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Spatial autoregressive (SAR) and related models offer flexible yet parsimonious
ways to model spatial and network interactions. SAR specifications typically rely
on a particular parametric functional form and an exogenous choice of the so-
called spatial weight matrix with only limited guidance from theory in making these
specifications. Also, the choice of a SAR model over other alternatives, such as
spatial Durbin (SD) or spatial lagged X (SLX) models, is often arbitrary, raising
issues of potential specification error. To address such issues, this paper develops
a new specification test within the SAR framework that can detect general forms
of misspecification including that of the spatial weight matrix, the functional form
and the model itself. The test is robust to the presence of heteroskedasticity of
unknown form in the disturbances and the approach relates to the conditional
moment test framework of Bierens ([1982, Journal of Econometrics 20, 105–134],
[1990, Econometrica 58, 1443–1458]). The Bierens test is shown to be inconsistent
in general against spatial alternatives and the new test introduces modifications to
achieve test consistency in the spatial setting. A central element is the infinite-
dimensional endogeneity induced by spatial linkages. This complexity is addressed
by introducing a new component to the omnibus test that captures the effects of
potential spatial matrix misspecification. With this modification, the approach leads
to a simple pivotal test procedure with standard critical values that is the first test
in the literature to have power against misspecifications in the spatial linkages. We
derive the asymptotic distribution of the test under the null hypothesis of correct SAR
specification and prove consistency. A Monte Carlo study is conducted to study its
finite sample performance. An empirical illustration on the performance of the test
in modeling tax competition in Finland is included.
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1. INTRODUCTION

The past two decades have witnessed a surge in theoretical and empirical research
on the class of spatial econometric models known as spatial autoregressions
(SARs). These models were first suggested by Cliff and Ord (1968) and have
since been widely extended in directions to suit applied research in many different
fields. In their various specifications, SAR models are typically characterized by
parsimonious and intuitive functional forms that employ exogenously assigned
weight matrices intended to capture the structure of spatial dependence between
units up to a finite number of unknown parameters. Much of the theoretical work
has focused on parameter estimation in these models. Standard methods, such as
instrumental variables/two-stage least squares (e.g., Kelejian and Prucha, 1998),
Gaussian maximum likelihood/quasi-maximum likelihood estimation (e.g., Ord,
1975; Lee, 2004) and generalized methods of moments (e.g., Kelejian and Prucha,
1999; Lee, 2007) have been developed to address the endogeneities inherent in
SAR specifications and extended to accommodate increasingly more complex
models and data structures. At the same time, a large body of literature has focused
on the derivation of the asymptotic theory of various tests for lack of spatial
correlation and/or for joint significance of the model parameters. These tests have
employed common approaches such as Wald, Lagrange multiplier or likelihood
ratio methods in the spatial setting. Among many others, see Burridge (1980), Cliff
and Ord (1981), Anselin (2001), Kelejian and Prucha (2001), Robinson (2008),
Lee and Yu (2012), Martellosio (2012), and Delgado and Robinson (2015).

More general specification assessment, in addition to significance testing, is
of obvious importance in this class of models, more especially in view of the
extensive use of exogenously chosen weight matrices and alternative model
forms. Detection of misspecification in one pre-specified aspect of the model
while assuming the remainder of the model is correctly chosen has often been
considered in the literature. For instance, Baltagi and Li (2001) offer a test for
the correct specification of a (log-)linear functional form in spatial error models
against the alternative of a Box–Cox transformation. Su and Qu (2017) extend the
nonparametric testing procedure of Fan and Li (1996) to spatial data in order to
test for correct linear functional form specification in the SAR model. Further, by
means of Lagrange multiplier statistics, Anselin (2001) developed tests to detect
misspecification arising from different types of spatial error correlation. A general
development of limit theory for this kind of residual-based procedure that includes
tests for covariance structures in SAR models as special cases has been developed
in Robinson (2008). Also, Delgado and Robinson (2015) offer a testing procedure
to discriminate non-nested models for covariance structures that can accommodate
spatial, spatiotemporal, or panel data structures. More recently, Gupta and Qu
(2021) derive a test of correct specification of the regression functional form
while allowing for cross-sectional correlation in the error term by means of series
estimation of a nonparametric regression function. The Gupta and Qu (2021)
approach includes the work of Su and Qu (2017) on regression specification testing
as a special case.
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HETEROSCEDASTICITY ROBUST SPECIFICATION TESTING 3

The aforementioned testing approaches enjoy favorable large and small sample
properties including good power if the practitioner has prior information about the
components of the model structure that are most likely subject to misspecification.
But these methods typically do not deliver a general methodology in the absence
of such information. In addition, and possibly more importantly, the methods
do not offer a general approach to testing the specific network dependence
structure, which limits the scope for practical use in light of the common use
of an exogenously chosen weight matrix. To illustrate the possible implications,
consider a simple Lagrange multiplier test to detect a spatial component that
might take the form of a spatial lag of the dependent variable or a spatial error
structure. In cases where the weight structure of dependence is misspecified, the
practitioner might expect the test to retain correct size, but test power is likely to be
adversely affected because the focus of the test is not directed at the real source of
misspecification.

A more direct approach to tackle the choice of the weight matrix in spatial
models has been adopted by Beenstock and Felsenstein (2012), who use the
sample covariance matrix of the data to infer the network structure in a panel
context. Although promising, this approach is inevitably affected by dimension
and suffers from bias when the number of sample units has the same order of
magnitude as the number of the time periods. Taking another promising high-
dimensional approach, Lam and Souza (2016, 2020) suggest estimating the most
effective weighting structure via LASSO procedures, by combining information
from multiple specifications. This approach may be employed as a useful implicit
test of specific weight structures.

In order to remedy concerns regarding the choice of a network weight matrix
while avoiding the challenging task of estimating high-dimensional structures,
a relatively narrow branch of the spatial econometric literature has focused on
offering model selection procedures between competing models. Along these
lines, Kelejian (2008) and Kelejian and Piras (2011, 2016) provide increasingly
more general J-type tests which can be used to select among competing choices
of weight matrices in SAR models with spatially correlated errors (SARAR).
Kelejian’s (2008) procedure has been extended in Debarsy and Ertur (2019) to
allow for unknown heteroskedasticity in the error terms. A selection strategy
for the correct network structure has also been suggested by Bailey, Holly, and
Pesaran (2016), who employ multiple testing to deduce nullity, positivity, or
negativity of the elements of a weight matrix, while Liu and Prucha (2018)
generalize the well-known Moran I statistic to test whether a linear combination
of pre-specified weight matrices suitably describes the data within a given spatial
autoregression. Even more recently, Liu (2019) offer a more general method that
chooses between two specifications within/between SARAR or matrix exponential
spatial specification (MESS), that can be nested or non-nested. That approach
relies on a likelihood-ratio test in the spirit of Vuong (1989) and, importantly,
allows both of the competing models to be misspecified under the null. The limit
theory in Liu (2019) is derived under the assumptions of near-epoch dependence
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(NED) (Jenish and Prucha, 2009, 2012), which limits the scope of application to
data that have a geographical interpretation and dependence that can be defined in
terms of a decreasing function of distance between observations. Accordingly, it is
not directly applicable when “space” is defined according to a more general notion
of economic distance (e.g., Case, 1991; Pinkse, Slade, and Brett, 2002, among
others).

The goal of the present paper is to complement the above approaches by
developing a new omnibus test procedure that can detect general forms of misspec-
ification related to the model, the weight matrix and the functional form of the SAR
model. The disturbances are allowed to have heteroskedasticity of unknown form.
The approach adopted takes Bierens (1990) conditional moment tests as its starting
point, but the formulation of the test is specifically designed to address potential
weight matrix misspecification and deliver test consistency in this wider context as
well as the regression model formulation. The key feature of general SAR models
is the asymptotically infinite-dimensional endogeneities that are induced by spatial
matrix linkages. This complexity is addressed by introducing a new component to
omnibus testing that is specifically designed to capture these effects and thereby
enable the detection of spatial matrix misspecification.

The literature on consistent conditional moment tests has been explored in
econometric work from the 1980s (Bierens, 1982; Newey, 1985) and relies on
orthogonality condition tests that date back to Ramsey (1969). Under the null
hypothesis of correct specification of the regression function, the moment condi-
tions hold with probability one, while consistency against general misspecification
is achieved by means of a set of weighting functions that depend on some real
parameter. The idea of consistent conditional moment tests in Bierens (1982) was
originally developed for data that are independent and identically distributed but it
has been extended to time series models in Bierens (1984, 1988), de Jong (1996)
and, more recently, to nonstationary models in Kasparis (2010). Stinchcombe and
White (1998) and Escanciano (2006) have studied the source of test consistency in
the Bierens methodology, and positioned the test within a larger class of consistent
specification tests that encompasses the tests of Stute (1997) and Escanciano
(2006), some of which have been developed further in, for example, Koul and
Stute (1999), Stute and Zhu (2005), and Escanciano (2007).

The present paper suggests a test of correct model specification designed
particularly for the spatial setting, where outcomes are influenced not only by own
individual characteristics but also by the characteristics of neighbors. As indicated
briefly above, the design involves the challenge of accounting for the endoge-
nous interactions generated by the spatial weight matrix, which has increasing
dimensions by construction and induces neither a natural ordering of observations,
nor an obvious notion of decay in correlation strength, unlike the conditions
that are conventional in the time series dependence literature. An additional
challenge in the spatial setup is the heterogeneity of the regression functions across
individuals, a feature that is somewhat similar to the complications entailed by
specification testing for nonstationary time series models (e.g., Bierens, 1984).
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Similar to Bierens (1990), we define the moment conditions using the moment
generating function of individual random variables as weighting functions, rather
than their characteristic function, to assist in the derivation of standard limit
theory. A distinguishing feature of our test is that while it is constructed using
Bierens-type infinite moment conditions driven by a real parameter, it does not
rely on such a parameter choice to achieve consistency, unlike the standard Bierens
test literature. Instead, the modifications designed to accommodate the spatial
setting give rise to a local-to-zero sequence of real parameters complemented by
linearization and centering of Bierens-like moment conditions. This in turn leads
to a practical test statistic whose properties in the limit no longer depend on the
local-to-zero sequence of such a parameter. Thus, our test does not rely on devices
such as selection by randomization or supremum/square integral transformation
to achieve consistency. Linearization via the local-to-zero sequence, in addition
to the choice of the moment generating function over characteristic function in
the moment conditions (as in the approach of Bierens (1990) rather than that of
Bierens (1982)) allows us to obtain a standard limiting distribution under correct
specification which in turn facilitates implementation compared to simulation-
based approaches such as a bootstrap method. The advantage of obtaining a
standard null distribution comes, therefore, at the cost of choosing the additional
local-to-zero tuning sequence. But the use of additional sequences and related
assumptions to achieve consistency and standard critical values is in no way new
in the literature of conditional moment testing.1

In our development, we assume a SAR structure with spatial dependence as
a spatial lag and with disturbances that may be heteroskedastic. This framework
is a significant base model of interest in the spatial literature and the kernel
of more general formulations. Our conditional moment testing approach, with
individual outcomes depending on neighbor outcomes and heterogeneous regres-
sion functions, should be relevant in other settings. A primary advantage in the
approach rests in its applicability to general “spatial” data, where “space” is
interpreted more broadly than geographic with no reliance being placed on NED
conditions to limit spatial dependence. We establish the limit distribution of our
specification test under the null of correct model specification, including the
form of the spatial weight matrix, and establish its limit behavior under general
alternatives.

Simulations are conducted to explore the finite sample behavior of the test,
allowing for cases of geographic distance and random linkages in the weight matrix
as well as spatial Durbin (SD) and spatial lag X formulations. The results confirm
that the test has stable size properties across models and good power performance
in distinguishing misspecification in the weight matrix structure and in other

1For instance, Bierens (1990) (Theorem 4) and Kasparis (2010) (Lemma 7) rely on a threshold determined by a
diverging sequence to derive standard limit theory of their test statistics; and de Jong and Bierens (1994) employ an
infinite series of moment conditions whose cardinality needs to increase with the sample size in a specific manner in
order to achieve test consistency.
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aspects of model formulation. The methodology is applied in an empirical study
of tax competition among municipalities. The results suggest that the specification
test is helpful in guiding refinement of the simple SAR framework to capture
dependence structures in the data more satisfactorily.

The paper is organized as follows. The next section presents the model setup,
while Section 3 details the limit theory under the null hypothesis of correct
specification. Section 4 reports limit theory under a fixed generic alternative, while
also showing inconsistency of the Bierens test in the spatial setting. Simulation
findings are presented in Section 5. Section 6 provides a heuristic discussion
to guide practitioners in the choice of tuning parameters and to interpret test
results. Section 7 gives an empirical tax competition illustration of the methods
using the model framework and datasets of Lyytikäinen (2012), who dealt with
tax competition across Finnish municipalities. Some conclusions and possible
extensions are given in Section 8 and proofs are in the Appendix. We also
provide a self-contained Supplementary Material with codes for implementing the
specification test developed in the paper, along with a small simulated dataset for
illustration.

Throughout the paper, we denote by Ain and A(i)
n the vectors formed by taking

the transpose of the ith rows of a matrix An and its inverse A−1
n , respectively,

provided the inverse exists; and aij and aij are the (i,j)th elements of A and A−1. The
symbol 1 = 1n denotes an n × 1 vector of ones, ||.|| and ||.||∞ represent spectral
and uniform absolute row sum norms, A′ is the transpose of A, and K > 0 is an
arbitrary finite constant whose value may change in each location. The symbol ≈
signifies “approximate equality” and ∼ indicates “asymptotic equivalence.”

2. MODEL SETUP AND MOTIVATION

The so-called mixed regressive SAR model admits a triangular array structure

Yn = λWnYn +Xnβ + εn, (2.1)

where Yn is an n-vector of observations, Xn an n × k matrix of regressors, εn an
n-vector of independent structural disturbances, and Wn a sequence of n × n pre-
specified spatial weight matrices.2

Define Sn(λ) = In −λWn and Rn(λ) = WnS−1
n (λ). Provided model (2.1) has an

equilibrium solution (i.e., under invertibility of Sn(λ)), the reduced form of (2.1)
is given by

Yn = S−1
n (λ)(Xnβ + εn). (2.2)

For individual observations i = 1, . . . ,n, the last displayed expression leads to a
regression model of the form Yin = min(Xn,λ,β)+uin(λ), with

2To develop inference on the unknown parameters (λ,β ′)′, some form of normalization of the weight matrix is
typically required for identification and stability, inducing a triangular array structure for W = Wn. Allowing Y = Yn,
X = Xn and ε = εn permits relabeling of observations, often required due to the lack of a natural ordering in data that
are recorded in space.
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min(Xn,λ,β) = S(i)
n (λ)′Xnβ =

n∑
j=1

sij
n(λ)X′

jnβ, and uin(λ) =
n∑

j=1

sij
n(λ)εjn, (2.3)

where sij
n(λ) denotes the (i,j)th element of S−1

n (λ) and uin(λ) is the reduced form
error of the SAR model.3

Model (2.3) is a particular parameterization of a general nonparametric regres-
sion of the type

Yin = gin(Xn)+ηin, E(ηin|Xn) = 0, i = 1, . . . ,n, (2.4)

where, as previously defined, Xn = (X1n, . . . ,Xnn)
′ is an n×k matrix of regressors of

all sampled units, which may or may not include a column of ones, with the true
conditional expectation function for the ith observation denoted by gin, namely,
gin(Xn) = E(Yin|Xn), i = 1, . . . ,n. By defining gin(·) as a function of the entire set
of observations Xn, we characterize the above model as a spatial one, whereby
individual outcomes are influenced not only by their own characteristics but also
by the characteristics of their neighbors. Unlike, for example, Bierens (1990), the
general model in (2.4) needs to accommodate a weighting structure such as that
in (2.3) and hence we also allow for possible heterogeneity across individuals in
the regression function gin(·), as well as dependence on the sample size n. After
introducing hypotheses of interest below, we discuss the advantage of basing our
analysis on the reduced-form model in (2.2), rather than the structural model (2.1).

The primary concern of the present paper lies in developing an empirical test
of whether the regression function min(·) and error structure uin(·) in (2.3) are a
correct parameterization of the unknown gin(·) and error structure ηin in (2.4). In
what follows we let ∨ and ∧ denote the usual or and and logical operators. Denote
θ = (λ,β ′)′. For all sufficiently large n, we define the set

Jn(θ) ={i : P
(
gin = min(θ)

)
< 1 ∨ P(uin(λ) = ηin) < 1}, (2.5)

and let card(Jn(θ)) denote its cardinality, which measures the extent to which
correct specification fails among the observed units. We define the following sets
of null and alternative hypotheses.4

Null and Alternative Hypotheses
For all sufficiently large n,

H0 : P(min(θ0) = gin) = 1 ∧ P(uin(λ0) = ηin) = 1 (2.6)

for some θ0 ∈ � and for all i = 1, . . . ,n.

H1 : P(min(θ) = gin) < 1 ∨ P(uin(λ) = ηin) < 1 (2.7)

for all θ ∈ �, for sufficiently many i = 1, . . . ,n such that card(Jn(θ)) ∼ n as n → ∞.

3When β = 0 ex ante, model (2.3) corresponds to a pure SAR model, in which exogenous regressors are postulated
to be jointly irrelevant.
4Given the triangular array structure of the quantities involved in the statements below, it would be more precise to
index these hypotheses as H0n and H1n, but the subscript n is omitted for notational simplicity.
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The formulation of the hypotheses H0 and H1 is necessarily asymptotic because
the SAR model itself is infinite-dimensional. Correspondingly, the statistical test of
the null H0 also relies on asymptotic arguments. More specifically, it is designed
to detect an increasing number of potentially misspecified (reduced form) SAR
regression functions mi(θ) and/or errors ui(λ). Thus, to achieve a test with non-
negligible power against violations of H0 in various directions of departure, the
rate condition card(Jn(θ)) ∼ n under H1 ensures that the number of units for
which misspecification does occur (i.e., the specified functions mi(θ) and/or errors
ui(λ) are violated in the data) grows as fast as the number of units n. However, it
should be noted that the rate assumption card(Jn(θ)) ∼ n under H1 is a relevant
theory condition arising from the nature of the SAR model rather than a practical
limitation.

This is due to a key advantage of considering the reduced-form model in (2.3),
rather than the structural model (2.1) arising from the presence of S−1

n (·) in (2.3)
that amplifies even sparse/finite deviations from the true Wn to have non-sparse
impacts on the system (2.3). The increasing dimensionality of Wn in the structural
regression function presents a potentially infinite-dimensional misspecification
error and poses a challenge to formulating a straightforward extension of the
Bierens test to detect misspecification in the weight matrix. Test consistency
against any deviation from the true network structure embodied in Wn may seem,
in principle, difficult to achieve due to the increasing dimensionality of Wn as
n → ∞. Prima facie, the increasing dimension of Wn might indeed suggest only
limited effects from deviations of individual elements Wn from the true weights.
Importantly, however, even if there are only sparse deviations from the true weight
matrix Wn the effects on the matrix inverse S−1

n (·) of these deviations are not
sparse and it is the impact of the specification of Wn on S−1

n (·) that is relevant
in the reduced form (2.3) and hence on the data. Indeed, under mild conditions
that will be presented later, the following power series expansion of the inverse
matrix S−1

n (λ) holds

S−1
n (λ) = (In −λWn)

−1 =
∞∑

j=0

(λWn)
j. (2.8)

From the power series (2.8), it is evident that even a small number of misspecified
elements in Wn typically leads to all elements of S−1

n (·) being misspecified. Heuris-
tically, therefore, if a test is able to detect an increasing number of misspecified
elements via the role that the inverse matrix S−1

n (·) has in determining min(·)
and/or uin(·), this property will be sufficient to detect the effects of a finite number
of misspecified elements in Wn. This is so even when the weight matrix Wn is
itself sparse. In this respect, we expect the test developed below to be general
enough to identify misspecification in spite of the limitation entailed by Wn having
increasing dimensions. We stress that reduced-form spatial autoregressions induce
a particular functional form in the error structure that needs to be considered

https://doi.org/10.1017/S0266466624000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000173


HETEROSCEDASTICITY ROBUST SPECIFICATION TESTING 9

alongside the specification of the regression function, distinguishing it from
nonspatial models hitherto considered in the Bierens specification test literature.

For notational simplicity in the sequel we will mostly suppress the subscript
n to random and deterministic sequences appearing in our derivations, unless
highlighting their dependence on n is important. Similarly, it is convenient to do
so in other cases, such as using S−1(λ) in place of S−1

n (λ).
Before presenting modifications designed to suit spatial model frameworks in

the next section, we first demonstrate the inadequacy of a naive implementation
of existing Bierens tests in delivering a consistent test in our spatial settings.
In nonspatial settings, specification tests in Bierens (1990) rely on a moment
condition such as

E((Yi −mi(θ))et′Xi) = 0 for some θ ∈ �, (2.9)

where t ∈ Rk. Although the exponential in the above moment condition can be
replaced by other choices of functions, we retain it as in Bierens (1990) to preserve
the tractability of the limit theory, as discussed in the Introduction. The theoretical
justification of a consistent test based on (2.9) is given by Lemma 1 in Bierens
(1990), which in the setup of (2.3) and (2.4) would amount to proving equivalence
between

P(E((Yi −mi(θ))|X) = 0) = 1 ⇔ E

(
(Yi −mi(θ))et′Xi

)
= 0 (2.10)

for almost all t ∈ Rk and for all i = 1, . . . ,n, under correct specification. In our
spatial setup defined in (2.3) and (2.4), it is straightforward to conclude the “⇒”
implication, but “⇐” in (2.10) does not hold in general. Instead one can only prove
the following implication which is not general enough for our purpose.

Claim 1.

E

(
(Yi −mi(θ))et′Xi

)
= 0 
⇒ P(E((Yi −mi(θ))|Xi) = 0) = 1 (2.11)

for all t ∈ Rk up to a zero-measured set.

The proof of Claim 1 is in the Appendix. For independent Xj, j = 1, . . . ,n, from
Claim 1, we deduce that a test based on (2.9) offers a necessary and sufficient
condition for correct specification in case the difference mi(·)−gi(·) only depends
on Xi, but this represents only a limited and unlikely case in our spatial setup.

We are, in general, not able to conclude E

(
(Yi −mi(θ))et′Xi

)
= 0 
⇒ P(E((Yi −

mi(θ))|X) = 0) = 1, which is instead required to establish consistency of the simple
Bierens test based on (2.9) when a weighting structure that connects all the Xj, for
j = 1, . . . ,n, enters into the regression function mi(θ0). Thus, in general, a test based
on (2.9) in the spatial setup would mimic a necessary, but not a sufficient condition
to conclude correct specification of mi(·) in (2.3). Fundamentally, X1, . . . ,Xn rather
than Xi is the relevant conditioning set for the regression function in our spatial
setting and (2.9) is therefore inadequate to provide a consistent test.
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In addition, the argument in the previous paragraph holds for each i. Due to
heterogeneity of gi and mi across i, instead of considering individual moment con-
dition (2.9), one should in fact consider the following average moment condition:

lim
n→∞

1

n

n∑
i=1

E

(
(Yi −mi(θ))et′Xi

)
, t ∈ Rk, (2.12)

and rely on a weak law of large numbers for heterogeneous data when formulating
a test statistic such as

1

n

n∑
i=1

(
(Yi −mi(θ̂))et′Xi

)
, (2.13)

where θ̂ denotes any estimator that is consistent under H0 and has a well-defined
probability limit to a pseudo-sequence θ�

n = θ� under H1. In Claim 2 reported in
Section 4, we will provide a counterexample of the failure of a test based on (2.13).

3. TEST STATISTIC AND LIMIT THEORY UNDER H0

We first discuss estimation before introducing the new test statistic below. Heuris-
tically, under suitable regularity conditions and assumptions on the behavior of W
as n increases, the model parameters θ = (λ,β ′)′ can be estimated by minimizing
a suitable objective function Q over a compact parameter space �, giving

θ̂ = argmin
θ∈�

Q(θ). (3.1)

Limit theory is established by means of standard consistency criteria and suitable
central limit theorems for triangular arrays. In this paper, we estimate θ by IV/2SLS
since it has the advantage of a relatively simple closed form and is robust to
unknown heteroskedasticity. Alternative estimation methods may be considered
at the cost of some algebraic modifications.

Define Z=Zn as Z= [Z ;X], with Z = Zn being an n×(p−k) matrix of suitable
instruments, with p ≥ k +1 and X = [WY ;X]. The IV/2SLS objective function is
then

Q = 1

n
(Y −Xθ)′PZ(Y −Xθ), (3.2)

where PZ = Pn,Z = Z(Z′Z)−1Z′. From standard arguments (e.g., Kelejian and

Prucha, 1998), the IV/2SLS estimate of θ0 is given by θ̂ = (
X′PZX

)−1
X′PZY ,

and

√
n(θ̂ − θ0) = (

B′A−1B
)−1

B′A−1 1√
n
Z′ε +Op

(
1√
n

)
, (3.3)

where A and B are defined as

plimn→∞
1

n
Z′Z = A (3.4)
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and

plimn→∞
1

n
Z′X = B, (3.5)

respectively.
Let R = R(θ0) = WS−1(λ0) and define

Q = Q(θ0) = S−1(θ0)

(
In − 1

n

(
RXβ0, X

)(
B′A−1B

)−1
B′A−1Z′

)
. (3.6)

Set Ȳ = ∑n
i Yi/n and let X̄ be the k-vector containing the sample averages of the

components of X. Also the 1×n vector of the column averages of S−1 is denoted
by S̄−1′ = ∑n

i=1 S(i)′/n, and the column-demeaned version of S−1 is

Sd = S−1 −1S̄−1′
. (3.7)

Let e(t) = (et′(X1−X̄), . . . ,et′(Xn−X̄))′ and f (t) = (e(t),1n)
′, with 1n being an n-vector

of ones. Define the 2×n matrix

	(t) = 	(t,λ0,β0,X) = f (t)′Q. (3.8)

In general, we indicate estimated counterparts (evaluated at θ̂ ) of previously
defined quantities by ˆ(·). In the Appendix, we prove the following auxiliary result.

Lemma 1. Under Assumptions 2–5 and 8, for all θ in � and conditionally on X,

‖Q(θ)‖∞ +‖Q(θ)′‖∞ < K. (3.9)

In view of the limitations of (2.13), we introduce a new test statistic and derive
its limit properties under H0. To this extent, we introduce a deterministic, positive
sequence pn satisfying the conditions

pn → ∞ and
pn

n
= o(1) as n → ∞, (3.10)

and construct the following sample vector:5

Mn(θ̂,t,tY) = M(θ̂,t,tY) =
(

M1(θ̂,t)
M2(θ̂,tY)

)

= 1

n

⎛
⎜⎜⎜⎜⎝

n∑
i=1

(
Yi −mi(θ̂)

)
et′(Xi−X̄)

n∑
i=1

(
Yi −mi(θ̂)

)
etY

Yi−Ȳ
pn − tY

pn
tr(Ŝd′

Q̂
̂)

⎞
⎟⎟⎟⎟⎠, (3.11)

5Following Bierens (1990), in the construction of (3.11), we use a demeaned version of Yi and Xi to construct
the sample analog, without affecting the theoretical properties of the test (see, e.g., Bierens, 2015). Preliminary
simulations indeed show superiority of performance when demeaned data are employed.
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12 JUNGYOON LEE ET AL.

where 
̂ = diag(ε̂2
1, . . . ,ε̂

2
n), ε̂ = Y − λ̂WY − Xβ̂ and diag(a) returns an n × n

diagonal matrix with the components of the generic n×1 vector a on its diagonal.
As explained below, the vector Mn(θ̂,t,tY) is the key component in our test statistic
T̂(t,tY) = nM(θ̂,t,tY)′V̂(t)−1M(θ̂,t,tY) which is defined later in (3.18).

The first component in (3.11) corresponds to the naive extension of Bierens
approach given in (2.13). The second component in (3.11) is based on the sample
covariance between residuals and a function of Yi, centered such that the resulting
expression has zero mean under H0 as n → ∞. By construction, the dependent
variables Yi, i = 1, . . . ,n, involve an increasing set of covariates weighted by
the network structure, according to either (2.3) under correct specification of the
regression function, or (2.4) otherwise. Hence, the true network structure plays a
direct role in the test statistic formed from (3.11) via Yi, i = 1, . . . ,n. The local-
to-zero sequence tY/pn has been introduced to allow a convenient derivation of
the centering sequence appearing in the second component of (3.11) following a
Taylor expansion of the exponential function. Additional details on the derivation
of the centering sequence appearing in the second component of (3.11) will
be discussed in the context of Theorem 1, after introducing a relevant set of
assumptions to assist in the development of the limit theory of (3.11) under H0.

Assumption 1. For all n, εi are independent random variables with zero mean
and unknown variances σ 2

i > 0 satisfying supi≥1σ
2
i < K and, for some δ > 0,

sup
0<i≤n

E|εi|2+δ ≤ K. (3.12)

Assumption 2. For i = 1, . . . ,n and for all n, Xi is a set of i.i.d. bounded random
variables in Rk. For i,j = 1, . . . ,n and all n, the elements of Xi are independent of εj.

Assumption 3. λ0 ∈ 
, a closed subset in (−1,1).

Assumption 4. (i) For all n, Wii = 0. (ii) For all n, ||W|| ≤ 1. (iii) For
all sufficiently large n, ||W||∞ + ||W ′||∞ ≤ K. (iv) For all sufficiently large n,
uniformly in i,j = 1, . . . ,n, Wij = O(1/h), where h = hn is a sequence bounded
away from for all n and h/n → 0 as n → ∞.

Assumption 5. For all sufficiently large n, sup
λ∈


(||S−1(λ)||∞ +||S−1(λ)′||∞
) ≤K.

Assumption 1 postulates independent, but not identically distributed distur-
bances; and the uniform higher-order moment condition assists in establishing
central limit theory under H0. The condition on boundedness of Xi is typical in
the spatial literature and it is retained here to avoid introducing further trimming
arguments. We stress that boundedness of Xi, i = 1, . . . ,n, could be easily relaxed
by means of a bounded one-to-one function in case of a simple test based on
(2.9). However, the formulation of our augmented test would require additional
trimming arguments to accommodate unbounded regressors. Independence across
Xi and εj for all (i,j) could be relaxed to strict exogeneity of X at the cost of some
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modifications of the derivations in the following sections. Assumptions 3–5 are
standard in the SAR literature to ensure that (2.1) and (2.2) are well defined, and
for further discussion we refer to, for example, Lee (2004).

Assumption 6 is specific to IV/2SLS (e.g., Kelejian and Prucha, 1998) and it
ensures standard non-singularity and relevance of the instruments Z.

Assumption 6. For i = 1, . . . ,n and for all n, Zi is a set of i.i.d. bounded random
variables in Rp. For i = 1, . . . ,n and all n, the elements of Zi are not correlated with
εi. Furthermore, we require, for all sufficiently large n and some constant c > 0,

eigmin

(
1

n
Z′Z

)
≥ c and rank

(
1

n
Z′X

)
= k +1. (3.13)

Also, A defined in (3.4) is positive definite and B in (3.5) is an p× (k +1) matrix
with full rank k +1, where both limits are assumed to exist.

We can in principle relax the boundedness condition on Zi, i = 1, . . . ,n to
the existence of moments of order two. However, in practice Z contains X and
spatially weighted X (e.g., Kelejian and Prucha, 1998; Lee, 2003) and thus we
write Assumption 6 in line with the requirements on X imposed in Assumption 2.
Finally, we need to impose a standard non-singularity condition for the variance–
covariance matrix appearing in Theorem 2, as

Assumption 7. Conditionally on X, the limit lim
n→∞n−1	(t)
	(t)′ exists point-

wise in t and a.s. as n → ∞, and is positive definite.

Some additional technical conditions on tuning parameters are employed in the
aforementioned Taylor expansion of the exponential function in the construction
of (3.11) and these also involve the tail slope parameters of the distribution of
(Y1, . . . ,Yn). These conditions are detailed in Assumption A1 of the Appendix
and assist in establishing the following result that gives a convenient asymptotic
representation of the key sample statistic M(θ̂,t,tY).

Theorem 1. Under Assumption 1 with δ = 2, Assumption 2–6 and 8, condition-
ally on X, under H0 in (2.6)

√
nM(θ̂,t,tY) = 1√

n
	(t)ε +op(1), (3.14)

with 	(t) defined according to (3.8).

Theorem 1 establishes that the test statistic in (3.11) is linear in the disturbances
up to negligible terms. The centering sequence in M2(θ̂,tY) in (3.11) delivers a
mean-zero statistic under H0, whereas correct centering is lost under H1, thereby
enabling test consistency. In (A.24) in the proof of Theorem 1, we show that
the first negligible term involves a centered quadratic form in the disturbance
term, which is formally similar to the Moran I statistic and/or to a residual-
based type of statistic designed to assess the presence of spatial correlation (i.e.,
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14 JUNGYOON LEE ET AL.

Robinson, 2008). Without the correct centering sequence under H0, that quadratic
form diverges and the approximation in Theorem 1 fails. Thus, the first neglected
term of the Taylor expansion derived in Theorem 1 is negligible under correct
specification of the reduced form weighting structure as the centering sequence
is correctly determined, whereas it diverges when the reduced form weighting
structure is misspecified as the centering sequence is lost.

The following asymptotic result under the null is established in the Appendix.

Theorem 2. Under Assumptions 1–7 and A1, under H0 in (2.6), as n → ∞
√

nV(t)−1/2M(θ̂,t,tY) →d N (0,I2), (3.15)

pointwise in t, conditionally on X, where the standardizing variance–covariance
matrix of

√
nM(θ̂,t,tY) is given by V(t) = lim

n→∞Vn(t), with

Vn(t) =1

n
	(t)
	(t)′, (3.16)

where 
 = diag(σ 2
1 , . . . ,σ 2

n ).

The matrix V(t) exists pointwise in t and almost surely, and it is non-singular
under Assumption 7. Since (3.15) holds almost surely for every realization of X,
Theorem 2 also holds unconditionally, giving the unconditional distribution of the
statistic with V(t) = plimn→∞Vn(t). We have the further result.

Theorem 3. Under Assumption 1 with δ = 2, Assumptions 2–7, under H0 in
(2.6), as n → ∞
1

n
	̂(t)
̂	̂(t)′ − 1

n
	(t)
	(t)′ = op(1), (3.17)

where 	̂(t) is obtained by replacing unknown parameters by their consistent
estimates and 
̂ = diag(ε̂2

1, . . . ,ε̂
2
n) .

Let V̂(t) = 	̂(t)
̂	̂(t)′/n and define the test statistic

T̂(t,tY) = nM(θ̂,t,tY)′V̂(t)−1M(θ̂,t,tY). (3.18)

Theorems 2 and 3 lead directly to the following limit theory for the statistic T̂(t,tY).

Corollary 1. Under Assumption 1 with δ = 2, Assumptions 2–7 and A1, under
H0 in (2.6), as n → ∞
T̂(t,tY) →

d
χ2

2 . (3.19)

Some discussion on the practical implementation of the test using the component
(3.11) and statistic T̂(t,tY) is reported in Section 6, after establishing consistency
properties in the next section.
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4. BEHAVIOR OF T̂(T,TY) UNDER MISSPECIFICATION

This section explores the behavior of the test statistic T̂(t,tY) under H1. We stress
that we expect test consistency to rely critically upon the derivation of the correct
centering sequence appearing in M2(θ̂,tY) in (3.11), namely,

n∑
i=1

(
Yi −mi(θ̂)

)
etY

Yi−Ȳ
pn − tY

pn
tr(Ŝd′

Q̂
̂). (4.1)

Thus, the role of the usual specification test component like (2.13), or the
component M1(θ̂,t) in (3.11), is not necessary to achieve test consistency against
H1. Indeed, as discussed earlier in Section 2, a naive test based on Bierens (1990)
moment condition in (2.12) fails in general to detect misspecification when a
spatial weighting structure W enters into the reduced form model via S−1(·).
Nonetheless, simulation exercises6 suggest that a specification test based on (2.12)
in the spatial setting has good size properties. Hence, including a Bierens-type
component in (3.11) such as M1(θ̂,t) is likely to improve the finite sample test size
since its small-sample behavior is not affected by the approximation error induced
by the choice of the tuning parameter pn discussed above. Importantly, however,
M1(θ̂,t) in (3.11) does not contribute to test consistency. Further, the linearization
and centering elements in the construction of the statistic mean that as n → ∞
the particular choice of tY becomes less relevant and test consistency against H1

is achieved for each tY �= 0. We therefore expect the test to deliver consistency
regardless of the choice for (t,tY), as long as the trivial case tY = 0 is ruled out.

We report below some popular examples of functional structures for g(·),
which are often erroneously misspecified and/or simplified by practitioners to the
standard SAR in (2.2) with network structure W.

1. The true weight matrix structure is given by V and the practitioner uses W �=
V in estimation of the model, that is, W is misspecified. Thus, g(X) = (I −
λ0V)−1Xβ0.

2. The weight matrix W is correctly specified, but the exogenous component of
the regression is nonlinear in X1, . . . ,Xn and/or in the parameters β1, . . . ,βk, so
that g(X) = (I −λ0W)−1ρ(X,β0), for some function ρ(·).

3. The data generating process is a SD model with weight matrices W1,W2, so that

g(X) = (I −λ0W1)
−1Xβ0 + (I −λ0W1)

−1W2Xγ0, (4.2)

where γ0 is a k-vector of parameters.
4. The endogenous spatial lag is irrelevant, and thus the data generating process

is a spatial lagged X (SLX) model, so that

g(X) = Xβ0 +WXγ0. (4.3)

6Simulation results supporting this claim are reported in each Monte Carlo table displayed in Section 5. For each
table, the number in round (respectively, square) brackets reports empirical size/power of a test based on (2.12) (
respectively, (4.1)) only.
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We introduce some additional assumptions to establish the limit properties of
our test when the postulated regression function in (2.3) is not correct. Assumption
A1 imposes some basic requirements on the true regression function in (2.4):
although no specific functional structure is imposed, the true conditional expec-
tation functions gi(·) are required to satisfy some continuity and dependence
conditions. In addition, Assumption 9 establishes some condition on the errors ηi

of the true regression function in (2.4). Let g(·) = (g1(·), · · · ,gn(·))′ be the n-vector
of individual gi(·) = gin(·) functions and set �g = Var(g).

Assumption 8. For i = 1, . . . ,n and all n, gi(·) are continuous functions of
X1, . . . ,Xn and satisfy ||�g||∞ < K.

Assumption 9. For all n, ηi is independent of Xj for all i,j = 1, . . . ,n. For i =
1, . . . ,n, E(ηi|X) =E(ηi) = 0, max

1≤i≤n
E(η2

i ) < ∞, and max
1≤i≤n

n∑
k=1

|Cov(ηi,ηk)| = O(1).

Assumption A1 accommodates all the special cases of interest that are discussed
above. The last statement in Assumption 9 corresponds to a weak dependence
condition, which needs to hold under H1. We point out that, under H0, this weak
dependence condition is guaranteed by Assumption 5 and by finiteness of the
second moment of εi, i = 1, . . . ,n.

To establish the behavior of the test based on (3.11) under H1, we need in turn
to prescribe the behavior of the estimator θ̂ under H1, which is assured by the
following high-level condition.

Assumption 10. There exists a sequence of deterministic vectors θ� = θ�
n of

order O(1) such that θ̂ − θ� = op(1) under H1.

Trivially, under H0, θ� = θ0. Under H1

θ� = plim
n→∞

(
1

n
X′PZX

)−1 1

n
X′PZY = plim

n→∞

(
1

n
X′PZX

)−1 1

n
X′PZ(g+η), (4.4)

which exists and is finite under Assumptions 2, 6, 8, and 9.
As anticipated at the end of Section 2, we report a counterexample to show

explicit failure of a test based solely on (2.13). For simplicity of notation, we
drop the reference to θ in the definition of M1(·,t)/M2(·,tY), that is, we let
M̂1(t) = M1(θ̂,t) and M̂2(tY) = M2(θ̂,tY). By standard arguments, pointwise in t,√

nM̂1(t) →
d
N (0,Var(

√
nM̂1(t))) under H0. A test based on (2.13) is consistent

against any form of misspecification if
√

nM1(θ̂) grows without bounds under H1

as n → ∞ for almost all t ∈ Rk. On the other hand, consistency of the test cannot
be established in general when

√
nM1(θ̂) = Op(1) for a set of t ∈ Rk with positive

Lebesgue measure. Without loss of generality, we set k = 1, that is, X is an n × 1
vector. Let the true data generating process be

Y = λ0WY + τ0VY +β0X + ε, with reduced form Y = S̃−1(λ0,τ0)(β0X + ε),

(4.5)
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where S̃−1 = S̃−1(λ0,τ0) = (I − λ0W − τ0V)−1, but the practitioner erroneously
omits τVY and adopts the incorrect reduced form Y = S−1(λ)(βX + ε). Thus, in
terms of S−1 and S̃−1, the true data generating process in reduced form is

Y = β0S−1X +S−1ε + τ0S−1VY

= β0S−1X +S−1ε + τ0S−1VS̃−1ε + τ0β0S−1VS̃−1X, (4.6)

with τ0 �= 0. The Appendix establishes the following claim.

Claim 2. Let the true data generating process be as in (4.6) with τ0 �= 0, and
let Assumptions 1–6 hold. Let V be a standard n × n matrix satisfying ||V||∞ +
||V ′||∞ ≤ K and vii = 0 for each i. Suppose that the maximum number of nonzero
elements of each row of V is given by the sequence ν(n) such that ν(n)/

√
n = O(1)

and that sup
λ,τ

||S̃−1||∞ + ||S̃−1′||∞ ≤ K. Under these conditions,
√

nM1(θ̂) = Op(1)

as n → ∞, for almost all t ∈ Rk.

Claim 2 shows the general lack of consistency of a test based on M1(θ̂) when
each row and column of V has at most

√
n nonzero elements. In case, the weight

matrix is completely misspecified and W is employed in place of the true matrix W∗
the deviation matrix is V = W∗ −W. We notice that the structural form weighting
schemes (and hence V in Claim 2) are typically sparse matrices. Consistency of a
standard Bierens test such as that in (2.13) might be achievable in such a case if
the number of misspecified elements in some rows increased with the sample size
at a rate exceeding

√
n, but this seems an unlikely scenario in practical cases.

We now turn to show consistency of our test based on (3.11). The sample
statistic M̂2(tY) in (3.11) employs the average across units of a sample analogue of
(centered) expectations. We therefore need to rule out the case in which individual
misspecifications in the regression functions offset each other (e.g., in the presence
of an unlikely systematic symmetry in the misspecification form and direction),
so as to ensure that the average amount of misspecification is non-negligible in
the limit. A similar exclusion was used and discussed in Bierens (1984), where
nonstationarity in the time series setting may lead to a regression function that
varies across time. The difference between our Assumption 11 and the restriction
in Bierens (1984) lies in the fact that, due to the local approximation in M̂2(tY)

that is induced by the deterministic, divergent sequence pn defined in (3.10), test
consistency can be achieved for any tY �= 0 and hence Assumption 11 does not
depend on the choice of tY .

Assumption 11. As n → ∞,

lim
n→∞

1

n

∣∣∣∣
n∑

i=1

E
(
gi(X)−mi(X,θ�)

) ∣∣∣∣ > 0. (4.7)

Additionally, we assure non-singularity in the limit of V̂n(t) in (3.19) under H1 by
modifying Assumption 7 as follows.
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Assumption 7’. Conditionally on X, lim
n→∞ Vn(t) exists and is positive definite

uniformly in θ , pointwise in t and a.s., where Vn(t) is defined in (3.16).

The following result establishes consistency of the test statistic T̂(t,tY) and is
proved in the Appendix.

Theorem 4. Under H1 in (2.7), for the deterministic sequence pn in (3.10), and
under Assumptions 2–6, 4, and 8–11, for all c > 0,

Pr
(

T̂(t,tY) > c
)

→ 1 as n → ∞,

for each t ∈ Rk and each tY �= 0.

As is clear from the proof of Theorem 4 and, as anticipated in the discussion
after Theorem 1 in Section 3, under H1 the centering sequence in M̂2(tY) fails to
deliver a zero expected value for the statistic for each tY �= 0 as n → ∞. Hence, an
interesting feature of Theorem 4 is that the specific values of (t,tY) do not affect
test consistency provided tY �= 0.

5. SIMULATIONS

We report the results of a Monte Carlo experiment to examine the finite sample
performance of tests for model misspecification based on the T̂(t,tY) statistic in
(3.19), exploring both size and power. We generate data from the SAR specification
in (2.2), with an intercept and two regressors that are uniform random variables
Xid ∼iid U(0,4), d = 1,2, with parameter settings β0 = (0.7,2, − 1)′, λ0 = 0.4,
and sample sizes n ∈ {200,300,400,500,600,700}. Throughout this section, we
generate the matrix of instruments Z as WX (with exclusion of the column of
ones).7 The εi are generated, for i = 1, . . . ,n, as

εi = σiζi, (5.1)

with ζi ∼iid N (0,1) and we distinguish between two mechanisms for the scale
parameter σi:

a) Direct construction using the formula

σi = c
di∑n

j=1 dj/n
, (5.2)

where the constant c is set to unity and di denotes the number of neighbors of
unit i, such that, for each generic W, di = card(j : wij �= 0,i �= j).

b) σ 2
i s are randomly generated values from a chi-square distribution with 5 degrees

of freedom (χ2(5)).

7The pattern of results displayed in this section is virtually unchanged if we include higher-order lags of X, such as
W2X, or if we adopt the so-called optimal instruments as in Lee (2003).
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With both methods, the σi are kept fixed across simulations and across different
parameter scenarios. The heteroskedasticity design in (5.2) is in line with earlier
simulation work of Kelejian and Prucha (2010) and Arraiz et al. (2010) and is
motivated by situations in which heteroskedasticity arises as units across different
regions may have different numbers of neighbors.

Two different weight matrices are used:

1) Exponential distance weights, that is, wij = exp(−|�i − �j|)1(|�i − �j| < logn),

where �i is location of i along the interval [0,n] which is generated from
Unif [0,n].

2) W is randomly generated as an n × n symmetric matrix of zeros and ones,
where the number of “ones” is restricted at 10% of the total number of elements
in W.

These weight structures are empirically motivated as they mimic a distance-
based matrix generated from real data and a structure based on a contiguity
criterion among units. Both matrices are normalized by their respective spectral
norm. We generate each matrix once for each n and we keep them fixed across
1,000 replications and across different experimental scenarios.

The choice of pn and tY drives the trade-off between size and power for small
n and it becomes increasingly less important for test performance as n increases.
In this simulation exercise, we set pn = n1/3, t = (1.5,1.5,1.5)′ and tY = 0.4. An
additional analysis for different choices of tY and pn will be reported in Section
6. Also, similar to Bierens (1990), we replace the argument of the exponential
function in M̂1(t) in (3.11) with t′ tan−1 (Xi − X̄) for each i = 1, . . . ,n, where
tan−1 (Xi − X̄) = (tan−1 (Xi1 − X̄1), . . . , tan−1 (Xik − X̄k))

′ and X̄d denotes sample
mean for d = 1, . . . ,k. Given the support of X in this simulation exercise, the
tan−1 (·) contribution turns out to be virtually irrelevant. We stress the power
inadequacy of a test based only on M̂1(t) and the oversized performance of a test
based on M̂2(tY) only, by reporting for each of the following tables empirical sizes
and powers of the test based on T̂(t,tY) with both components of M̂(t,tY) in (3.11),
together with the corresponding results based separately on M̂1(t) and M̂2(tY) (in
round and square brackets, respectively).

We first examine the performance of the test statistic in (3.19) under H0 in (2.6),
and report in Tables 1 and 2 empirical sizes for nominal significance levels s =
0.1,0.05,0.01 and both weight matrix models (1) and (2) for the heteroskedasticity
design in (a) and (b), respectively. Both Tables 1 and 2 show that empirical size
converges to the nominal value as the sample size increases, with a noticeable
size distortion for the smallest sample sizes especially for scenario (1) with the
heteroskedasticity design given in (b). As expected from Claim 1 and in line with
our comment at the beginning of Section 4, the size of a test based solely on M̂1(t)
is stable across sample sizes and it is in line (or even superior to) with that based
on the full vector M̂(t,tY), while a test based on M̂2(tY) is oversized, especially for
smaller samples.
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Table 1. Empirical size with σi as in (a)

W (1) (2)

n\s 10% 5% 1% 10% 5% 1%

200 0.147
(0.098)[0.167]

0.074
(0.031)[0.106]

0.021
(0.005)[0.032]

0.109
(0.106)[0.121]

0.047
(0.04)[0.06]

0.010
(0.003)[0.014]

300 0.130
(0.088)[0.145]

0.075
(0.037)[0.089]

0.015
(0.002)[0.032]

0.098
(0.083)[0.126]

0.040
(0.034)[0.061]

0.004
(0.004)[0.011]

400 0.122
(0.086)[0.140]

0.051
(0.036)[0.079]

0.013
(0.004)[0.020]

0.095
(0.082)[0.114]

0.039
(0.030)[0.058]

0.005
(0.004)[0.007]

500 0.086
(0.095)[0.118]

0.052
(0.037)[0.079]

0.007
(0.007)[0.01]

0.097
(0.089)[0.111]

0.046
(0.036)[0.056]

0.010
(0.005)[0.011]

600 0.097
(0.089)[0.101]

0.053
(0.046)[0.055]

0.016
(0.005)[0.013]

0.101
(0.101)[0.113]

0.043
(0.044)[0.051]

0.007
(0.006)[0.005]

700 0.096
(0.108)[0.106]

0.046
(0.052)[0.053]

0.008
(0.006)[0.01]

0.099
(0.093)[0.128]

0.048
(0.045)[0.057]

0.010
(0.006)[0.009]

Note: Test of H0 in (2.6) based on T̂(t,tY ) in (3.19) for nominal significance levels s ∈ {10%,5%,1%}.
The empirical size of the M̂1(t) (M̂2(tY )) component-only test is reported in round (square) brackets.

Table 2. Empirical size with σi as in (b)

W (1) (2)

n\s 10% 5% 1% 10% 5% 1%

200 0.185
(0.105)[0.212]

0.116
(0.045)[0.145]

0.052
(0.003)[0.069]

0.126
(0.101)[0.156]

0.056
(0.037)[0.074]

0.015
(0.004)[0.015]

300 0.152
(0.079)[0.188]

0.101
(0.029)[0.122]

0.035
(0.004)[0.049]

0.116
(0.084)[0.141]

0.056
(0.039)[0.079]

0.007
(0.004)[0.015]

400 0.113
(0.094)[0.139]

0.059
(0.030)[0.075]

0.020
(0.005)[0.022]

0.103
(0.075)[0.145]

0.043
(0.029)[0.069]

0.007
(0.004)[0.009]

500 0.118
(0.091)[0.144]

0.066
(0.038)[0.084]

0.011
(0.004)[0.021]

0.095
(0.088)[0.135]

0.051
(0.033)[0.056]

0.009
(0.002)[0.016]

600 0.108
(0.105)[0.123]

0.062
(0.044)[0.069]

0.023
(0.006)[0.025]

0.106
(0.103)[0.124]

0.047
(0.045)[0.057]

0.003
(0.003)[0.006]

700 0.107
(0.104)[0.122]

0.054
(0.046)[0.065]

0.009
(0.007)[0.016]

0.104
(0.093)[0.127]

0.049
(0.030)[0.062]

0.005
(0.001)[0.008]

Note: Test of H0 in (2.6) based on T̂(t,tY ) in (3.19) for nominal significance levels s ∈ {10%,5%,1%}.
The empirical size of the M̂1(t) (M̂2(tY )) component-only test is reported in round (square) brackets.

The empirical power of the test T̂(t,tY) was explored in several experiments
covering different models, significance levels, and sample sizes. The first scenario
aims to show test performance under functional form misspecification. In place of
a linear function, the true spatial regression model is assumed to be

Yi = λ0

n∑
j=1

wijYj +X′
iβ0 + 1

4
X2

i1 + εi, i = 1, . . . ,n, (5.3)

and the misspecified linear SAR with no quadratic term was estimated. Again,
we set λ0 = 0.4 and β0 = (0.7,2, − 1)′. Test power is reported in Table 3 and is
evidently close to unity for all sample sizes. The left panel of Table 3 reports results
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Table 3. Empirical power under functional form misspecification

σi (a) (b)

n\s 10% 5% 1% 10% 5% 1%

200 0.962
(0.553)[0.935]

0.924
(0.359)[0.895]

0.832
(0.083)[0.790]

0.874
(0.362)[0.849]

0.808
(0.200)[0.802]

0.691
(0.048)[0.707]

300 0.968
(0.683)[0.939]

0.940
(0.539)[0.901]

0.854
(0.188)[0.795]

0.888
(0.477)[0.865]

0.837
(0.316)[0.796]

0.702
(0.083)[0.679]

400 0.972
(0.813)[0.904]

0.955
(0.691)[0.866]

0.859
(0.357)[0.716]

0.901
(0.584)[0.817]

0.833
(0.414)[0.737]

0.637
(0.148)[0.572]

500 0.980
(0.899)[0.876]

0.960
(0.802)[0.804]

0.854
(0.492)[0.636]

0.893
(0.646)[0.796]

0.824
(0.506)[0.704]

0.645
(0.216)[0.524]

600 0.990
(0.934)[0.866]

0.971
(0.876)[0.791]

0.883
(0.623)[0.574]

0.901
(0.726)[0.743]

0.838
(0.605)[0.638]

0.613
(0.309)[0.415]

700 0.998
(0.973)[0.913]

0.992
(0.929)[0.856]

0.948
(0.720)[0.688]

0.944
(0.790)[0.786]

0.890
(0.663)[0.700]

0.719
(0.375)[0.519]

Note: Test of H0 in (2.6) against H1 in (2.7) when the true model is (5.3) with nominal significance
levels s ∈ {10%,5%,1%} and W chosen as in (1). The empirical power of M̂1(t) (M̂2(tY )) is reported
in round (square) brackets.

for the weight matrix model (1) and the heteroskedasticity design in (a), whereas
the right panel reports results for σ 2

i generated as in (b). From Table 3, empirical
power is very high for all sample sizes and, as expected, the practical performance
is substantially superior when the test is based on the full vector M̂(t,tY) rather than
on M̂1(t) only. Incidentally, the power of a test based on the second component of
M̂2(tY) (in square brackets) is itself lower than the corresponding quantity based
on the full vector M̂(t,tY), revealing that inclusion of the first component may
increase power when misspecification involves individual components of X. Also,
the pattern of empirical power when the test is based on both components, rather
than just the second one, shows a steadier increasing trend toward unity with the
sample size. To this extent, the inclusion of the first component might play a useful
role in stabilizing variability of the test statistic.

To address weight matrix misspecification, the following two scenarios were
considered:

i) Both true and misspecified matrices are generated as in (1) but with two
independent sets of locations.

ii) The true matrix is (2) but the practitioner erroneously estimates parameters in
(2.2) using W as in (1).

In Tables 4 and 5, we report results for scenarios (i) and (ii) (left and right panels,
respectively) for both heteroskedasticity designs (a) and (b). From the figures in
round brackets of Tables 4 and 5, we notice that a test based on M̂1(t) has power
that is roughly equal to size for all sample sizes. The performance of our combined
test is instead satisfactory for all sample sizes. It is worth noting that power based
on M̂2(t) (in square brackets) is always slightly superior to that obtained with both
components of the vector M̂(t,tY). This slight loss of power against weight matrix
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Table 4. Empirical power under W misspecification with σi as in (a)

(i) (ii)

n\s 10% 5% 1% 10% 5% 1%

200 0.794
(0.089)[0.828]

0.752
(0.035)[0.784]

0.682
(0.001)[0.711]

0.777
(0.098)[0.799]

0.742
(0.043)[0.768]

0.667
(0.004)[0.699]

300 0.807
(0.069)[0.832]

0.761
(0.030)[0.793]

0.683
(0.005)[0.716]

0.779
(0.092)[0.811]

0.748
(0.040)[0.773]

0.673
(0.002)[0.698]

400 0.817
(0.108)[0.837]

0.777
(0.050)[0.805]

0.709
(0.007)[0.736]

0.783
(0.113)[0.798]

0.739
(0.051)[0.764]

0.667
(0.007)[0.689]

500 0.820
(0.104)[0.837]

0.790
(0.048)[0.807]

0.703
(0.005)[0.734]

0.791
(0.101)[0.817]

0.763
(0.038)[0.789]

0.695
(0.006)[0.716]

600 0.831
(0.085)[0.849]

0.796
(0.045)[0.821]

0.724
(0.006)[0.754]

0.790
(0.098)[0.813]

0.756
(0.052)[0.773]

0.680
(0.006)[0.708]

700 0.858
(0.101)[0.877]

0.829
(0.040)[0.851]

0.752
(0.005)[0.788]

0.810
(0.121)[0.847]

0.774
(0.052)[0.807]

0.701
(0.010)[0.744]

Note: Test of H0 in (2.6) against H1 in (2.7) under scenarios (i) and (ii), with nominal significance
levels s ∈ {10%,5%,1%}. The empirical power of M̂1(t) (M̂2(tY )) is reported in round (square) brackets.

Table 5. Empirical power under W misspecification with σi as in (b)

(i) (ii)

n\s 10% 5% 1% 10% 5% 1%

200 0.804
(0.106)[0.812]

0.768
(0.043)[0.790]

0.700
(0.006)[0.730]

0.837
(0.098)[0.865]

0.806
(0.036)[0.830]

0.747
(0.004)[0.767]

300 0.811
(0.083)[0.834]

0.767
(0.029)[0.801]

0.692
(0.004)[0.721]

0.856
(0.082)[0.872]

0.832
(0.026)[0.847]

0.776
(0.004)[0.800]

400 0.830
(0.088)[0.850]

0.795
(0.028)[0.822]

0.725
(0.002)[0.752]

0.874
(0.100)[0.887]

0.856
(0.034)[0.871]

0.818
(0.004)[0.832]

500 0.833
(0.095)[0.856]

0.808
(0.034)[0.828]

0.740
(0.050)[0.764]

0.85
(0.095)[0.870]

0.823
(0.032)[0.843]

0.760
(0.001)[0.783]

600 0.834
(0.089)[0.855]

0.796
(0.033)[0.822]

0.737
(0.002)[0.762]

0.843
(0.108)[0.858]

0.808
(0.054)[0.827]

0.755
(0.005)[0.781]

700 0.864
(0.101)[0.881]

0825
(0.051)[0.856]

0.757
(0.010)[0.779]

0.881
(0.073)[0.892]

0.853
(0.033)[0.872]

0.795
(0.003)[0.821]

Note: Test of H0 in (2.6) against H1 in (2.7) under scenarios (i) and (ii), with nominal significance
levels s ∈ {10%,5%,1%}. The empirical power of M̂1(t) (M̂2(tY )) is reported in round (square) brackets.

misspecification entailed by inclusion of the first component of M̂(t,tY) is the cost
to obtain size stability (as displayed in Tables 1 and 2) and an increase in power
against some forms of misspecification (as displayed in Table 3).

We also consider test power against misspecification of the model itself by
generating data based on the SD and SLX models (defined in (4.2) and (4.3),
respectively), with parameter values β0 = (0.7,2,−1)′, λ0 = 0.4, and γ0 = (0.5,1)′
in (4.2), and β0 = (0.7,2, − 1)′, λ0 = 0.4, and γ0 = (1.2,1)′ for the parameters
in (4.3). The settings for γ0 are two-dimensional vectors as the spatial lag of
the intercept is not included. In both cases, the same exponential distance weight
described in (1) is used for the true and misspecified models. Tables 6 and 7 report
results for the heteroskedasticity design in (a) and (b), respectively. The results in

https://doi.org/10.1017/S0266466624000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000173


HETEROSCEDASTICITY ROBUST SPECIFICATION TESTING 23

Table 6. Empirical power under model misspecification with σi as in (a)

Model SD SLX

n\s 10% 5% 1% 10% 5% 1%

200 0.916
(0.166)[0.931]

0.872
(0.094)[0.900]

0.755
(0.026)[0.807]

0.740
(0.155)[0.814]

0.630
(0.082)[0.726]

0.412
(0.012)[0.487]

300 0.891
(0.161)[0.924]

0.858
(0.071)[0.893]

0.734
(0.019)[0.778]

0.744
(0.138)[0.808]

0.639
(0.067)[0.725]

0.374
(0.013)[0.486]

400 0.971
(0.147)[0.984]

0.954
(0.093)[0.969]

0.899
(0.021)[0.934]

0.881
(0.118)[0.928]

0.816
(0.061)[0.878]

0.595
(0.013)[0.706]

500 0.936
(0.189)[0.953]

0.895
(0.123)[0.929]

0.751
(0.026)[0.834]

0.747
(0.196)[0.819]

0.633
(0.106)[0.716]

0.367
(0.030)[0.461]

600 0.967
(0.224)[0.969]

0.937
(0.137)[0.954]

0.828
(0.035)[0.874]

0.828
(0.217)[0.858]

0.738
(0.135)[0.791]

0.470
(0.032)[0.542]

700 0.993
(0.148)[0.995]

0.982
(0.087)[0.989]

0.962
(0.018)[0.962]

0.921
(0.133)[0.940]

0.849
(0.067)[0.911]

0.628
(0.014)[0.742]

Note: Test of H0 in (2.6) against H1 in (2.7) when the true models are SD in (4.2) and SLX in (4.3),
with nominal significance level s. The empirical power of the first (second) component-only test is
reported in round (square) brackets.

Table 7. Empirical power under model misspecification with σi as in (b)

Model SD SLX

n\s 10% 5% 1% 10% 5% 1%

200 0.772
(0.135)[0.826]

0.666
(0.059)[0.755]

0.461
(0.003)[0.534]

0.625
(0.110)[0.712]

0.477
(0.062)[0.587]

0.225
(0.007)[0.319]

300 0.798
(0.110)[0.858]

0.711
(0.057)[0.787]

0.507
(0.007)[0.588]

0.671
(0.112)[0.749]

0.546
(0.052)[0.638]

0.273
(0.008)[0.388]

400 0.906
(0.122)[0.948]

0.850
(0.063)[0.913]

0.646
(0.007)[0.748]

0.746
(0.113)[0.838]

0.632
(0.050)[0.742]

0.324
(0.004)[0.466]

500 0.914
(0.163)[0.934]

0.881
(0.079)[0.904]

0.713
(0.019)[0.791]

0.661
(0.145)[0.775]

0.531
(0.069)[0.65]

0.264
(0.011)[0.356]

600 0.901
(0.163)[0.937]

0.844
(0.098)[0.892]

0.627
(0.023)[0.752]

0.791
(0.146)[0.847]

0.676
(0.081)[0.772]

0.384
(0.014)[0.512]

700 0.944
(0.206)[0.972]

0.910
(0.132)[0.950]

0.780
(0.041)[0.840]

0.806
(0.108)[0.895]

0.682
(0.048)[0.798]

0.350
(0.008)[0.530]

Note: Test of H0 in (2.6) against H1 in (2.7) when the true models are SD in (4.2) and SLX in (4.3),
with nominal significance level s. The empirical power of the first (second) component-only test is
reported in round (square) brackets.

Tables 6 and 7 show good performance of our test in this case, in contrast to the
test based on M̂1(t) for which power is only marginally larger than nominal size.
Again, as discussed in the context of Tables 4 and 5, from the figures in square
brackets, we notice that the inclusion of the first component entails a small loss in
power compared to the full test.

In addition to reporting power against a fixed alternative (i.e., the weights are
fully misspecified), as in Tables 4 and 5, we consider a “true” data generating
process in which the level of misspecification increases with sample size as

√
n,

that is,

Y = (I −λ0W − τ0(V −W))−1(Xβ0 + ε), (5.4)
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Table 8. Empirical power under W misspecification with τ0 = 0.4
√

n/
√

700,
s = 5%

(i), (a) (i), (b) (ii), (a) (ii), (b)

n T̂(t,tY ) Moran-I T̂(t,tY ) Moran-I T̂(t,tY ) Moran-I T̂(t,tY ) Moran-I

200 0.291
(0.038)[0.347]

0.013 0.535
(0.039)[0.562]

0.018 0.232
(0.041)[0.269]

0.027 0.574
(0.034)[0.605]

0.015

300 0.376
(0.030)[0.430]

0.012 0.601
(0.029)[0.634]

0.014 0.366
(0.030)[0.428]

0.017 0.639
(0.033)[0.675]

0.017

400 0.451
(0.049)[0.500]

0.018 0.685
(0.043)[0.732]

0.017 0.411
(0.059)[0.453]

0.023 0.745
(0.052)[0.772]

0.016

500 0.617
(0.028)[0.661]

0.025 0.706
(0.033)[0.735]

0.018 0.554
(0.037)[0.599]

0.021 0.740
(0.034)[0.770]

0.025

600 0.752
(0.037)[0.785]

0.021 0.774
(0.035)[0.793]

0.032 0.669
(0.039)[0.697]

0.028 0.778
(0.041)[0.808]

0.011

700 0.829
(0.040)[0.851]

0.020 0.825
(0.051)[0.856]

0.018 0.774
(0.052)[0.807]

0.015 0.853
(0.033)[0.872]

0.017

Note: Test of H0 in (2.6) against H1 in (2.7) when the true data generating process is given by (5.4)
with τ0 = 0.214,0.262,0.302,0.338,0.370,0.4 for n = 200,300,400,500,600,700, respectively. The
empirical power of M̂1(t) (M̂2(tY )) is reported in round (square) brackets.

where W is, consistently with previous notation, the weighting structure adopted
by the practitioner. In the left panel of Table 8, we report results for scenario (i)
for both heteroskedasticity structures in (a) and (b), while the right panel reports
corresponding results for scenario (ii). We set the parameter τ0 = τ0n, which
controls the amount of misspecification, as τ0n = 0.4

√
n/

√
700. The latter choice is

driven by the fact that we need to guarantee invertibility of (I −λ0W −τ0(V −W))

and for the largest sample size of n = 700, we have τ0 = 0.4, which in turn
corresponds to the fixed alternative reported in Tables 4 and 5. For each scenario
and each sample size, we also report the comparison with power obtained by
the heteroskedasticity robust version of the Moran-I test with asymptotic critical
values, as given in Kelejian and Prucha (2001). As expected, power increases
steadily with n when the test statistic is either the combined one in (3.11) or its
second component only, M̂2(tY), while a test based on M̂1(t) has virtually no power.
Also, power of the robust version of Moran I is inferior to size for all n.

We conclude this section by reporting a small simulation to assess finite sample
support for Claim 2. According to this claim, consistency of a test based on M̂1(t)
is expected to fail when the maximum number of nonzero elements in each row of
V does not exceed

√
n. Claim 2 does not indicate that a test based on M̂1(t) would

be consistent if the order of the number of nonzero elements exceeds
√

n for some
number of rows in V, but intuition suggests that power should increase with the
number of nonzero elements in the rows of V. To assess this intuition, we set the
true data generating process as

Y = (I −λ0W − τ0V)−1(Xβ0 + ε), (5.5)
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Table 9. Empirical power of M̂1(t) for varying sparsity of W misspecification

n\p 0.001 0.01 0.02 0.08 0.15 0.30

200 0.121 0.124 0.164 0.270 0.309 0.357

300 0.113 0.114 0.156 0.242 0.284 0.341

400 0.082 0.100 0.165 0.256 0.313 0.353

500 0.072 0.114 0.225 0.248 0.302 0.332

600 0.065 0.114 0.143 0.240 0.263 0.312

700 0.063 0.118 0.146 0.225 0.290 0.292

Note: Test of H0 in (2.6) against H1 in (2.7) based on M̂1(t), with nominal significance level s = 5%.
σi generated as in (a).

with τ0 = 0.4, weight matrix W generated as a Toeplitz circulant structure with
two-behind and two-ahead neighbors and each row a cyclic shift of the row above
it, X, β0, and λ0 as described at the beginning of this section and εi, i = 1, . . . ,n, as
in (5.1) with σi as in design (a). The deviation matrix V is constructed, once for each
scenario, as follows: the elements in each row of V are generated as independent
Bernoulli random variables with parameter p = 0.001,0.01,0.02,0.08,0.15,0.30.
The first three choices of p correspond to “sparse” rows of V (i.e., number
of nonzero elements smaller than

√
n), while p = 0.8,0.15,0.30 correspond to

“dense” rows (i.e., number of nonzero elements larger than
√

n). Both matrices
W and V are rescaled so that each column sums to unity.8 In Table 9, we report
power for s = 5% in the aforementioned scenarios.

From the results in Table 9, it is clear that power fails to increase with n, so
consistency of a Bierens-type test based on M̂1(t) is not assured, at least in this
particular design, even for the empirically unnatural scenario with “dense” rows
of V. As expected, power does increase with the probability of nonzero elements p
in V, that is, the power of a simple test based on M̂1(t) improves with the number
of nonzero elements in the rows of V.

6. PRACTICAL IMPLEMENTATION OF THE TEST: A HEURISTIC
DISCUSSION

This section offers some practical illustrations regarding the choice of the ratio
tY/pn, while acknowledging from our simulation work that the choice of t does
not materially affect either size or power. As illustrated in Section 4, the test
remains consistent for any value of tY �= 0 and pn satisfying (3.10). However,
the ratio tY/pn impacts the finite sample properties of the test and requires some
practical investigation, even though a formal analysis of local power of our test
to establish an optimal ratio tY/pn remains beyond our scope. Also, under H0,

8The pattern of results remains the same even for alternative choices of normalization.
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Table 10. Empirical size with W chosen as in (1) and σi generated as in (a)

n\(tY/pn) 0.3/n1/3 0.5/n1/3 0.4/ log(n) 0.4/n2/3

200 0.044 0.164 0.103 0.023

300 0.044 0.122 0.101 0.032

400 0.055 0.106 0.096 0.046

500 0.039 0.067 0.069 0.044

600 0.049 0.076 0.082 0.050

700 0.042 0.081 0.078 0.042

Note: Test of H0 in (2.6) against H1 in (2.7) based on T̂(t,tY ) in (3.19), with nominal significance level
s = 5% and various combinations of tY/pn.

Table 11. Empirical power under scenario (ii) with σi generated as in (a)

n\(tY/pn) 0.3/n1/3 0.5/n1/3 0.4/ log(n) 0.4/n2/3

200 0.570 0.846 0.786 0.044

300 0.578 0.871 0.847 0.019

400 0.535 0.852 0.843 0.022

500 0.538 0.856 0.871 0.017

600 0.497 0.850 0.875 0.015

700 0.528 0.860 0.893 0.012

Note: Test of H0 in (2.6) against H1 in (2.7) based on T̂(t,tY ) in (3.19), with nominal significance level
s = 5% and various combinations of tY/pn.

the rate of the sequence pn affects the rate of the remainder term in the expansion
reported in Theorem 1 and thus the error of the central limit theorem approximation
reported in Theorem 2. On one side, a fast-diverging pn (or, equivalently, a small
tY/pn) guarantees size stability, as the error of the approximations in Theorems 1
and 2 would then be small. On the other side, a slow diverging pn (equivalently,
a large tY/pn) increases the power of the test as it assures relevance to the
second component of (3.11) via substantial covariation between the reduced form
residuals and the exponential term tY(Yi − Ȳ)/pn. In Tables 10 and 11, we report,
respectively, size and power for some combinations of tY/pn. Table 10 is to be
compared with the left panel of Table 1; Table 11 is to be compared with the right
panel of Table 4. Description of the respective scenarios was reported in Section 5
and is not repeated here. In order to avoid overly large tables, we only report
here results corresponding to s = 5%, although a similar pattern was detected in
unreported simulations for s = 10% and s = 1%. We remind the reader that results
in Section 5 have been obtained with tY = 0.4 and pn = n1/3.

From results displayed in Table 10, we infer that for each combination of tY/pn

empirical sizes approach the nominal 5%. However, as expected, the finite sample
size distortion is more severe for larger tY/pn. On the other hand, from Table 11,
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we notice that power against network misspecification drops even below size for
a fast-diverging pn, while it achieves its maximum for the smallest ratios tY/pn.
Thus, our choice of tY/pn adopted in Section 5 seems to offer the most reasonable
compromise between size stability and power against the most problematic sources
of misspecification, that is, that concerning the weighting structure.

As discussed in Claims 1 and 2 and further supported in Tables 3–8, our test
statistic has the highly unusual special property that its first component-only
version (i.e., based on M̂1(t)) can detect some misspecification with respect to X
but dramatically fails in presence of misspecification of spatial linkages, while the
second component-only version (i.e., based on M̂2(tY)) can detect misspecification
in both directions. Hence, when a given specification is rejected by our full
test statistic T̂(t,tY) in (3.11), disparity between conclusions of the two single-
component variants could indicate misspecification in the direction of spatial
linkages. There is a body of literature on specification search methods for spatial
econometric models, (see, e.g., Florax, Folmer, and Rey, 2003; Elhorst, 2010).
Development of a multistep specification search method is beyond the scope of
the current paper while the unique feature of our test in having two components
that are suited for different directions of misspecification could be a promising
avenue of future work that may overcome the current limitations of specification
search methods, most notably the intractability of significance levels of sequential
tests.

7. EMPIRICAL ILLUSTRATION

Investigating the possible existence and nature of interaction between neighboring
government tax setting decisions is a question of much importance at both national
and international levels. Many countries have witnessed a common trend of
decreasing corporate tax rates over recent decades, which has been typically
attributed to competition between neighboring governments in their attempts to
attract mobile business ventures. This phenomenon has generated policy debates
on the desirability of intervention to curb tax competition between local and
national governments. Chirinko and Wilson (2017) provide some recent examples
in the US and EU. Spatial econometric modeling has been widely applied to
investigate the presence of such fiscal interaction. Empirical results have frequently
found evidence of positive dependence in neighboring government tax rates (see
Allers and Elhorst, 2005 and the references therein for an extensive list of empirical
papers and results). Findings in these studies broadly support the commonly held
view that competition for mobile tax bases has led to a harmful “race to the bottom”
in tax rates and subsequent underprovision of public goods.

Some recent empirical papers, concerned by possible endogeneities and model
misspecification in previous work, have applied alternative estimation strategies
for the spatial interaction in tax rates, aiming to mitigate the effects of endogeneity
due to misspecification and to present findings that contrast with earlier literature.
Lyytikäinen (2012), in particular, used policy-based instrumental variables (IV) to
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estimate the spatial autoregressive parameter in SAR models with fixed effects. He
found this parameter to be insignificant, in contrast to the preceding literature (e.g.,
Allers and Elhorst, 2005). Lyytikäinen (2012) additionally reported positive and
highly significant spatial parameter estimates based on standard SAR using QMLE
and 2SLS without accounting for fixed effects, which is representative of the
aforementioned literature’s model specifications. The contradiction suggests that
caution should be exercised in accepting the findings of previous work showing
positive spatial dependence in neighboring government tax rates. He points out that
the fitted standard SAR model is unlikely to be correctly specified in practice and
that the resulting residual spatial correlation in the errors may result in regressor
endogeneity and biased findings. Lyytikäinen (2012) does not consider explicitly
the problem of misspecification of the weight matrix W but notes that standard
techniques are likely to fail to deliver credible inference if the SAR models are not
correctly specified.

This section presents empirical applications of our specification test to data from
Lyytikäinen (2012) with the aim of assessing the suitability of SAR specifications
in analyzing tax competition data. We find that careful consideration of model
specification, similar to that used for policy-based IV estimation, helps to mitigate
significantly the noted disparity in the conclusions drawn from the estimates of
conventional SAR (without individual fixed effects), and, the refined SAR model
estimated by Lyytikäinen (2012). These findings highlight the usefulness of spec-
ification testing. The test procedure developed in the present paper may therefore
provide a valid starting point toward developing a suitable SAR specification when
alternative models and/or estimation techniques (such as policy-based IV) are
not immediately available in practical work to deal with potential endogeneities
induced by misspecification.

Finland’s municipalities have autonomy to set their own property tax rates
within limits set by the central government. In order to investigate the nature of
possible inter-municipality interaction in the determination of Finnish property
tax rates, Lyytikäinen (2012) used a SAR model with fixed effects such that

tit = λ

n∑
j=1

wijtjt +X′
itβ +μi + τt + εit, (7.1)

where tit denotes either municipality i’s general property tax rates or residential
building tax rates in year t, and μi and τt are municipality and year fixed effects,
respectively. The regressors Xit are the municipality’s socioeconomic attributes
including per capita income, per capita grants, unemployment rate, percent of age
0–16, percent of age 61–75 and percent of age 75+. We refer to Lyytikäinen (2012)
for a detailed description of the data and setting.

In order to alleviate possible endogeneity sources arising from unobservable
time-invariant characteristics, Lyytikäinen (2012) focused on 1-year differenced
data, with �ti = ti,2000 − ti,1999 and �Xi = Xi,2000 − Xi,1999, where year 2000
coincides with a policy intervention that raised the common statutory lower limit
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to the property tax rates, and i indexes municipalities that range from 1 to 411. This
exogenous policy change was used to construct a suitable instrument and estimate
parameters of the model

�ti = λ

n∑
j=1

wij�tj +�X′
iβ +γ0 +γ1Pi +γ2Mi +�εi, i = 1, . . . ,411, (7.2)

where �εi = εi,2000 − εi,1999, Pi is a dummy variable indicating whether the 1998
tax rate level for municipality i was below the new lower limit imposed in 2000,
and Mi indicates the magnitude of the imposed increase for municipality i. Pi and
Mi were included to ensure exogeneity of the instrument being used. Lyytikäinen
(2012) found the spatial parameter λ to be insignificant for both sets of regressions
with either general property tax rate or residential building tax rate, and hence
concluded the absence of substantial tax competition between municipalities in
Finland.

For comparability with the policy-based IV estimator in Lyytikäinen (2012), we
consider the model based on differenced data, that is, model (7.2) with differences
taken between 2000 and 1999, and model (7.2) with quantities re-defined as
�ti = ti,2001 − ti,2000 and �Xi = Xi,2001 − Xi,2000 and �εi = εi,2001 − εi,2000. While
Lyytikäinen (2012) uses policy-based IV to estimate the parameters, we use WX as
the instrument in 2SLS estimation. As in Lyytikäinen (2012), we adopt a contiguity
matrix with wij = 1 if municipalities i and j share a border and zero otherwise, and
apply a row normalizing transformation to obtain W. We set pn = n1/3 as in the
simulation exercises. Further, in the first component of M(θ̂,t,tY) of (3.11), we
use exp(t′ tan−1 (Xi − X̄) rather than exp(t′Xi), for i = 1, . . . ,n. The choice of the

k-vector t = t0(1,1, . . . ,1)′ is calibrated so that
n∑

i=1
exp(t′ tan−1(Xi − X̄))/n = 10,

where 10 is approximately the value of this average in the simulation setup. Once
the value of t0 is established, tY is fixed so that t0/tY = 3.75, as in Section 5.
Results for both general and residential building property tax rates are reported in
columns 1–4 of Table 12, where columns 1 and 2 contain results with differences
calculated between 2001 and 2000 and between 2000 and 1999, respectively, for
general property tax rates, and columns 3 and 4 contain corresponding results for
residential building tax rates.

Evidently, all four estimates of λ are insignificant, in agreement with what
Lyytikäinen (2012) found with his policy-based IV estimation. This is in contrast to
the λ estimates from conventional SAR models without municipality fixed effects,
Pi and Mi that Lyytikäinen (2012) used as a comparison. Our specification test
strongly rejects the model with differences taken between 2001 and 2000 for
general property tax rate, but does not reject in the other three columns. In the
rejected case, λ̂ was above unity with a large standard error, indicating a possible
mismatch between the model and the data at hand and it is helpful to discard this
case based on our specification test.
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Table 12. Estimates and specification tests from first-differenced model (7.2)

General Residential

1 2 3 4

λ̂ 1.2921
(1.5343)

0.0352
(0.264)

0.4781
(1.1619)

0.1734
(0.6727)

T̂(t,tY ) 766.62∗∗∗ 0.0817 1.0096 0.0759

Note: Left panel: Columns 1 and 2 report 2SLS estimates of λ and their t-statistics (in brackets), and the
value of the test T̂(t,tY ), with differences taken between 2001 and 2000 and between 2000 and 1999,
respectively, with general property tax rate as the dependent variable. Right panel: Columns 3 and 4
report results with differences taken between 2001 and 2000 and between 2000 and 1999, respectively,
with residential building tax rate as the dependent variable. Row-normalized weight matrices are used.
*p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.

Table 13. Estimates and specification tests from (7.1)

General Residential

1 2 3 4

λ̂ 0.4829
(0.016)

0.3191∗∗∗
(4.357)

0.5106
(0.029)

0.3115∗∗∗
(2.823)

T̂(t,tY ) 0.014 11.606∗∗∗ 0.111 8.141∗∗

Municipality FE Yes Yes

Note: Left panel: Columns 1 and 2 report 2SLS estimates of λ and their t-statistics (in brackets), and
the value of the test T̂(t,tY ) for model (7.1) with lagged Xit−1 with and without municipality fixed
effects, respectively, with the general property tax rate as dependent variable. Right panel: Columns 3
and 4 report results for model (7.1) with lagged Xit−1 with and without municipality fixed effects,
respectively, with the residential building tax rate as dependent variable. Row-normalized weight
matrices are used. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01. Data from 1993 to 2001.

We have so far used differenced data for comparability with the policy-based IV
estimation results of Lyytikäinen (2012). We now apply our specification test to
pooled-level data in typical specifications used in conventional spatial literature,
to see if it can be useful in finding suitable SAR specifications. We pool data of
all available years 1993–2001 and estimate (7.1) with lagged Xit−1 which was
suggested in Lyytikäinen (2012) as a typical SAR specification used in the tax
competition literature with municipality fixed effects omitted (i.e., μi = 0,i =
1, . . . ,n). Carrying out a pooled estimation is a plausible scenario if the practitioner
is not aware of the aforementioned policy intervention that was implemented in
2000. The danger of such analysis is obtaining spuriously inflated SAR coefficients
from the direct impacts of the tax policy: because of the pre-existing positive spatial
correlation in property tax rates of neighboring municipalities a municipality
whose neighbors are affected by the policy of raising the common statutory lower
bound is also likely to experience an imposed increase in tax rate.

We report λ̂ and our specification test results for (7.1) with lagged Xit−1 and
with and without municipality fixed effects in Table 13. For both general property
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and residential building tax rates, the models that omit municipality fixed effects
report significant SAR coefficients but are rejected by our specification test. In con-
trast, the models that include municipality fixed effects report insignificant SAR
coefficients and are not rejected by the specification test. The implication is that
incorporating municipality fixed effects is important for these data, illustrating how
our specification test can provide guidance in finding suitable SAR specifications.
Although a full replication of the results in Lyytikäinen (2012) is not attempted,
the specification test findings and the empirical results in Tables 12 and 13 suggest
that 2SLS estimates of appropriate SAR models deliver results that are in line with
the policy-based IV estimator of Lyytikäinen (2012).

8. CONCLUDING REMARKS

This paper provides a substantial modification of the Bierens conditional moment
test designed to suit the needs of spatial modeling. The test statistic has a conve-
nient standard chi-square limit theory and is consistent against general alternatives
including those that involve functional form, the spatial/network specification, and
weight matrix formulation. To the best of our knowledge, this is the first test in
the literature to have power to detect misspecification in the latter two cases. In
view of complications arising from the presence of spatial interactions, the test
is specifically constructed to address potential misspecifications in weight matrix
components that involve an increasing number of spatial links. A new moment
condition is introduced to achieve sensitivity to such misspecification and, after
suitable centering and linearization, the resulting test statistic has a standard pivotal
limit distribution under the null hypothesis and a set of assumptions that regulate
the validity of the linearization process.

Since the test has a standard pivotal limit distribution under H0, it is straight-
forward to implement using asymptotic critical values and simulations reveal
that its practical performance is highly satisfactory with stable size and good
power against multiple sources of misspecification. The application of our test
to the municipality-level tax competition data from the study by Lyytikäinen
(2012) sheds some light on the much contested suitability of SAR modeling with
conventional estimation methods in the tax competition literature. In particular,
the specification tests conducted here corroborate the need for careful refinement
of the specification or methods designed to address induced endogeneity from
misspecification similar to the method Lyytikäinen (2012) used with policy-
based IV estimation. The present work has focused on specification testing in
the basic SAR model with possible heteroskedastic errors. The extension to
test for correct specification of a SD model requires some additional work to
account for dependence in the exogenous regressors induced by the term WX and
is currently under investigation in a separate work. More general applicability
requires adaptations of the proposed test to panel data settings.
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APPENDIX

We first introduce a technical condition, Assumption A1, which is used in the proof of
Theorem 1, to ensure that the linearization remains well defined on the tails of the joint
distribution of (Y1, . . . ,Yn). We then present Lemma A.1, followed by proofs of Theorems
1–4, proofs of Lemmas 1 and A.1, and lastly proofs of Claims 1 and 2.

Assumption A1. Let pn and αn be deterministic, positive sequences satisfying (3.10),
αn → ∞ as n → ∞, and

n3/2

pnα2+δ
n

→ 0 and
n

α2+δ
n

→ 0 (A.1)

as n → ∞, where δ > 0 is determined by the moment condition in Assumption 1.

Assumption A1 is a technical requirement on the relative expansion rates among the
sequences αn and pn, as n → ∞. The sequence αn is a technical device to ensure that the
expansion in Theorem 1 remains well defined on the tails of the distribution of (Y1, . . . ,Yn),
since the latter does not have bounded support. The practitioner does not have to choose
αn as it does not enter explicitly in the test statistics, but its rate impacts the error of the
approximation in Theorem 1 as becomes clear in the proof of Theorem 1, and thereby the
central limit theorem approximation in Theorem 2. Indeed, in the tail probability given in
(A.17) in that proof, it is evident that the properties of the sequence αn relate directly to the
distribution of εi via the Markov inequality

P

(
max
i≤n

|εi| > Kαn

)
= O

(
n

α2+δ
n

)
with

n

α2+δ
n

→ 0. (A.2)

More specifically, the heavier the tails of the distribution of the εi (i.e., the smaller is the
additional moment exponent δ in Assumption 1), the faster αn needs to diverge to guarantee
that n/α2+δ

n → 0.
Evidently, (A.2) and the properties of the sequence αn relate directly to the extreme

value properties of the innovations εi. Since Assumption 1 imposes a uniform bound on
the variance of εi, we can write εi = σiζi with uniformly bounded scale coefficients σi and
an i.i.d. sequence ζi. By extreme value theory, if ζi ∼iid N (0,1), we have max1≤i≤n|ζi| =
Op(

√
logn) and thus max1≤i≤n |εi| = Op(

√
logn). Thus, a sequence such as αn = nb with

any b > 0 satisfies (A.2). On the other hand, if ζi has Pareto tails of the form A(z)
|z|1+a

for some a ≥ 1 and A(z) = O(1) as |z| → ∞, then max1≤i≤n |ζi| = Op(n1/a) and hence
max1≤i≤n |εi| = Op(n1/a). Moreover, by standard extreme value distribution theory, for
example, Resnick (2008), for ζi, we would have

P( max
1≤i≤n

|ζi| ≤ x) ∼ e−1/xa
, as x → ∞. (A.3)

Correspondingly, given boundedness of the σis, for max1≤i≤n |εi|, we also have, as x → ∞,

P( max
1≤i≤n

|εi| ≤ x) ∼ e−1/xa
, (A.4)
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and hence P(max1≤i≤n |εi| ≥ x) ∼ 1 − e−1/xa ∼ 1
xa . It follows that any sequence αn for

which n1/a/αn → 0 will satisfy the second part in (A.2) since, under Assumption 1, a must
satisfy a > 2+ δ, with δ > 0.

Also, in view of n/α2+δ
n → 0, a sufficient condition for the first relative rate condition

in Assumption A1 to hold is
√

n/pn = O(1). In general, a fast diverging pn implies size
stability of our test. However, the slower pn is, the higher the power of the test against a
network misspecification, since a slow-diverging pn ensures a relevant covariation between
the reduced-form residuals and the exponential function eYi/pn , as appearing in (3.11). Thus,
choosing pn such that

√
n/pn = O(1) is not necessarily a good empirical strategy, even

though it would be compatible with Assumption A1. In Section 6, we discuss the relevant
practical implication of the choice of pn.

We state the following Lemma A.1 which is used in the proofs of theorems. The proof
of Lemma A.1 can be found after the proofs of the main theorems.

Lemma A.1. Let Assumptions 1–6 hold and pn satisfy (3.10). Let A = A(θ) be any generic
n×n matrix such that for all sufficiently large n and for all θ , |aij(θ)| = O(1) for all i,j =
1, . . . ,n, Â = A(θ̂), A = A(θ0) and 
 = diag(σ 2

1 , . . . ,σ 2
n ). Furthermore, we assume that

each component of A(θ) has continuous derivatives for each θ ∈ � and it is such that, for
each p = 1, . . . k +1, i,j = 1, . . . ,n,

∣∣∂aij(θ0)/∂θp
∣∣ = O(1), where ∂aij(θ0)/∂θp denotes the

partial derivative evaluated at θ = θ0. We obtain

tY√
npn

(
tr(Â
̂)− tr(A
)

)
= Op

(
1

pn

)
. (A.5)

Proofs of Theorems 1–4

Proof of Theorem 1. We start the proof of Theorem 1 by obtaining a Taylor expansion
of the uncentered statistic in (3.11) and thence deducing the correct sequence that ensures

(approximately) zero mean under H0. Let e(t) = (et′(X1−X̄), . . . ,et′(Xn−X̄))′ and e(tY ) =
(et′(Y1−Ȳ)/pn, . . . ,et′(Yn−Ȳ)/pn)′. In matrix form, the uncentered version of (3.11) is

1

n

(
e(t)′(Y −S−1(λ̂)Xβ̂)

e(tY )′(Y −S−1(λ̂)Xβ̂)

)
, (A.6)

and by MVT, we obtain

1

n

(
e(t)′(Y −S−1(λ̂)Xβ̂)

e(tY )′(Y −S−1(λ̂)Xβ̂)

)

= 1

n

(
e(t)′

e(tY )′
)

S−1(λ0)ε − 1

n

(
e(t)′

e(tY )′
)

S−1(λ̄)
(
R(λ̄)Xβ̄ X

)
(θ̂ − θ0), (A.7)

with ||β̄i −β0i|| < ||β̂i −β0i||, i = 1, . . . ,k, and ||λ̄−λ0|| < ||λ̂−λ0||. By plugging (3.3)
into (A.7), the latter becomes
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1

n

(
e(t)′

e(tY )′
)

S−1(λ0)ε

− 1

n

(
e(t)′

e(tY )′
)

S−1(λ̄)
(
R(λ̄)Xβ̄ X

)((
B′A−1B

)−1
B′A−1 1

n
Z′ε +Op

(
1

n

))

= 1

n

(
e(t)′

e(tY )′
)

S−1(λ0)ε

− 1

n

(
e(t)′

e(tY )′
)

S−1(λ̄)
(
R(λ̄)Xβ̄ X

)(
B′A−1B

)−1
B′A−1 1

n
Z′ε +Op

(
1

n

)
, (A.8)

where the last equality follows after observing that under Assumptions 2–5

1

n

(
e(t)′

e(tY )′
)

S−1(λ)
(
R(λ)Xβ X

) = Op(1) (A.9)

uniformly in θ ∈ �. We want to show that the centering sequence tY tr(Ŝd′
Q̂
̂)/pn allows

us to conclude

1√
n

(
e(t)′(Y −S−1(λ̂)Xβ̂)

e(tY )′(Y −S−1(λ̂)Xβ̂)− tY
pn

tr(Sd′
Q
)

)
= 1√

n
	(t)ε +op(1), (A.10)

for a suitable definition of 	(t). �

We start by a formal Taylor expansion of the exponential function in the second
component of (A.6) and we write

e
tY (Yi−Ȳ)

pn = 1+ tY (Yi − Ȳ)

pn
+ t2Y (Yi − Ȳ)2

2p2
n

+Op

(
(Yi − Ȳ)3

p3
n

)
. (A.11)

Since Yi, i = 1, . . . ,n, do not have bounded support in general, we ensure that
P

(
(Yi − Ȳ)/pn > K

)
remains sufficiently small for some arbitrarily large K as pn → ∞

by writing

e
tY (Yi−Ȳ)

pn = 1+ tY (Yi − Ȳ)

pn
P

(
max
i≤n

|εi| ≤ Kαn

)
+ tY (Yi − Ȳ)

pn
P(max

i≤n
|εi| > Kαn)

+ t2Y (Yi − Ȳ)2

2p2
n

P

(
max
i≤n

|εi| ≤ Kαn

)

+ t2Y (Yi − Ȳ)2

2p2
n

P(max
i≤n

|εi| > Kαn)+Op

(
(Yi − Ȳ)3

p3
n

)
, (A.12)

where αn and pn satisfy Assumption A1.9

Note that underH0, Yi − Ȳ = ∑
t
∑

j sd,itxtjβj +
∑

j sd,ijεj, where sd,ij denote the (i− j)th

element of Sd = S−1 − 1S̄−1′
, with S̄−1′ = ∑n

i=1 Si′/n. Thus, given Assumptions 2 and 5
and the functional form of mi in (2.3), mi is bounded and P(max

i≤n
|εi| ≤ K1αn) = P(max

j≤n
|Yj −

Ȳ| ≤ K2αn) for some suitable constants K1 and K2. Therefore, we can focus on the tail
probability of εi, i = 1, . . . ,n to suitably bound the tail probability of Yi. On the other hand,

9As discussed after Assumption A1, the tail behavior of εi plays a key role in determining αn
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under Assumptions 1, 2, and 5, the functional form of mi in (2.3) and the definition of Sd ,
we have

E(Yi − Ȳ)2 ≤ KE

⎛
⎝ n∑

j=1

sd,ijεj

⎞
⎠

2

≤ K
n∑

j=1

(sd,ij)2 ≤ Kmax
i,j≤n

|sd,ij|max
i≤n

n∑
j=1

|sd,ij| ≤ K,

(A.13)

so that, by Markov’s inequality, Yi − Ȳ = Op(1) for each i. Thus, from (A.13), the fourth
and fifth terms in (A.12) are Op(P(max

i≤n
|εi| < Kαn)/p2

n) and Op(P(max
i≤n

|εi| > Kαn)/p2
n),

respectively.
Now,

P

(
max
i≤n

|εi| ≤ Kαn

)
= P(|ε1| ≤ Kαn ∩|ε2| ≤ Kαn ∩·· ·∩ |εn| ≤ Kαn) =

n∏
i=1

P(|εi| < Kαn)

=
n∏

i=1

(1−P(|εi| > Kαn)) . (A.14)

By Markov’s inequality, for each i = 1, . . . ,n,

P(|εi| > Kαn) ≤ E|εi|2+δ

K2+δα2+δ
n

= O

(
1

α2+δ
n

)
= o(1), (A.15)

where the first equality follows under Assumption 1 for δ > 0 and the last equality follows
from Assumption A1. Thus

P

(
max
i≤n

|εi| ≤ Kαn

)
= 1+O

(
n

α2+δ
n

)
, (A.16)

where the accuracy of the latter approximation increases for a given αn when δ is large (i.e.,
when the distribution of the εi is thin-tailed). Also, from (A.16),

P

(
max
i≤n

|εi| > Kαn

)
= 1−P

(
max
i≤n

|εi| ≤ Kαn

)
= O

(
n

α2+δ
n

)
, (A.17)

and therefore the RHS of (A.12) can be written as

1+ tY (Yi − Ȳ)

pn
P

(
max
i≤n

|εi| ≤ Kαn

)

+ tY (Yi − Ȳ)

pn
×O

(
n

α2+δ
n

)
+Op

(
max

(
1

p2
n
,

n

p2
nα2+δ

n

))

1+ tY (Yi − Ȳ)

pn
P

(
max
i≤n

|εi| ≤ Kαn

)
+ tY (Yi − Ȳ)

pn
×O

(
n

α2+δ
n

)
+Op

(
1

p2
n

)
, (A.18)

where the last equality follows under Assumption A1.
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By straightforward algebra, using (A.18), (A.8), premultiplied by
√

n, becomes

1√
n

⎛
⎝ e(t)′(

1′
n + tY

pn
P(max

i≤n
|εi| ≤ Kαn)(Y ′ − Ȳ1′

n)

)⎞
⎠S−1(λ0)ε

− 1

n

(
e(t)′

1′
n + tY

pn
P(max

i≤n
|εi| ≤ Kαn)(Y ′ − Ȳ1′

n)

)
S−1(λ0)

(
R(λo)Xβ0 X

)

×
(
B′A−1B

)−1
B′A−1 1√

n
Zε +Op

(
max

(
1√
n
,

1

p2
n
,

n3/2

pnα2+δ
n

))

= 1√
n

⎛
⎝ e(t)′(

1′
n + tY

pn
P(max

i≤n
|εi| ≤ Kαn)(Y ′ − Ȳ1′

n)

)⎞
⎠Qε

+Op

(
max

(
1√
n
,

1

p2
n
,

n3/2

pnα2+δ
n

))
, (A.19)

where Q is defined in (3.6). Under Assumption A1, Op(max(1/
√

n,1/p2
n,n

3/2/

(pnα2+δ
n ))) = op(1). In addition to the usual 1/

√
n error (arising when replacing λ̄ and

β̄ with λ0 and β0 and from (3.3)), the error of the approximation depends on two extra
terms: (i) the error resulting from linearization, as displayed in (A.18), which is bounded
by 1/p2

n under Assumption A1 and (ii) the error that is generated by neglecting the (small)
probability that Yi − Ȳ (for some i = 1, . . . ,n) might assume an extreme value, that is, the
error of neglecting the third term in (A.18), which is bounded by n3/2/(pnα2+δ

n ). The latter
rate is straightforward to derive after noticing that the dominant neglected term in (A.7) is

tY√
npn

(Y ′ − Ȳ1′)S−1ε ×O

(
n

α2+δ
n

)
, (A.20)

which is overall bounded by n3/2/(pnα2+δ
n ) from standard arguments involving quadratic

forms, upon using Y − Ȳ1 = SdXβ +Sdε.
With simple manipulations (A.19) becomes

1√
n

(
e(t)′
1′

n

)
Qε + 1√

n

(
01×n

tY
pn
P(max

i≤n
|εi| ≤ Kαn)β ′

0X′Sd′
)

Qε

+ 1√
n

(
01×1

tY
pn
P(max

i≤n
|εi| ≤ Kαn)ε′Sd′

Qε

)
+Op

(
max

(
1√
n
,

1

p2
n
,

n3/2

pnα1+δ
n

))
. (A.21)

By Lemma 1, ||Q||∞ +||Q′||∞ < K, and under Assumptions 1–5, we can show by standard
arguments that E(ε′Sd′

Qε) = O(n), such that the third term in (A.21) does not have mean
zero in the limit, unless we impose

√
n/pn → 0 as n → ∞ and it is unbounded in general.

Hence, by applying the suitable centering sequence tY tr(Ŝd′Q̂
̂)/pn
√

n, we transform
(A.21) as
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1√
n

(
e(t)′
1′

n

)
Qε + 1√

n

(
01×n

tY
pn
P(max

i≤n
|εi| ≤ Kαn)β ′

0X′Sd′
)

Qε

+ 1√
n

⎛
⎝ 01×1

tY
pn

(
P(max

i≤n
|εi| ≤ Kαn)ε′Sd′

Qε − tr(Sd′Q
)

)⎞
⎠

+ 1√
n

(
01×1

tY
pn

(
tr(Sd′Q
)

)
− tr(Ŝd′Q̂
̂)

)

+Op

(
max

(
1√
n
,

1

p2
n
,

n3/2

pnα2+δ
n

))

= 1√
n

(
e(t)′
1′

n

)
Qε +Op

(
max

(
1√
n
,

1

pn
,

1

p2
n
,

n

pnα4+δ
n

n3/2

pnα2+δ
n

))
+Op

(
1

pn

)

= Op

(
max

(
1√
n
,

1

pn
,

n3/2

pnα2+δ
n

))
, (A.22)

where the first equality in the last displayed expression follows from Lemma A.1 and by
observing that from Lemma 1 and under Assumptions 1–5, we obtain

tY√
npn

P(max
i≤n

|εi| ≤ Kαn)β ′
0X′Sd′

Qε = tY√
npn

(
1−P(max

i≤n
|εi| > Kαn)

)
β ′

0X′Sd′
Qε

= Op

(
max

(
1

pn
,

n

pnα2+δ
n

))
= Op

(
1

pn

)
, (A.23)

under Assumption A1, and

tY
pn

√
n
(ε′Sd′

Qε − tr(Sd′
Q
))− tY

pn
√

n

(
1−P(max

i≤n
|εi| ≤ Kαn)

)
ε′Sd′

Qε

= O

(
max

(
1

pn
,

n3/2

pnα2+δ
n

))
. (A.24)

The second equality in (A.22) follows from Assumption A1.
Thus, from (A.22) and letting 	 = 	(t) as in (3.8),

√
nM̂(t) = 1√

n
	(t)ε +op(1). (A.25)

Proof of Theorem 2. Let b be any deterministic 2×1 vector such that b′b = 1 and write
√

nb′M̂(t,tY ) =
n∑

i=1
ui, where

ui = uin(t) = 1√
n

2∑
s=1

bsψsiεi. (A.26)

We therefore have

v = vn(t,tY ) ≡ Var(
√

nb′M̂(t,tY )) =
n∑

i=1

Var(ui) =
n∑

i=1

E(u2
i ) = 1

n
b′	
	 ′b, (A.27)

https://doi.org/10.1017/S0266466624000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000173


38 JUNGYOON LEE ET AL.

which is O(1) under Assumptions2–5 and 8 and by Lemma 1, and it is nonzero as n → ∞
under Assumption 9.

Let zi = zin(t,tY ) = v−1/2ui = vn(t,tY )−1/2ui. We stress that although in the limit the
dependence on tY is lost, for each finite n, zi = zin(t,tY ) and v = vn(t,tY ). By the Lindeberg–
Feller central limit theorem, if (conditional on X) for each ζ > 0,

n∑
i=1

E(z2
i 1(|zi > ζ |)) →

p
0, (A.28)

then
∑n

i=1 zi →d N (0,1) pointwise in (t). Thus, the claim (3.15) follows straightforwardly
conditional on X, with

V(t) = lim
n→∞

1

n
	
	 ′. (A.29)

We prove (A.28) by verifying the sufficient Lyapunov condition that pointwise in (t,tY ) and
conditional on X

n∑
i=1

E|zi|2+δ → 0. (A.30)

Since v = vn(t,tY ) = O(1) and is nonzero pointwise in (t,tY ), we consider equivalently∑
iE|ui|2+δ . Under Assumption 1, we have

n∑
i=1

E|ui|2+δ ≤
(

1

n

)1+δ/2
K

∑
i

|
2∑

s=1

bsψsi|2+δ

≤ K

(
1

n

)1+δ/2
max

i
|

2∑
s=1

bsψsi|δ
∑

i

⎛
⎝ 2∑

s=1

bsψsi

⎞
⎠

2

≤ K
1

nδ/2
max

i
|

2∑
s=1

bsψsi|δ = o(1) (A.31)

since
∑

i(
∑2

s bsψsi)
2/n = b′		 ′b/n = O(1) under Assumptions 2–5 and 8 and Lemma

1, and it is nonzero under Assumption 9. Also, from Lemma 1, for each i = 1, . . . ,n and
s = 1,2, |ψsi| = O(1). �

Proof of Theorem 3. We prove the claim for the typical (s,v) element, that is,

1

n
	̂ ′

s
̂	̂v − 1

n
	 ′

s
	v = op(1). (A.32)

We write

	 ′
s
	v = tr(	 ′

s
	t) = tr(
	v	
′
s), (A.33)

where it is straightforward to verify that the n×n matrix 	v	
′
s has bounded elements since,

from Lemma 1, |ψsi| = O(1) for all i = 1, . . . ,n and s = 1,2. Also, from (3.8), by standard
algebra each element of ∂	v	

′
s/∂θp for p = 1, . . . ,k+1 is bounded and continuous for each

θ . The proof of Theorem 3 follows then from Lemma A.1 with pn replaced by
√

n. �
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Proof of Theorem 4. Let αn be a deterministic sequence such that αn → ∞ and n → ∞
and pn as in (3.10). Write M̂(t,tY ) = (M̂1(t),M̂2(tY ))′. In order to prove the claim in Theo-
rem 4, and thus consistency of the test based on (3.11), we show that

√
nM̂ →p ±∞ under

Assumption 11. Then, under Assumption 7’, T̂(t,tY ) = nM(θ̂,t,tY )′Â−1(t)M(θ̂,t,tY ) → ∞.
It is enough to show that under Assumption 11 and H1 in (2.7), plimn→∞M̂2(tY ) �= 0.

We can write

M̂2(tY ) = 1

n

n∑
i=1

(
gi(X)−mi(X,θ�)

)
etY (Yi−Ȳ)/pn + 1

n

n∑
i=1

ηie
tY (Yi−Ȳ)/pn

− 1

n

n∑
i=1

(
mi(X,θ̂ )−mi(X,θ�)

)
etY (Yi−Ȳ)/pn − tY

npn
(tr(ŜdQ̂
̂)). (A.34)

The first term in (A.34) is

1

n

n∑
i=1

(
gi(X)−mi(X,θ�)

)
+ 1

n

n∑
i=1

(
gi(X)−mi(X,θ�)

)(
etY (Yi−Ȳ)/pn −1

)
. (A.35)

Under Assumption 11,

1

n

n∑
i=1

(
gi(X)−mi(X,θ�)

)
→
p

lim
n→∞

1

n

n∑
i=1

E

(
gi(X)−mi(X,θ�)

)
�= 0, (A.36)

where the limit on the RHS of the last displayed expression exists under Assumptions 2 and
8 and (2.3). The second term can be written as

1

n

n∑
i=1

(
gi(X)−mi(X,θ�)

)

×
(

tY (Yi − Ȳ)

pn
P(ηi ≤ Kαn)+ tY (Yi − Ȳ)

pn
P(ηi > Kαn)+Op

(
(Yi − Ȳ)2

p2
n

))
. (A.37)

Since

P(ηi > Kαn) ≤ E(ηi)
2

K2α2
n

, (A.38)

the expected value of the modulus of (A.37) is bounded by

tY
pnn

max
1≤i≤n

P(ηi ≤ Kαn)

n∑
i=1

E|(gi(X)−mi(X,θ�))(Yi − Ȳ)|

+ max
1≤i≤n

E(ηi)
2

K2α2
n

tY
pn

1

n

n∑
i=1

E|(gi(X)−mi(X,θ�))(Yi − Ȳ)|+Op

(
(Yi − Ȳ)2

p2
n

)

≤ tY
pnn

max
1≤i≤n

n∑
i=1

E|(gi(X)−mi(X,θ�))(Yi − Ȳ)|

+ max
1≤i≤n

K

α2
n

tY
pn

1

n

n∑
i=1

E|(gi(X)−mi(X,θ�))(Yi − Ȳ)|+Op

(
(Yi − Ȳ)2

p2
n

)
, (A.39)
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under Assumptions 9 and 11. Under Assumptions 2, 8, and 9, by Cauchy–Schwarz for each
i = 1, . . . ,n,

E|(gi(X)−mi(X,θ�)(Yi − Ȳ)| ≤
(
E(gi(X)−mi(X,θ�))2E(Yi − Ȳ)2

)1/2 = O(1), (A.40)

so that

1

n

n∑
i=1

E|(gi(X)−mi(X,θ�))(Yi − Ȳ)| = O(1), (A.41)

and thus the expression in (A.37) is Op(1/pn) = op(1) from (3.10).
We can show that the second term in (A.34) is op(1) under Assumption 9 and (3.10) by

using a similar argument to that given above to deal with the linearization on the tails. The
details are omitted to avoid repetition. The third term in (A.34) can be written as

1

n

n∑
i=1

(mi(X,θ̂ )−mi(X,θ�))+ 1

n

n∑
i=1

(mi(X,θ̂ )−mi(X,θ�))
(

etY (Yi−Ȳ)/pn −1
)

. (A.42)

By the mean value theorem, the first term can be written as

1

n

n∑
i=1

dmi(X,θ̄i)

dθ
(θ̂ − θ#) = 1

n

n∑
i=1

S(i)′(λ̄i)
(
R(λ̄i)Xβ̄i X

)
(θ̂ − θ#), (A.43)

where λ̄i and β̄i satisfy, respectively, |λ̄i −λ#| < |λ̂−λ#| and ||β̄i −β#|| < ||β̂ −β#||, for
i = 1, . . . ,n. Under Assumption 10, θ̂ − θ# = op(1). Therefore, the last term in (A.42) is
op(1) as long as we can show that each component of the 1× (k +1) vector

1

n

n∑
i=1

S(i)′(λ̄)
(
R(λ)Xβ X

)
(A.44)

is Op(1) for each λ and β. For simplicity of notation, in order to assess the rate of (A.44),
let A(λ) be equal to either S−1(λ) or S−1(λ)R(λ), its (i,j)th element being aij(λ). Under
Assumption 2, the modulus of the typical element of (A.44) has expectation bounded by

K sup
i

n∑
j=1

|aij(λ)| = O(1), (A.45)

under Assumptions 4 and 5.
By Markov’s inequality, the first term in (A.42) is op(1). Similarly, the second term in

(A.42) can handled by linearization as illustrated above, the details being omitted. Finally,

the last term in (A.34) is Op

(
1
pn

)
= op(1) under Assumptions 2, 4, and 5 and (3.10). �

Proofs of Additional Lemmas and Claims

Proof of Lemma 1. Under Assumption 5, the claim follows as long as

1

n
||H�−1B′A−1Z′||∞ < K, (A.46)

where (limited to the scope of this lemma) we set H = (
RXβ0 X

)
and � = B′A−1B.
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Let c denote an arbitrarily small constant, which, as usual, is allowed to take different
values at each step. Under Assumptions 2–5, ||R||∞ + ||R′||∞ < K, and thus all elements
of H are O(1), conditionally on X. Also, under Assumptions 2 and 6, all elements of B are
O(1). Under Assumption 6, eigmin(�) > c > 0 eigmin(A) > c > 0. Thus,

1

n
||H�−1B′A−1Z′||∞ = 1

n
sup

i

n∑
j=1

|H′
i�

−1B′A−1Zj|

≤ 1

n
sup

i

n∑
j=1

||H′
i ||||Zj||||�−1||||A−1||||B||

≤ Ksup
i,j

||H′
i ||||Zj||||�−1||||A−1||||B|| ≤ K,

since under Assumptions 2 and 6 supi ||Hi|| = supi (H′
iHi)

1/2 = O(1), ||B|| = O(1) and

||�−1|| = eigmax(�−1) = 1

eigmin(�)
<

1

c
< K,

||A−1|| = eigmax(A−1) = 1

eigmin(A)
<

1

c
< K. (A.47)

�

Proof of Lemma A.1. In the sequel, we denote by aij and âij the (i,j)th elements of

A(θ0) and A(θ̂), respectively. We prove Lemma A.1 by showing

1√
npn

n∑
i=1

(
ε2

i −σ 2
i

)
aii = Op

(
1

pn

)
, (A.48)

1√
npn

n∑
i=1

(
ε̂2

i − ε2
i

)
aii = Op

(
1

pn

)
, (A.49)

and

1√
npn

n∑
i=1

ε̂2
i
(
âii −aii

) = Op

(
1

pn

)
. (A.50)

We show (A.48) by Markov’s inequality, after observing that under Assumption 1 and the
boundedness of elements of A, the LHS has mean zero and variance bounded by

K

np2
n

n∑
i=1

a2
ii = O

(
1

p2
n

)
. (A.51)

To demonstrate (A.49), write

ε̂ = S(λ̂)y−Xβ̂ = ε −X(β̂ −β0)− (λ̂−λ0)RXβ0 − (λ̂−λ0)Rε, (A.52)

and recall R = R(λ0) = WS−1(λ0) and ||R||∞ + ||R′||∞ < K under Assumptions 4 and 5.
Let ε̂i = εi +bi + ci, with

bi = −(λ̂−λ0)R′
iε and ci = −X′

i(β̂ −β0)− (λ̂−λ0)R′
iXβ0, (A.53)
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and thus

ε̂2
i − ε2

i = b2
i + c2

i +2εibi +2εici +2cibi. (A.54)

The LHS in (A.49) is therefore (where unqualified summations range from 1 to n)

1√
npn

∑
i

aiib
2
i + 1√

npn

∑
i

aiic
2
i + 2√

npn

∑
i

aiibiεi

+ 2√
npn

∑
i

aiiciεi + 2√
npn

∑
i

aiibici. (A.55)

Under Assumptions 1–5, λ̂−λ0 = O(1/
√

n) (e.g., Kelejian and Prucha, 1998) and the first
term in (A.55) is

1√
npn

∑
i

aii
∑

j

∑
t

RijRitεjεt(λ̂−λ)2, (A.56)

where the last factor is of order Op(1/n). Moreover, we write

1√
npn

∑
i

aii
∑

j

∑
t

RijRitεjεt = 1√
npn

∑
i

aii
∑

j

R2
ijε

2
j + 1√

npn

∑
i

aii
∑

j

∑
t �=j

RijRitεjεt.

(A.57)

The modulus of the first term in (A.57) has expectation bounded by

K√
npn

∑
i

|aii|
∑

j

R2
ij ≤ K√

npn

∑
i

∑
j

R2
ij = K√

npn
tr(RR′) = O

(√
n

pn

)
, (A.58)

since by standard results tr(RR′) = O(n). The second term in (A.57) has mean zero and
variance bounded by

K

np2
n

∑
i

∑
s

|aii||ass|
∑

j

∑
t

|RijRitRsjRst|

≤ K

np2
n

∑
i

∑
s

∑
j

∑
t

|RijRit|(R2
sj +R2

st)

≤ K

np2
n

sup
i

∑
t

|Rit|sup
j

∑
i

|Rij|
∑

s

∑
j

R2
sj +

K

np2
n

sup
i

∑
j

|Rij|sup
t

∑
i

|Rit|
∑

s

∑
t

R2
st

= O

(
1

p2
n

)
, (A.59)

where the last equality follows under Assumptions 3–5 and since tr(RR′) = O(n). Thus,
collecting (A.58), (A.59), and (A.56), the first term in (A.55) is Op(1/pn

√
n).

The third term in (A.55) becomes

− 2√
npn

∑
i

aiiεi
∑

j

Rijεj(λ̂−λ0), (A.60)

https://doi.org/10.1017/S0266466624000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000173


HETEROSCEDASTICITY ROBUST SPECIFICATION TESTING 43

where, again, (λ̂−λ0) = Op(1/
√

n). We write

1√
npn

∑
i

aiiεi
∑

j

Rijεj = 1√
npn

∑
i

aiiRiiε
2
i + 1√

npn

∑
i

aii
∑
j �=i

Rijεiεj. (A.61)

By standard arguments, the modulus of the first term in (A.61) has expectation which is
O(

√
n/pn). The second term in (A.61) has variance bounded by

K

np2
n

∑
i

∑
j

a2
iiR

2
ij +

K

np2
n

∑
i

∑
j

|aii||ajj||Rij||Rji| ≤ K

np2
n

tr(RR′)+ K

p2
n

sup
i,j

|Rij|sup
j

∑
i

|Rji|

= O

(
1

p2
n

)
, (A.62)

under Assumptions 1–5. Thus, by Markov’s inequality, the third term in (A.55) is Op(1/pn).
The fourth term in (A.55) can be written as

− 2√
npn

(β̂ −β0)′
∑

i

aiiεiXi − 2√
npn

(λ̂−λ0)
∑

i

aiiεiR
′
iXβ0, (A.63)

where β̂ −β0 = Op(1/
√

n) and λ̂−λ0 = Op(1/
√

n). The term
∑

i aiiεiXi/
√

npn has mean
zero and variance bounded by

K

np2
n

∑
i

XiX
′
i = K

np2
n

X′X, (A.64)

whose components are O(1/p2
n) under Assumption 2, such that the first term in (A.63)

is Op(1/
√

npn). Similarly, the term
∑

i aiiεiR
′
iXβ0/

√
npn has mean zero and variance

bounded by

K

np2
n
β ′

0X′R′RXβ0 = O

(
1

p2
n

)
, (A.65)

under Assumptions 2, 4, and 5, such that the second term in (A.63) is also Op(1/
√

npn).
Therefore, the fourth term in (A.55) is Op(1/

√
npn).

The fifth term in (A.55) is

2√
npn

∑
i

aiiR
′
iε

(
X′

i(β̂ −β0)+ (λ̂−λ0)R′
iXβ0

)
. (A.66)

Consider the terms

1√
npn

∑
i

∑
j

aiiRijεjX
′
i and

1√
npn

∑
i

∑
j

aiiRijεjR
′
iXβ. (A.67)

The first term in (A.67) has mean zero and variance bounded by

K

np2
n

∑
i

∑
s

∑
j

|aii||ass||Rij||Rsj||X′
iXs| ≤ K

p2
n

sup
i,s

|X′
iXs|sup

j

∑
s

|Rsj|sup
i

∑
j

|Rsj|

= O

(
1

p2
n

)
, (A.68)
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and the second term has variance bounded by

K

p2
n

sup
i,s

β ′
0X′RsR′

iXβ0 sup
j

∑
s

|Rsj|sup
i

∑
j

|Rij| = O

(
n

p2
n

)
. (A.69)

Collecting (A.66)–(A.69), we conclude that the fifth term in (A.55) is Op(1/pn). By
straightforward algebra (noting that it does not contain any term in εi), we can also show
that the second term in (A.55) is Op(1/pn

√
n). This concludes the proof of (A.49).

To prove (A.50), write by MVT

âii = aii +
k+1∑
j=1

∂ āii

∂θj
(θ̂j − θj0), (A.70)

where the partial derivative is evaluated at θ̄ , satisfying |θ̄j −θj0| < |θ̂j −θj0|. Thus, the LHS
of (A.50) can be written as

1√
npn

∑
i

ε̂2
i

k+1∑
j=1

∂ āii

∂θj
(θ̂j − θj0). (A.71)

By results in (A.48) and (A.49) and under boundedness and continuity of the components
of ∂A(θ)/∂θj,

1

n

∑
i

ε̂2
i

k+1∑
j=1

∂ āii

∂θj
→
p

lim
n→∞

1

n

∑
i

σ 2
i

k+1∑
j=1

∂aii

∂θj
= O(1). (A.72)

Given that under Assumptions 1–5, for each j = 1, . . . ,k+1, θ̂i −θi0 = Op(1/
√

n), (A.71) is
Op(1/pn), concluding the proof. In the above, we may set A = Sd′Q and it is straightforward
to verify that it satisfies the conditions imposed on A to prove (A.48)–(A.50). �

Proof of Claim 1. We define

din(θ,X) = di(X) = gi(X)−mi(X) = E(Yi −mi(X)|X),

since E(ηi|X) = 0, where in this context, we drop the dependence on θ for notational
simplicity. We define the functions

d1i(·) = max{di(·),0}, d2i(·) = max{−di(·),0},
the expected values

cis = E(dis(X)), s = 1,2,

and the marginal probability measures

νis(Bi) = 1

cis

∫
Bi

∫
Rk

· · ·
∫
Rk

dis(x1, . . . ,xn)dF(x1). . . dF(xn), s = 1,2, i = 1, . . . ,n,

(A.73)

where Bi is a Borel set in Rk and is the range of integration of the variable Xi, and F(x)
is the cumulative distribution function of each of the i.i.d. random vectors Xj, j = 1, . . . ,n.
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Define the joint probability measure

νis(B1, . . . ,Bn) = 1

cis

∫
B1

∫
B2

· · ·
∫

Bn

dis(x1, . . . ,xn)dF(x1). . . dF(xn). (A.74)

By the law of iterated expectation,

E((Yi −mi(X))et′Xi) = E(et′Xi di(X)) =
∫
Rk

· · ·
∫
Rk

di1(x1, . . . ,xn)et′xi dF(x1). . . dF(xn)

−
∫
Rk

· · ·
∫
Rk

di2(x1, . . . ,xn)et′xi dF(x1). . . dF(xn)

= ci1

∫
Rk

et′xi dνi1(xi)− ci2

∫
Rk

et′xi dνi2(xi), (A.75)

from the definitions of νi1(Bi) and νi2(Bi). Note that
∫
Rk et′xi dν1i(xi) and

∫
Rk et′xi dν2i(xi)

are the moment generating functions of the probability measures νi1(Bi) and νi2(Bi).
If E((Yi − mi(X))et′Xi) = 0 for all t ∈ Rk, substituting t = 0 in the equation

ci1
∫
Rk et′xi dνi1(xj)− ci2

∫
Rk et′xi dνi2(xi) = 0 yields

ci1 = ci2. (A.76)

Thus, for each t∫
Rk

et′xi dνi1(xi) =
∫
Rk

et′xi dνi2(xi), (A.77)

implying

νi1(Bi) = νi2(Bi) ∀Bi ∈ Rk, i = 1, . . . ,n. (A.78)

Therefore, from (A.73),∫
Bi

∫
Rk

· · ·
∫
Rk

di(x1, . . . ,xn)dF(x1). . . dF(xn) = 0 ∀Bi, (A.79)

implying∫
Rk

· · ·
∫
Rk

di(x1, . . . ,xn)dF(x1). . . dF(xi−1)dF(xi+1). . . dF(xn) = 0, (A.80)

and thus E(Yi −mi(X)|Xi) = 0, concluding the claim. �

Proof of Claim 2. Since the order of the observations is innocuous in spatial models,
for convenience, we rearrange the order so that for each i = 1, . . . ,n, vij = 0 for j = ν(n)+
1, . . . ,n (with the exception of vii = 0, by construction). By standard arguments, similar to
those used in the proofs of Theorem 2, we can write

1√
n

∑
i

(Yi −mi(θ̂))etxi

= 1√
n

∑
i

∑
j

(sij − sij(λ̂))xje
txi + τβ√

n

∑
i

∑
j

∑
p

∑
q

sijvjps̃pqxqetxi +Op(1)

= 1√
n

∑
i

∑
j

(sij − sij(λ̂))xje
txi + τβ√

n

∑
i

∑
j

ν(n)∑
p=1

∑
q

sijvjps̃pqxqetxi +Op(1), (A.81)
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where, again, unqualified summations range from 1 to n and sij = sij(λ), s̃ij = s̃ij(λ,τ ).
Under Assumption 2, the modulus of the second term on the RHS of (A.81) has expectation
bounded by

K√
n

∑
i

∑
j

ν(n)∑
p=1

∑
q

|sij||vjp||s̃pq|

≤ K√
n

sup
p

∑
q

|s̃pq|sup
j

∑
i

|sij|sup
p

∑
j

|vjp|ν(n) = O

(
ν(n)√

n

)
, (A.82)

which is either bounded or converges to zero under the assumption on the deviation matrix
V stated in Claim 2. The first term on the RHS of (A.81), after applying a standard MVT,
has expectation bounded by

K√
n

∑
i

∑
j

|(S̄−1WS̄−1)ij||λ̂−λ|, (A.83)

where S̄−1 = S−1(λ̄), with λ̄ being an intermediate value such that |λ̄ − λ| < |λ̂ − λ|. In
order to conclude boundedness of the last displayed expression, we observe that under the
assumptions of Claim 2

θ̂ =θ +
(
B′A−1B

)−1
B′A−1 1

n
Z′VYτ +Op

(
1√
n

)
. (A.84)

Again under the conditions of Claim 2, E|Yi| ≤ K for i = 1, . . . ,n, and so the modulus of
each component j = 1, . . . ,k + 1 of the second term at the RHS of (A.84) has expectation
bounded by

K

n

∑
i

ν(n)∑
p=1

|Zij||vip| ≤ K

n
sup

p

∑
i

|vip|ν(n), (A.85)

since Zij = Op(1) by Assumption 6. Thus, for j = 1, . . . ,k+1, collecting (A.84) and (A.85)
yields

|θ̂j − θj| = Op

(
max

(
1√
n
,
ν(n)

n

))
= Op

(
1√
n

)
, (A.86)

where the last equality follows since under the conditions of Claim 2 ν(n)/
√

n = O(1).
Hence, the expression in (A.83) is bounded by

K

n
n sup

j

∑
i

|(S̄−1WS̄−1)ij| = O(1) (A.87)

under Assumptions 4 and 5. Thus
√

nM1(θ̂) = 1√
n

∑n
i=1(Yi − mi(θ̂))etxi = Op(1) as n →

∞, for almost all t ∈ Rk, concluding the proof of the claim. �
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