its vertices, up to any even permutation. This
induces an orientation on all of the faces of the 3-simplex. A 3-manifold
M is orientable if all of its 3-simplices can be oriented so that the induced
orientations on any face coming from the pair of 3-simplices containing that
face are opposite. M is compact if and only if it is a finite simplicial complex.
The boundary of M, denoted 3M, is the collection of faces not belonging to
a pair of simplices. M is closed if it is compact and has no boundary. From
now on we will assume for simplicity that all our 3-manifolds are orientable.
Also all maps between 3-manifolds will be supposed to be piecewise-linear
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(PL): for appropriate subdivision of domain and range, maps will be simplicial,
taking vertices to vertices and simplices to simplices in an affine linear way.
Similarly curves or surfaces embedded in 3-manifolds will be PL subcomplexes
in appropriate subdivisions. Throughout, S" denotes the n -sphere.

2.1. Reduction to the irreducible case. If M\ and M2 are 3-manifolds, their
connected sum, denoted Mi#M2, is obtained by removing small, open 3-cells
from each, and gluing the resulting manifolds along their boundary 2-spheres.
Conversely, if an embedded 2-sphere S separates M into pieces M[ and M'2, then
we can add 3-cells to M[ and M2 to form M\ and M2 so that M is homeomorphic
to M\#M2. S is called an essential 2-sphere (sometimes an incompressible 2-
sphere) if either 5 separates M and neither M[ nor M2 is a 3-cell, or if 5 does
not separate M. M is called irreducible if it has no essential 2-spheres, and is
called prime if it has no essential separating 2-spheres. The 3-sphere S3 has the
property that M#53 is homeomorphic to M.

In 1928, Kneser [25] showed that any closed 3-manifold M can be written as
a finite connected sum M\#... #Mk, where each M, is either irreducible and not
S3 or a copy of S1 x S2, or a twisted product 51 x 52. In 1957, Milnor [30] proved
that Kneser's decomposition is unique: the summands of two such connected
sum decompositions for M correspond, after reordering if necessary.

Hence to classify 3-manifolds, it suffices to study the irreducible case, which
we will do from now on.

2.2. The fundamental group. The fundamental classification conjecture about
3-manifolds is the following:

CONJECTURE 2.1. IfM, M' are closed irreducible 3-manifolds, and Ttx{M),
7t\ (Mr) are isomorphic infinite groups, then M is homeomorphic to M'.

REMARK 2.1. (1) By the Sphere Theorem of Papakyriakopoulos [34], exist-
ence of a non-trivial element of it2{M) implies that some non-trivial element
can be represented by an embedded 2-sphere. It is then not difficult to show that
the 3-manifolds of the conjecture are aspherical (Eilenberg-MacLane spaces),
that is, all higher homotopy groups vanish, using Whitehead's Theorem. Two
such 3-manifolds are thus homotopy equivalent if and only if their fundamental
groups are isomorphic. This conjecture then states that homotopy equivalence
implies homeomorphism.

(2) The set of fundamental groups arising from all closed n -manifolds for
n > 4 is the set of all finitely presented groups. Since Markov has shown that
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the isomorphy problem for two such groups is undecidable [28] , the problem
of deciding if two closed n -manifolds are homeomorphic is undecidable. On
the other hand, the restricted nature of 3-manifold fundamental groups makes it
plausible that the homeomorphism problem in dimension 3 is decidable. Haken
[14] gave a positive solution for the class of Haken 3-manifolds, using work of
Hemion [17]. Note that if Thurston's Geometrisation Program [45,46] is correct
then the homeomorphism problem should be solvable. Note that all 3-manifold
fundamental groups should be residually finite—see Hempel [20].

2.3. Incompressible surfaces, Dehn's Lemma and the Loop Theorem. We
will give the most commonly used consequence of the combined version of
Dehn's Lemma and the Loop Theorem, due to Stallings [42]. An incorrect
proof of Dehn's Lemma was given by Dehn in 1910 and a full proof only found
by Papakyriakopoulos in 1956. (See Hempel's book [18] for a proof).

A compact surface L with non-empty boundary is properly embedded in M
if L D BM = dL. Let i : L ->• M denote the embedding of L in M.

THEOREM 2.1. Assume L is a compact orientable surface which
(1) is not a disk or 2-sphere and
(2) is either closed or properly embedded in a compact orientable 3-

manifold M.
Then the homomorphism it : it\{L) —>• Tt\{M) is one-to-one if and only if any
disk D embedded in M with D D L — 3D has boundary dD contractible in L.

REMARK 2.2. A surface L as in the theorem is called incompressible. This
result can be paraphrased as saying that algebraic incompressibility is equivalent
to geometric incompressibility.

An important result proved using the same approach is

THEOREM 2.2. Suppose L is a compact orientable surface with non-empty
boundary, other than a disk, properly embedded in M. Then it : jt\ (L, dL) —>
7t\(M, dM) is one to one if and only if for any disk D embedded in M with
dD — a U b,for arcs a, b, where D D L = a and D D dM = b, there is an arc
g indL with the same endpoints as a, b and with a, b homotopic, keeping ends
fixed, to g in L, dM respectively.

A surface L satisfying the conditions of Theorem 2.2 is said to be boundary
incompressible. Theorem 2.2 shows that algebraic and geometric versions of
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this concept are equivalent. Note that Tt\ (L,dL) is the set of equivalence classes
of arcs in L with ends on 3L, under the relation of homotopy.

For closed, orientable, irreducible 3-manifolds, Waldhausen [48] gave an
important criterion for the existence of closed, embedded, orientable, incom-
pressible surfaces.

THEOREM 2.3. Suppose M is a closed, orientable, irreducible 3-manifold.
Then M has a closed, orientable, embedded, incompressible surface L, if and
only ifn\ (M ) surjects homomorphically onto either

(1) an amalgamated free product A *c B or
(2) an HNN extension A*c,

where C is isomorphic to Tt\{L). The first case occurs when L separates M,
and the second when L is non-separating.

REMARK 2.3. Extensions of this result are known in case L or M (or both)
have non-empty boundary.

REMARK2.4. By a technique of Stallings [43], the condition that n\(M)
surjects onto such an HNN extension is equivalent to H\(M, Z) being infinite.
The latter condition is particularly easy to verify in specific examples. An
important approach to finding separating incompressible surfaces was given by
Culler and Shalen [6].

2.4. Hierarchies. A Haken 3-manifold is a compact, orientable, irreducible
3-manifold which either

(1) has non-empty boundary which is a collection of incompressible sur-
faces or

(2) is closed, and admits an embedded, closed, orientable, incompressible
surface.

EXAMPLE 2.1. An important class of Haken 3-manifolds is given by knot and
link complements. We work with the 3-sphere S3, viewed as the one-point
compactification of Euclidean 3-space R3. A knot (respectively link) is an
embedded circle (respectively, a finite collection of disjoint, embedded circles)
in S3. If the link is not splittable (that is, there is no 2-sphere embedded in
S3 disjoint from the link and separating the components), then the complement
is irreducible. If a small, open, tubular neighbourhood of the knot or link is
removed from S3, we obtain the complement, with boundary a collection of
tori. If no component bounds an embedded disk in the complement of the other
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components, then the boundary tori of the complement are incompressible. So all
such knot and link complements are Haken 3-manifolds. By a powerful result of
Gordon and Luecke [10], if two knot complements are homeomorphic, then the
corresponding knots are equivalent, in the sense that there is a homeomorphism
of S3 to itself taking one knot to the other. So the classification of knots reduces to
that of their complements. On the other hand, links of more than one component
admit no such classification.

Recall that in an elementary study of surfaces, an important technique is to
cut open a closed surface along an embedded essential loop (that is, a non-
contractible curve), and then to further cut open along essential arcs, to obtain a
disc. The disc so obtained carries additional information recording the sequence
of cuts, which give it the structure of a polygon. Important invariants of the
surface, such as the Euler characteristic and genus, can be deduced from the
number of vertices and arcs arising in this procedure.

For Haken 3-manifolds there is a similar procedure, based on a hierarchy.
A hierarchy is a collection of embedded incompressible surfaces. Suppose M
is a Haken 3-manifold. If M is closed, choose a collection of disjoint, closed,
orientable, incompressible surfaces . Now cut M open along these surfaces
by removing a small open product neighbourhood to obtain M\. If dM ^ 0,
set M = Mi. In both cases, Af i is Haken with non-empty boundary. Choose
disjoint, properly embedded, compact, orientable, incompressible surfaces in
M\ and cut open along these surfaces to obtain M2. By results of Haken
[13] and Kneser [25], this procedure can only be applied finitely many times
before obtaining some Mk, which is a union of a finite number of 3-dimensional
polyhedra homeomorphic to 3-cells. The total collection of these incompressible
surfaces is called a hierarchy for M. It is shown in Jaco's book [21] that one
can always choose k < 4.

Waldhausen [48] used an inductive procedure based on hierarchies to show:

THEOREM 2.4. If M, M' are compact, orientable, irreducible 3-manifolds,
with M Haken, and there is a relative homotopy equivalence (M, dM) to
(M\ dM'), then M and M' are homeomorphic.

REMARK 2.5. This establishes Conjecture 2.1 in the case where M and M'
are closed, and M is Haken.

2.5. Characteristic varieties and geometrisation. We give a very brief, rough
discussion for completeness.
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A Seifert fibering of a 3-manifold M is a foliation of M by circles (see
Epstein [7], Seifert [40], Orlik [33]). Seifert [40] gave a complete classification
of 3-manifolds with such fiberings, which are now called Seifert fibre spaces.

Given a Haken 3-manifold M, its characteristic variety V is a maximal
embedded 3-submanifold which is

(1) a Seifert fibre space, such that
(2) V fl dM consists of fibred tori and annuli in 3 V, and
(3) the closure of 3 V — dM consists of properly embedded incompressible

annuli and tori.
It was proved independently by Jaco and Shalen [23], and Johannson [24], that
V is uniquely determined in M. If V is empty then M is called a simple Haken
3-manifold.

Recall that a Riemannian metric with constant negative sectional curvature
— 1 is called a hyperbolic metric.

One version of Thurston's Uniformisation Theorem is as follows:

THEOREM 2.5. The interior of any simple, Haken 3-manifold M with only
toral boundary components (if any) admits a complete hyperbolic metric of
finite volume.

REMARK 2.6. Prior to Thurston's work, Johannson had extended Wald-
hausen's result (Theorem 2.4 above) to simple Haken 3-manifolds, using a
homotopy equivalence from M to M' instead of a (stronger) relative homotopy
equivalence from (M, dM) to (Af, dM'). Note that Johannson's Theorem
follows from Thurston's Theorem (Theorem 2.5) together with Mostow rigidity
[32], which states that finite-volume hyperbolic manifolds with isomorphic
fundamental groups are isometric. Their results apply to the important class
of simple knot complements. A simple proof of Johannson's Theorem can be
found in [44].

3. Immersed incompressible surfaces

Thurston [45] has given the following heuristic argument that in some sense,
'most' 3-manifolds do not admit embedded incompressible surfaces. A clas-
sical result of Wallace and Lickorish [26], states that every closed orientable
3-manifold can be obtained by Dehn surgery on a link in S3. Such surgery is
performed by removing disjoint, open, solid tori neighbourhoods of the compon-
ents of the link and gluing the solid tori back in by self-homeomorphisms of the
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boundary tori. Hatcher [16] showed that most such surgeries yield 3-manifolds
for which any closed, embedded, incompressible surface must lie in the link
complement. So if there are no such surfaces disjoint from the link, then the
resulting 3-manifold cannot be Haken.

A fundamental conjecture, first made by Waldhausen [49], and extensively
discussed by Thurston, is

CONJECTURE 3.1. If M is a closed, orientable, irreducible 3-manifold with
infinite fundamental group, then M has a finite-sheetedcover M which is Haken.

By projecting an embedded, incompressible surface in M we obtain an im-
mersed, incompressible surface in M. So a weaker version of this conjecture
is:

CONJECTURE 3.2. Under the same assumptions on M, there is an immersed
closed orientable incompressible surface in M.

On the other hand, the conditions given in Theorem 4.3 for the existence of
embedded incompressible surfaces are difficult to check in general. An easier
approach is suggested by a stronger conjecture.

CONJECTURE 3.3. Under the same assumptions on M, there is a finite-sheeted
cover M with H\(M, Z) infinite.

This is equivalent to M having a non-separating, closed, embedded, incom-
pressible surface. The simplest case in which this occurs is when M is in fact a
fibre bundle over the circle. This leads to an even stronger conjecture made by
Thurston.

CONJECTURE 3.4. With the same hypotheses on M, there is a finite-sheeted
cover M which is a closed, orientable, surface bundle over the circle.

We will briefly review some recent results on these conjectures and look at
some implications of Conjecture 3.1 being true.

Conjecture 3.3 is true in the special case that M has a finite-sheeted cover M
which admits an orientation-reversing involution (see Millson [29] and Hempel
[19]).

The authors [3] have shown that Conjecture 3.2 is true for all closed, orientable
3-manifolds which admit polyhedral metrics of non-positive curvature arising
from cubings.
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To discuss other results, we review some concepts from hyperbolic geo-
metry. An orientable hyperbolic 3-manifold M has universal covering space
hyperbolic 3-space H3, with n\ (M) acting by isometries as the covering trans-
formation group. Thus it\ (M) is isomorphic to a discrete torsion-free subgroup
of PSL(2, C), the isometry group of H3. An immersed, orientable, closed, in-
compressible surface / : L —> M determines a subgroup /,(7Ti(L)) of n\(M),
and hence of PSL(2, C). If this subgroup is conjugate into PSL{2, /?), then L
is a totally geodesic (or Fuchsian) surface in M. The universal covering L of
L lifts to the universal cover H3 of M and the image of the map / : L —> H3

has a limit set in the sphere at infinity. If this limit set is a quasi-circle, then L
is a quasi-Fuchsian or geometrically finite surface. Otherwise, the limit set is
the whole sphere, and L is said to be geometrically infinite. The complement
of the closure of the limit set is the domain of discontinuity. An important
result of Thurston [45] is that if M contains an incompressible, geometrically
infinite surface, then M is finitely covered by a surface bundle over a circle,
with this surface corresponding to the fibre. Hence Conjecture 3.4 is true. As
the fibre of a hyperbolic surface bundle is always of this type, Conjecture 3.4 is
equivalent in the hyperbolic case to the conjecture that a hyperbolic 3-manifold
contains a geometrically infinite incompressible surface. In fact, each of the
above conjectures can be made in the special case that M is hyperbolic.

A well-known consequence of Conjecture 3.1 is that if M is non-Haken, and
is finitely covered by a Haken 3-manifold, then either M is a Seifert fibred
space or M is homotopy equivalent to a hyperbolic 3-manifold (see for example
Culler and Shalen [6]). Recently Gabai [9] has shown that if M is homotopy
equivalent to a hyperbolic 3-manifold M', then M and M' have homeomorphic
finite-sheeted covers.

Long [27] has shown that if M is a closed, orientable hyperbolic 3-manifold
containing an immersed, totally geodesic surface, then M has a finite-sheeted
cover in which the lifted surface is embedded. The cover is thus a Haken 3-
manifold and Conjecture 3.1 follows in this case, since totally geodesic surfaces
are automatically incompressible.

Aitchison, Lumsden and Rubinstein [ 1 ] showed that a large class of alternating
link complements in S3 contain immersed closed surfaces, totally geodesic with
respect to a natural polyhedral metric. A finite explicit list of excluded surgery
coefficients can be given for each component, determined by the combinatorics
of a link projection, such that the immersed surface continues to be 7Ti-injective
in the surgered manifolds.

This construction can be generalized. In the case of a hyperbolic link comple-
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ment, there is the following unpublished theorem of Thurston. Suppose M is a
hyperbolic 3-manifold which is the interior of a compact, orientable 3-manifold
M* with 8M* consisting of incompressible tori. Assume / : L —> M is an
immersion of a closed, orientable, incompressible surface. L is said to contain
an accidental parabolic if there is a an essential loop on L homotopic into 3M*.

THEOREM 3.1. If f : L -> M has no accidental parabolics, then for all but
finitely many surgeries on any tori in dM*, L remains incompressible in the
surgered manifold.

An abstract bound can be given on the number of surgeries excluded for each
component, but an explicit list of surgeries requires more information on cusp
geometry.

Another version of Conjecture 3.1 for hyperbolic 3-manifolds, again due to
Thurston, has not been so widely publicised. There is an intriguing connection
with the results on cubings in [3]. A very easy unpublished result of Thurston
is:

THEOREM 3.2. Suppose a hyperbolic 3-manifold M contains an immersed
surface f : L —>• M such that all principal curvatures ofL have absolute value
less than one. Then L is incompressible.

REMARK 3.1. For a totally geodesic surface, all such curvatures are zero. It
is easy to show that a surface L as in Theorem 3.2 must be quasi-Fuchsian.
Note the pre-image of L in H3 cannot have any saddle tangencies relative to a
horospherical foliation, so L must be incompressible.

CONJECTURE 3.5. Assume M is a complete, hyperbolic 3-manifold with finite
volume. Then M has an immersed, closed, orientable surface with all principal
curvatures having absolute value less than one.

REMARK 3.2. With only a little evidence, we conjecture that for hyperbolic
3-manifolds which admit cubings of non-positive curvature, the immersed, in-
compressible surfaces described in [3] have principal curvatures with absolute
value less than one. These surfaces are known to be quasi-Fuchsian.

In the next section we describe a strong 'combinatorial' version of this the-
orem, useful for constructing many examples of immersed, incompressible
surfaces in closed 3-manifolds obtained by surgery.
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3.1. Topological rigidity and least area surface methods. To complete this
section, we briefly discuss properties of immersed, incompressible surfaces and
applications to Conjecture 2.1 (topological rigidity). We always assume, without
loss of generality, that immersions are in general position.

In [8], Freedman, Hass and Scott used minimal surface theory to analyse
immersed, incompressible surfaces. Suppose M is endowed with a Riemannian
metric. Let / : L —• M be an immersed, incompressible surface, with g
homotopic to / chosen to minimize the area of g(L), among all maps in the
homotopy class of/ . In [8] it is proved that g then has the smallest number of
singularities (in a suitable sense) amongst maps homotopic to / . Let ML denote
the covering of M corresponding to the subgroup f*n\(L) of TT\(M). Another
important result is that g lifts to an embedding g : L -> ML. Consequently g
lifts to an embedding gL : L ->• M, where L, M are the universal coverings of
L, M. Therefore the pre-image of g{L) in M is a union of embedded planes,
set-wise preserved by the action of ii\ (M) as covering transformations.

Note that all the results in [8] can be obtained by using the theory of PL
minimal surfaces developed in [22].

In [ 15], Hass and Scott studied some special classes of immersed, incompress-
ible surfaces, analysing the configurations of embedded planes in the universal
covering space.

DEFINITION 3.1. An immersed, closed, orientable, incompressible surface
/ : L -*• M in a closed, orientable, irreducible 3-manifold satisfies the
n-plane property if the pre-image of f{L) in the universal covering M consists
of embedded planes, and any collection of n of these planes contains a disjoint
pair.

/ : L - • M satisfies the I-line property if the pre-image of f(L) in M
consists of embedded planes, any pair of which meet in a single line, or are
disjoint.

The following fundamental result of Hass and Scott, substantially general-
izing Waldhausen's result in [48], answers Conjecture 1 in case M possesses a
certain type of immersed, incompressible surface.

THEOREM 3.3. Suppose M, M' are closed, orientable, irreducible ^-mani-
folds which are homotopy equivalent, with M containing an immersed, closed,
orientable, incompressible surface, satisfying the A-plane and l-lineproperties.
Then M is homeomorphic to M'.
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REMARK 3.3. In [3], it is observed that any 3-manifold with a cubing of non-
positive curvature contains such an incompressible surface. This gives a large
class of examples to which this theorem applies. (See also the next section.)

Finally we introduce the triple point condition for immersed incompressible
surfaces. An incorrect formulation of this was given in [1] and we thank P. Scott
for pointing this out.

DEFINITION 3.2. Suppose / : L -> M is an immersion of a closed, orient-
able, incompressible surface in a closed, orientable, irreducible 3-manifold, with
f(L) having as pre-image a collection of embedded planes in M, satisfying the
1-line property. Then / has the triple point property if whenever three of the
planes meet pairwise, the three planes together intersect in an odd number of
triple points.

In [3] it is shown that M has a cubing of non-positive curvature if and only if
M admits an immersed, incompressible surface L satisfying the 4-plane, 1-line
and triple point properties, such that M — Lisa union of open 3-cells.

4. Characterising hierarchies and immersed incompressible surfaces

The local picture of how the surfaces in a hierarchy fit together is given in
Figure 1.

When a 3-manifold is cut open along the surfaces of the hierarchy, a graph
is seen on the boundary which is called the boundary pattern (Figure 1). In
Waldhausen's solution of the word problem in the fundamental group of Haken
3-manifolds [49], he made an important restriction on the choice of hierarchy.
Waldhausen observes that it can be arranged so that there are no triangular re-
gions in the boundary pattern, and that if D is a disk embedded in M, intersecting
the hierarchy exactly in 3D, and with dD crossing the boundary pattern at most
three times, then D is parallel into the hierarchy (see Figure 2).

We call a hierarchy nice if it satisfies these two conditions of Waldhausen.
Nice hierarchies play a crucial role in Johannson's work [24]. There is a
useful converse to the existence of nice hierarchies, which can be viewed as a
characterisation of them. Details will shortly appear in a paper of the authors.

THEOREM 4.1. Suppose M is a compact, orientable, irreducible 3-manifold,
and a 2-complex X embedded in M is given, consisting of embedded, compact,
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boundary
pattern

FIGURE 1

FIGURE 2. 3 choices for D with dD crossing the boundary pattern 0, 2 or 3 times; D parallel
into the hierarchy
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orientable surfaces S\, 52, . . . 5*. Assume that S\ is closed, and that each S,
has boundary contained in S\ U . . . U S,_i, for 2 < i < k. Suppose there are
no triangular regions in the boundary pattern of these surfaces, and that any
disk D embedded in M with D C\ X = dD meeting the boundary pattern in
at most 3 points is parallel into X (see Figure 2). Then each of the surfaces
Sj is incompressible and boundary incompressible in the manifold obtained by
cutting M open along Si,... S,_i.

REMARK 4.1. If M — X is a collection of open 3-cells, then X is a hierarchy
for M. However we can also 'fill in' the rest of M, by handlebodies for example,
as occurs in surgery on links.

EXAMPLE 4.1. Suppose M is a compact, orientable, irreducible 3-manifold
satisfying either

(1) dM consists of n incompressible tori, for n > 3, or
(2) two incompressible tori, and H\ (M, Z) has rank 2 with cup product of

the generators zero, or
(3) one incompressible torus and H\ (M, Z) has rank at least 2.

Then we can form a "non-separating" hierarchy by starting with n — 1 bound-
ary tori, or a closed, incompressible, non-separating surface, and subsequently
choosing non-separating surfaces with non-empty boundary. The result is a
"hierarchy", whose complement consists of a copy of T2 x / . Assume that sur-
gery is performed on the last boundary torus, with the solid torus glued on with
meridian curve meeting the boundary pattern at least four times. Then adding
a meridian disk of the solid torus gives a new collection of surfaces satisfying
the hypotheses of Theorem 4.1. Thus the other surfaces remain incompressible,
including the other boundary tori.

Wu has proved a closely related result [51] by completely different methods.

EXAMPLE 4.2. As a more concrete example, choose M to be the complement
of the Whitehead link in S3 (see Figure 3).

Choose Si to be a boundary torus, S2 a once-punctured torus (Seifert surface
for C\), with boundary on Si, and S3 a disk. The resulting boundary pattern is
shown in Figure 4.

Hence only the trivial surgery on the boundary torus for C2 makes the torus
Si compressible, since only one essential curve on the torus in Figure 4 meets
the boundary pattern less than 4 times.
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FIGURE 3

FIGURE 4
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This hierarchy also gives rise naturally to a polyhedral metric of non-positive
curvature on the Whitehead link complement.

The following result, very similar to Theorem 4.1, characterises most of the
singular incompressible surfaces studied by Hass and Scott [15] and the authors
[3]. Note that the restriction on "small disks" is closely related to Gromov's
hyperbolic groups [11].

THEOREM 4.2. Suppose M is a compact, orientable, irreducible 3-manifold
and f : L ->• M is an immersed, closed, orientable surface. Let S{L) denote
the double arcs and triple points off(L). Suppose that

(1) no component of f(L) — S(L) is a disk with boundary containing at
most 3 triple points, and

(2) ifD is any disk embedded in M with D C\ f(L) = dD meeting S(L) at
most 3 times, then D is parallel into / (L ) as in Figure 2 (suitably modified).
Then L is an immersed, incompressible surface satisfying the 4-plane, 1 -line
and triple point properties. Conversely, ifL satisfies all these properties, then
the conditions on disks in M — f{L) and in f{L) — S(L) are satisfied.

EXAMPLE 4.3. A large class of links, namely well-balanced links, are defined
and studied in [ 1 ]. These are prime, non-splittable, alternating links, with exactly
one 2-gon (disks with two vertices) meeting each vertex of the link diagram,
and with no triangular faces in their planar projections. These have 'ideal'
cubings of non-positive curvature and hence contain surfaces / : L -» M,
where M is the link complement, satisfying the conditions of Theorem 4.2.
As in the example of the Whitehead link, we can do surgery on these link
complements so that the meridian curves meet S(L) at least 4 times. The
resulting surgered manifolds then have an immersed surface still satisfying the
hypotheses of Theorem 4.2. The conclusion is that not only do the surgered
manifolds have immersed incompressible surfaces, but they satisfy topological
rigidity: Conjecture 2.1, by Theorem 3.3. Hass and Menasco (this volume)
have given examples of link complements containing no closed, embedded,
incompressible surfaces: thus many explicit topologically rigid examples of
non-Haken manifolds can be constructed. As with the Whitehead link, often
only the trivial surgery is excluded, so it is possible that stronger results can
be obtained than in [1], where Gromov and Thurston's negatively-curved Dehn
surgery was used.
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EXAMPLE 4.4. In unpublished work of the authors, a different construction of
polyhedral metrics of non-positive curvature on alternating link complements
has been found. We discuss this very briefly. Suppose a non-splittable, prime,
alternating link is given. Then it turns out that the complement can be cubed in
such a way that the boundary tori are unions of faces of the cubes. (In [1], the
link is at ideal vertices of the cubes). This gives a very elementary proof that
the complement has a polyhedral metric of non-positive curvature.

A planar projection of the alternating link can be 2-coloured in chessboard
style, with adjacent regions coloured (say) black and white. Assume that for
one colour, say black, there are no regions which are 2-gons. Then we can
show there is an immersed, closed, orientable, incompressible surface in the
link complement, which is totally geodesic in the polyhedral metric. However,
the surface is not in general position, so only satisfies the 4-plane and triple-point
conditions, but not necessarily the 1-line property. A characterisation of such
surfaces can be given, similar to that in Theorem 4.2. Surgeries on the link can
be described as 'good' if the meridian curves cross the double arcs of the surface
at least 4 times. As almost all surgeries are good, most surgeries give closed,
orientable 3-manifolds containing immersed, closed, orientable, incompressible
surfaces.

The following conjecture, if positively resolved, would give good evidence
for the ubiquity of immersed, incompressible surfaces.

CONJECTURE 4.1. The complement of any simple link in S3, which is not a
torus link, contains an immersed, closed, orientable, incompressible surface
with no accidental parabolics.

For some results in the embedded case, see the paper by Adams and Reid in
this volume.

REMARK 4.2. In unpublished work of Brunner, Neumann and Rubinstein,
it is shown that any closed braid on at least 3 strings in a solid torus has
an immersed, closed, orientable, incompressible surface. No information on
accidental parabolics is known about these examples. They show the following.

PROPOSITION 4.1. Suppose M is a compact surface bundle over a circle with
fibre either a punctured torus or a three-times punctured disk. Then M has
a finite-sheeted cover with H\{M, Z) having rank larger than the number of
boundary tori.
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4.1. Finding immersed incompressible surfaces. Suppose M is a compact,
orientable, irreducible 3-manifold and / : L -> M is an immersed, closed, ori-
entable, incompressible surface. If dM ^ 0, we assume dM is incompressible
and that L is not boundary parallel. By [8], after replacing / by a least-area map
in its homotopy class, we can suppose that / lifts to an embedding / : L -> ML,
which induces an isomorphism! of fundamental groups. It is easy to show that
the closures of the two components of ML — f{L) are non-compact, that is, ML

has two ends. So a properly embedded line / can be chosen in ML which runs
between these two ends, meeting f(L) transversely an odd number of times.

Conversely, suppose that / : L —>• M is an immersed, closed, orientable
surface, not necessarily incompressible, in a compact, orientable 3-manifold
with dM incompressible. If there is a properly embedded line / in ML which
meets f{L) transversely in an odd number of points, where / : L ->• ML is
a lift of / , then ML has at least 2 ends. By compressing a closed, orientable
surface which separates these ends (a suitable component of the boundary of
a neighbourhood of f(L) will do), we get an embedded, closed, orientable,
incompressible surface in ML. Projecting to M completes a sketch of a proof of
the following result.

THEOREM 4.3. A compact, orientable, irreducible 3-manifold M has an im-
mersed, closed, orientable, incompressible surface which is not boundary par-
allel if and only if there is an immersed, closed, orientable surface f : L —>• M
and a properly embedded line I in ML, with I meeting the image of some lift
f : L —> ML transversely in an odd number of points.

REMARK 4.3. (1) This result can also be stated as: M has an immersed,
incompressible surface if and only if it has a cover with at least two ends.
The viewpoint given may be useful in developing an algorithm to detect such
surfaces.

(2) To make this result more usable, it would be beneficial to know that the
line / could be chosen to be periodic, that is, the lift of a loop g : S1 -> M. We
sketch why this is true if M is hyperbolic, but at present do not have a general
argument.

If M is hyperbolic and L is incompressible and geometrically finite, then the
domain of discontinuity for L descends to two open sets at infinity at the two
ends of ML. It is then easy to choose a periodic geodesic line between these two
open sets, as periodic geodesis are dense in the space of all geodesic lines. The
periodic geodesic line / will cover a geodesic loop g : Sl -* M.
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If L is incompressible and geometrically infinite, then by Thurston [45], M is
finitely covered by an L-bundle over Sl. A loop in this bundle projecting onto
the base S1 clearly descends to a curve g : Sl —*• M which lifts to a line in ML

between the two ends, as required.
(3) In Skinner [41], a solution of the word problem is given in 3-manifolds

containing immersed, incompressible surfaces satisfying the 1-line and 1-point
properties. The latter is that two double lines of intersection of the planes in
the universal cover meet in at most one point. This is a geometric rather than
a homotopy theoretic condition, but is satisfied by totally geodesic surfaces in
case of metrics of non-positive curvature. Other examples are given in [41].
The main result of [41] can be interpreted as showing that for an incompressible
surface of this type, there is an algorithm for deciding if an arc with ends on the
surface is homotopic into the surface. So in this case, testing loops g : Sl -*• M
for the required property is algorithmic.

4.2. Non-zero degree maps. A result related to Theorem 4.3 is the following.

THEOREM 4.4. Suppose M, M' are compact, orientable, irreducible 3-mani-
folds and g : (M, 3M) —>• (M', dM') is a non-zero degree map. If M' has an
immersed, closed, orientable, incompressible non boundary-parallel surface,
then so does M. Moreover, if the surface in M' satisfies the 4-plane property,
then so does the pull-back surface in M.

REMARK 4.4. (1) The idea of the proof is to use the fact that if / : L -+ M'
is an incompressible immersion, then M'L has 2 ends. Consequently, it can be
easily shown that some component of g~l{f{L)) also separates M with 2 ends,
where M is the covering of M corresponding to the subgroup g~l {ftii\ (L)), and
g : M ->• M'L is a lift of g. Using least area techniques as in [8], it follows that
the 4-plane property pulls back to M, after compressing the chosen component
of s"1 (/(£))•

(2) An interesting special case of non-zero degree maps is branched cov-
erings. This shows that incompressible surfaces 'lift', in a suitable sense, to
branched coverings.

A 'folk theorem', known to G. Swamp and P. Scott, gives another important
criteria for immersed, incompressible surfaces. The proof follows easily from
Scott's core theorem (see [36] or [38]).
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THEOREM 4.5. Suppose M is a compact, orientable, irreducible 3-manifold.
Then M has an immersed, closed, orientable, incompressible surface if and only
ifiTiiM) has a finitely-generated subgroup which is not free and has infinite
index.
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