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PART II: UNIQUENESS OF SOLUTIONS

AND SOME SPECIAL CASES
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Abstract

In an earlier paper (Part I) the existence and some related properties of the solution to a
coupled pair of nonlinear elliptic partial differential equations was considered. These
equations arise when material is undergoing an exothermic chemical reaction which is
sustained by the diffusion of a reactant. In this paper we consider the range of parameters
for which the uniqueness of solution is assured and we also investigate the converse
question of multiple solutions. The special case of the one dimensional shape of the
infinite slab is investigated in full as this case admits to solution by integration.

1. Introduction

In Part I of this paper (Burnell, Lacey and Wake [3]) we considered the
steady-states of the equations governing the diffusion of a reactant which is
undergoing an exothermic reaction. This led to the equations (4), (5) of that
paper, that is:

V2u + \{\ + v)e" = Q infi, (la)

V2u-aX(l + t>)eu = 0 infl, (lb)
with

du/dn + fiu = 0 on 3S2, (2a)

dv/dn + vv = 0 on 3fi, (2b)
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[2] The reaction-diffusion equations. II 393

where Q c R " and X, a, p., v are constants (X, a > 0, 0 < ju, v =£ oo). If jti or v are
infinite then the condition in (2) becomes the appropriate Dirichlet boundary
condition.

Part I establishes the existence of solutions to these equations for all values of
the parameters except when n < v = oo. In fact we showed that there exist
solutions for the more general system of equations

V2u + Xf(u,v) = 0 infi, (3a)

V2v-aXf(u,v) = 0 infl, (3b)

with boundary conditions (2) on 3J2, where/(u, v) has the properties:
a) there is some v0 < 0 such that/(«, v0) = 0 for all « £ R ;
b)/(«, •): y I-»/(M, y) and/( •, t>): x i-»/(x, v) are monotonic increasing for all

u E R and v > v0 respectively;
c)/GC'(R2).
Further we established bounds on the solutions,

0 *£ u(x) < -vo/a for p^fi, (4)

0 < u{x) < -vov/afx for ju < v < oo.

For the case of ju < v = oo and n < 3 we showed that there exists a value of X,
say \*, such that (1), (2) has a solution for X < X*, and no solution for X > X*.
The last section of Part I established that where solutions are unique the solution
branch (X, (w, v)) is continuous in X.

In this paper we shall find some sufficient conditions so that the problem (1),
(2) (or occasionally (2), (3)) has a unique solution for some values of X. For a
special class of problems we also show that multiple solutions exist for a
particular range of the parameters X, a, n, and v. We conclude this Part by
discussing the case when n = 1, that is fi = (-1,1), which is a representation of
an infinite slab with parallel sides.

2. Uniqueness of solutions

We begin by noting that for the special case m = v for which the harmonic
function h = au + v is zero and (2), (3) reduces to the simpler system

V2M + Xf(u,-au) = 0 in £2,

du/dn + fiu-0 on 3fi, (5)
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394 J. G. Burnell, A. A. Lacey and G. C. Wake [3]

there is the following result (Aris [2]):

LEMMA 1. / / / (« , -au)/u is a positive decreasing function of u for u > 0, there is
at most one solution to (2), (3) for all values ofX>0.

For the problem with/(w, v) = (1 + v)e" this tells us that this special case of
ji = v lias only one solution when a ^ \. Other conditions for which we can show
uniqueness are for small X with p<ooorju = j ' = oo, or large X with v < oo. We
shall make use of contraction mappings in each case.

From the inequalities (4) we can easily show uniqueness for a range of X.

THEOREM 2. For p = v = oo or v < oo the system (2), (3) has a unique solution
for sufficiently small X.

PROOF. We again consider the map T: C(fl) X C(fi) -> C(fi) X C(fi), T:
(u,v)\->(XKllF(u,v), -aXKfF(u, v)) defined in Part I, Section 2 (Burnell,
Lacey and Wake [3]), where K^, Kv are the extensions to C(B) of the solution
operators for (-V2, 3/3« + ju), (-V2, 3/3« + v) respectively. That is, for g £
C(fi), K^g (Kvg) is the unique solution of

-V2w> = g infi,

dw/dn + fiw = 0 (dw/dn + vw — 0) on 3fi.

As in Part I we consider a ball of radius r = -vo(l + max{\,v/n}/a), that is

B = {{u, v) e C(Q) X C(O): ||u||0 + Hollo < r)

where, if ju = v = oo, we take 1 in place of J>//I.

Now any fixed point of T is a solution of (2), (3) and vice versa, so we wish to
show uniqueness of the fixed points of T (see Part I, Section 2, Proposition 5). For
X sufficiently small, it follows that T is a contraction mapping on B as established
in Part I, Section 3. We know by the inequalities in (4) that any solution of (2), (3)
must be in B. Hence by the contraction mapping theorem there is only one fixed
point of T in B for sufficiently small X. Hence the solution is unique for small X.
Q.E.D.

This proof again depends on the boundedness of v/fi. For the case of
H < v = oo we shall see later in Section 3 that (2), (3) has multiple solutions for
arbitrarily small values of X in the one-dimensional case (/? = 1). We expect
similar behaviour for other regions fl.

Next we shall examine the uniqueness of solutions for large X. The only results
we have obtained are for v < oo, although asymptotic analysis of the case when
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fi — v — oo strongly suggests a similar result in this case. Of course for ft < v = oo,
(2), (3) fails to have any solutions for sufficiently large X.

We shall only prove the result for the particular case f(u, v) — (1 -I- v)e",
although the proof can be generalised to cover arbitrary / satisfying our previ-
ously specified conditions.

The above inequalities (4) for v and u are applied again, together with those for
the harmonic function h = au + v:

-1 + v/n<h(x) < 0 foiv^fi,
(6)

0 «s h(x) < v/p — 1 for m < v < oo.

We proceed by first refining the inequalities in (4), (6) for all cases of v < oo.

LEMMA 3. Suppose (u, v) satisfies (1), (2); then there exists a positive constant A
such that for X sufficiently large

-1 ^v(x)^ -1 +A(a\)'l/2, VjtGfi. (7)

PROOF. The result will be proved by constructing a suitable upper solution for
v. Let (j> satisfy

V2<J>+l=0 in ft; <j> = 0 on 3S2.

By the result in Part I, Section 2, Proposition 1, <f> G C2+O(fi), 0 < a < 1, so we
define

k = 1 + max | v<|> | .

We then let w = <j>/k and u, = A(a\yl/2exp[-(a\)l/2w) - 1 where ,4 =
»'/min;(.6gn{-3H'/8n}. It follows from the maximum principle that 9w/3« is
negative and bounded away from zero so that A is well-defined and positive.

We now show that t>, is an upper solution for (lb). Firstly v2t>! =
(a\y'2A exp(-(aA)1/2»v) \Vw\2 - A exp( - (a \ ) 1 / 2 w) V2»v. So for X > k-2a~\l
— m a x x e ^ | Vw|2)"2 (which is well-defined by the definitions of k and w) we
have, since u > 0,

V2u, - aX{\ + vt)e
u

= A exp(- (aX)l /2w)[(a\)1/2 | v»v |2 - v2w - (aX)l/2eu]

<^exp(-(aX)1/2w)(aX)'/2[| V»v|2+(a\)- ' / 2A- l] < 0.
Secondly, since w — 0 and 9W/3/J < 0 on 3fi,

^ + „ , = A exp(_ ( « \ ) " * £
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Consequently vi is an upper solution for (lb); while -1 is a lower solution.
Therefore there is some solution lying between -1 and u, (Sattinger [5, Theorem
2.3.1]). But we have already shown that the solution to (lb) for a given u is unique
(see Part I, Section 3, Lemma 1), so -1 < v(x) < *>,(*), x G ft. Since min{w(x):
x S S2} = 0, it follows that

-1 <u(x)< -1 + (aX)'l/2A forxEfi. Q.E.D.

We can easily prove the following corollary, using the equations satisfied by
h = au + v:

V2/i = 0 infl,

| £ + nh = (M -p)v on3fi. ( 8 )

COROLLARY -4. Suppose (u, v) satisfies (1), (2) and h = au + v. Then for
sufficiently large X,

-1 + v/n < h(x) < -1 + v/n + (1 - v/n)(a\)~V2A, (9a)

(v/p ~ (aX)~l/2A)/a < u(x) < v/p + (aA)"1/2(l - v/p)A, (10a)

VxGQ ifn > v;

-1 + v/n - (a\)~x/2(p/p - 1) < /i(x) <p/n-l, (9b)

»»(l - ( a \ ) " l / 2 y4 ) / a^< u(x) < y/o^, VJC G fi ///ut =£ p < oo. (10b)

These inequalities allow us to prove the result given in Theorem 5.

THEOREM 5. / / v < oo then for X sufficiently large there is at most one solution to

(1), (2).

PROOF. We shall construct a map S the fixed points of which are precisely the
solutions of (1), (2). Next we shall show that S has at most one fixed point for
sufficiently large X. We present the proof for v < n < oo only, as for the other
case, ft < v < oo, the proof is similar and is left to the reader.

Use will be made of the equations satisfied by h — au + v and v, that is (8)
and

V2v - Xa(l + v)e(h-")/a = 0 in Q, (11)

-r—h vv = 0 on 8S2.
dn
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For h, v £ C2(Q) D C'(fi) we define S(h, v) to be the pair (hf, v') where v' is the
unique solution of

V V - aXe" / a V = aX(l + v)e(h'v'>/a - a\ev/ailv on B,

^ - + vv' = 0 on 3Q,

and h' is the (unique) solution of

V2/i ' = 0 infi , 3/i '/a« + nh' = (/x - ^)u' on3fi.

(Again for j ' < ft = oo the boundary condition reduces to h' = v' on 3fi.)
Now suppose that h}, x>} E C2(i2) n C'(R), /jy satisfies (9a), and «_, satisfies (7)

fory = 1 , 2 . Then we have

< ( v / ^ - ^4(1 - »'/ /x)(aX)"1 / 2)/a forx e fi and j = 1,2. (12)

Letting (/^, uj) = S(/iy, «,•) we obtain

/°'i(t;1 - v2)},

or

u', - v'2) - aXey/aii(v\ - «0

(13)

Now e{h'-D')/a - e
( / l2-°2)/a = ef((//, - /i2) + (u2 - o2))/o where f(x) lies be-

tween (ht(x) — u,(x))/a and (h2(x) — v2(x))/a for all x G $2. Since ji > ^ it
follows from (12) that for X sufficiently large,

0<(hj(x)-Vj(x))/a<l/a forxEfi and y = 1,2,

and so

f ( x ) < l / a forxGfi.
Consequently

— (| /i, — /i21 + |u , - o 2 | ) e 1 / 7 « ^ e < * ' - | J ^ < 1 - e(*2-«2)/«

< ( | A | - A 2 l + I « . - « 2 | ) e 1 / a / « . (14)

Also,

e(*.-»,)/« _ e>/an = et(hi - „, -
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where | ( x ) lies between (A,(;c) — u , (x ) ) / a and v/a[i for all x G fi. But, using
(12), we obtain

a. (15)

Finally

0 « 1 + t ^ x ) < (aX)~!/2,4 for x G 0 . (16)

Putting (14), (15), (16) into (13) we obtain

< - V 2 ( o 2 - « ' , ) + a\ev/a>l{v'2 - v\)

^(a\y/2(Ael/a/a)(2\vl - v2 \ + |A, - A2 |) inQ.

Applying the maximum principle for the operator - V 2 + aXep/a'i, we obtain

|o', - u 2 | < ( a X r 1 / 2 ( ^ e ( 1 - " / " ) / V a ) ( 2 | | u 1 - t ) 2 | | 0 + HA, - h2\\0) in 0 .

Also V2( /J ' 2 -A' , ) = 0 i n n ,

^ - A',) = (M - v){v'2 - v\) on 30.

Hence | h\ -h'2\<{\- v/n)\\v\ - v'2\\0.
Therefore

\\v'2 - o'.Ho + ||A'2 - A;||0 < (a\)- ' / 2{(2 -

X{2||t7, - o 2 | | 0 + ||A, -A 2 | | 0 }

< (aX)"1/2{2(2 - v/^Ae^-'^^/a)

Xdl t^ -o . l l o+I IAj -AJ Io ) . (17)

We now take X large enough so that any solution (M, V) to (1), (2) satisfies Lemma
3 and

X > (4(2 - v/ti)Ae°-v/^a)2/a3.

Suppose that (u,, Vj) for7 = 1,2 are solutions of (1), (2) for such a value of X.
Then (hp Vj), where hj = aUj + t>7, are solutions of (8), (11) and so are fixed
points of 5. Also hJt uy satisfy (7), (9a), so that (17) holds. Hence

s i n c e \>'} = x>} a n d h'j = hj. F o r th is i n e q u a l i t y t o h o l d ( t 3 2 , A 2 ) = ( t ? , , A I ) , t h a t is ,
t h e r e is a t m o s t o n e s o l u t i o n . Q. E. D .
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In Part I we showed that for v < oo or \i = v = oo, (1), (2) has a solution for all
values of X. So using Theorem 5, we see that for v < oo the solution is unique for
X sufficiently small or sufficiently large. For the case fi = v — oo, by Theorem 2,
there is a unique solution for X sufficiently small. In this instance (/x = v — oo)
our method fails to prove uniqueness for large X since v always vanishes on 3S2
and we cannot obtain the key estimates

u ^ - 1 + (aX)'V2A, (l - ( a \ ) " ' / 2 ^ ) / a < M < I/a .

In Part I, Section 3 we showed that if there is a unique solution for X in an
open interval, then the solution is continuous in X. The previous results (such as
that in Theorem 5) show that such cases arise. In particular, if v < oo there exists
a continuous branch of solutions on some interval (X,, oo).

We conclude this section by demonstrating the occurrence of multiple solutions
for a sufficiently small when ft = v, in which case the equations (1), (2) are
uncoupled to give

V2M + X(\ -au)eu = 0 in S,

•=—I- ju« = 0 on 3

on

For a — 0 the system further simplifies to

V2w0 + AeUo = 0 infl,
^ = 0 on 3fi.

It is known that this last problem has solutions for X small, say X <X0 (Keller
and Cohen [4], Amann [1]). If we take such a value of X we find that

V2M0 + X(1 - a u o ) e " ° < O in fl,

together with the same boundary conditions, which means that u0 is an upper
solution for (18). Once again u = 0 is a lower solution. Hence there is a solution
u, of (18) with 0 < M, < u0. (We note that the strong maximum principle ensures
that M = 0 and u = u0 are, in fact strict lower and upper solutions respectively.)

Taking a function g G C2(fl) such that g is nonnegative with nonempty
support D C fi, we define us by

V2us + g = 0 infi,
du
^ + UM = 0 on3J2.
an

We shall consider the function Cus, where C is a positive constant still to be
chosen. Now

V 2 ( C K J + X(\ - aCus)e
Cu- = \(1 - aCus)e

Cu- - Cg. (19)
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We take C to be sufficiently large so that:
(a) Vx e fl, XeCu' - Cg > B > 0.

(Clearly this is possible since infxeD{us(x)} > 0 and g = 0 for x & £>.)
(b)C||K,||0>||ll0||0.

We now choose a sufficiently small so that

a\C\\us\\oexp(C\\us\\Q) ^ B.

By (19) Cus is now a lower solution for (IS) (the right hand side of (19) is
positive). Moreover if, in addition,

then u = I / a , which is clearly an upper solution for (18), is greater than Cus. We
deduce that there is a solution u2 of (18) with Cus < u2 =£ I / a . As HMO||O <
C I | M J I 0 and Cus < u2 on fi this means «, =5̂  M2 and we have established that
there are at least two distinct solutions to (18) for these values of A and a.

3. The special case of the infinite slab

One particular example for which we can obtain extra information about the
solution set of the problem (1), (2) is the case when S is a subset of R. Such a
region S2 may be thought of as representing an infinite parallel sided slab.
Without loss of generality we can take the sides of the slab to be at x = ± 1. Once
again we shall only consider the function/given by/(w, v) = (1 + v)eu, although
many of the following results apply to more general functions/.

The problem (1), (2) now becomes

d2u/dx2 + \{\ +v)e" = 0 for-l<x<l, (20a)

d2v/dx2 - \a{\ + v)e" = 0 f o r - l < x < l , (20b)

and

^ ( ± l ) ± M « ( ± l ) = 0, (21a)

^ ( ± l ) ± ^ o ( ± l ) = 0. (21b)

In order to proceed with the calculations of the problem (20), (21) we will only
consider solutions (M, V) which are symmetric on £2 = (-1,1). Then the boundary
conditions (21) become

£ 0, f(0) = 0, (22a)
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and

^ ( l ) + «(l) = 0, f (0 ) = 0. (22b)

In fact, if v «£ fi then any solution to (20), (21) will be symmetric (for details see
Aris [2]). Further, when \L < v we showed in Part I (see Note in Section 3) that
there is a minimal solution (wm, hm) to the problem

d2u/dx2 + X(\ + h-au)eu = 0 for-1 <x< V

J ( 2 3 a )

dxK~ '

d2h/dx2 = 0 for-l<x

If u,(x) = um{-x) and h^x) = hm{-x) then («,, hx) is also a solution to (23) and
so (Vx G (-1,1)) «,(«) > um(x). Hence (Vx G (-1,1)) um(-x) > am(x), so iim
must be symmetric. The symmetry of hm, and hence of vm = hm — aum, follows
similarly. Likewise one can show that the maximal solution to (23) is symmetric.

The system (20), (22) can be considered as representing an infinite parallel
sided slab with one surface {x = 0) insulated and impermeable to the reactant, so
that there is zero heat and mass flux across x = 0.

The first special case which we shall solve is the double-Dirichlet problem,
ft = v = oo. Here v = -au and the system reduces to

d2u/dx2 + X(l - au)eu = 0 fo rO<x<l ,

^ ( 0 ) = «(l) = 0.

This can be integrated once to yield

(du/dxf = 2X[G(u(x)) - G(u0)],

where G(u) = (1 + a — au)e" and u0 = M(0) which will be the maximum value
of M.

Using the boundary condition w(l) = 0, we obtain on further integration

/
•'o

We now define the function I(y) by

l(y)=f[G(y)-G(s)r/2ds,

and proceed to examine its properties. These will be found to depend crucially on
the value of a, which appears as a parameter in the function G. For the rest of
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this section we will denote differentiation by ' —that is

where g is a function R -• R.
Now, the graphs of G, G', G" are as shown in Figures 1 and 2.

1 y=G"(s)

FIGURE 1. Graphs of G, G' and G" for a < 1.

FIGURE 2. Graphs of G, C and G" for a > 1.
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Consequently we have, for 0 < 5 < y,

G(y) - G(s) = G'(!:(S))(y - s)>A(y)(y - s),

where * =£ f(j) <y and A(y) = min{l,G'(j)}.
This inequality shows that I(y) is well-defined for any y e [0, I/a). Clearly

I(y) is not defined fory > I/a. Let us also note that 1(0) = 0.
Firstly we consider the behaviour of I(y) for y near I/a.

LEMMA 1. For any yx, y2 such that I /a — 1 < yx <y2 < I/a, ify2
<y < I /a

(2A(j))l/2cosh-1[(a + ay - \)y/{\ - ay) + l] < l(y)

^{2/k{yx))
X/2co^[k{yx){y -yx)/G'{y) + \] + l{y,, y2),

where

and

Further
1 /2I(y) ~ (2e- ' /ya ) 1 / 2 ln [ l / ( l - ay)] asy - 1/a.

PROOF. From Figures 1 and 2 we have, iovy > I /a — 1 and 0 < s < y,

G(y) - G(s) = G'(y)(y - s) - \G"(S(s))(y - s)2 (where* < f(j) <y)

since G"(f(s)) > G"(y) = -Jk(j>). Therefore

/(^) >f[G'(y)(y ~s) + \k(y)(y - sf\W2 ds

= (2A(j))1/2cosh-'[l + k(y)y/G'(y)],

which is the left hand inequality.
To prove the other inequality we partition the interval [0, y] into the intervals

[0, yx] and [yu y\. On the latter interval

G(y) - G(s) = G'(y)(y -s)- \G"{!;(s))(y - sf

>G'(y)(y-s)+±k(yi)(y-s)2,
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where s =£ f(j) «s y. Hence

f[G{y) - G{s)V/2 ds <f[G'(y)(y - s) + \k{y,){y - sfY'2 ds
y\ y\

= (2/*U))1/2cosh-'[l + k{y,){y -y{)/G

Now/ >y2, so that G(y) > G(y2), and for s <yu G(s) *£ G(yx). Thus

G(y)-G{s)>G(y2)-G(yi)>0.

Consequently

~ G(s)]-]/2ds<yi[G(y2) - G{yx)V
/2 = l{yx, y2).

From this the second inequality follows.
To prove the last part of the lemma we suppose that e > 0; then we choose

yl > I / a - 1 such that (Vy £ [yx, I/a]);

< e.

(This follows since k is continuous and k(\/a) = ael/a.)
Now fix y2 such that yx <y2< I /a ; then we pick y3 s» y2 so that, for y G

Writing M, = j ( a + ay — 1) and Af2 = (_y — /i)(a + aj>, — l)^^1"^, we now
consider the quantities, fory =1 ,2 ,

| cosh"1 [l + M / ( l - ay)]/ln[l/(l - ay)] - 1 |

= |ln[l -ay + Mj + ( M / + 2M/1 - a^)) ' / 2]/ln[l/(1 - ay)] | .

Then there existsy4 > y3 such that, for j G [_y4, I/a),

l n [ l / ( l -ay)] > e"1 rnax [ | ln [ l - ay + M} + ( A / , 2 + 2My(l - aj>)) ' / 2 ] | J .

So, for/ ̂ 74

-'fl +y(a + ay- 1)/(1 - «/)]/ln[l/ (l - a/)] - 1 |< e,

|cosh-'[l +(y~yl)k(y])/G'(y)]/ln[l/(l-ay)] - 1 |< e.

Taking e < 1 and substituting all these estimates into our inequalities for I(y) we
see that, lory G [ y4, I /a ) ,

1 - 2e < (1 - e)2 < ({ae^)l{y)/\n[\/ (1 - ay)]

< ( 1 + e ) 2 + e < 1 +4e.
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Therefore we have

I(y)~(2e-l/a/a)\n[\/(\ - ay)] asy->l/a~. Q.E.D.

In order to obtain more information about the behaviour of I(y) we shall now
consider I\y).

LEMMA 2.1'(y) exists and equals

2G(y) - 2G(y(\ - s)) - y[G'(y) - (1 - s)G'(y(l - s))) ^

2[G{y) - G(y{\ - s))]3/2

fory<E(0,\/a).

PROOF. We first note that

l(y)=yf[G(y)-G(y(\-s))Yl/2ds.

Then by considering the difference quotient (I(y + h) — I(y))/h and using the
Lebesgue dominated convergence theorem, we obtain the result.

For the rest of this section we shall write

y(y, s) = 2G(y) - 2G(y(l - s)) -y[G'(y) - (1 - s)G'(y(l - s))].

So, fory G (0, I/a),

i'(y) = \ Cy(y, s)[G(y) - G(y(\ - s))Y3/2 ds.

We now proceed to find some results on the sign of I'(y).

LEMMA 3. If a > \ then

(VyG(0,l/a)) I'(y)>0.

PROOF. Firstly we have

ysy(y, s) =yey*-»[\ - (1 - s)y + «(1 - sfy2], (24)

and y( y, 0) = 0. Now, for a > \,

1 - (1 -s)y + a(l -s)2y2^0

for any values of s and y. Therefore, for a > {, y £ (0, I/a), (Vs G [0,1])
(d/ds)y(y, s) > 0, and so (Vs G (0,1 ]) y(y, s) > 0. Consequently (V^ G (0, I/a)
I'(y)>0. Q.E.D.
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We note that for a =£ \, (24) becomes

j-sy(y, s) = aye*-\y(\ - s) - ^ ( l - (1 - 4«)'/2)]

(25)

LEMMA 4. Suppose a < \ andy0 is the solution of

,61,)=l(l-(.-4anG{l
which lies in ([1 - (1 - 4a)1/2]/2a, I/a). / /

0 < 7 ^ [ l - (1 -4a)' /2]/2a or yo<y<l/a,

then

PROOF. We see from (25) that dy/ds > 0 if y < [1 - (1 - 4a)I/2]/2a and
0 < s < 1. Therefore, since y(^,0) = 0,

(V*e(0,l)) y(^»*)>0, and I'(y)>0.

It also follows from (25) that, for j> > [1 + (1 - 4a)l/2]/2«,

3y/3^>0 forO<j< 1 - [ l + (1 - 4a)1/2]/2ay

and 1 - [ l - (1 -4a)i/2]/2ay<s< 1,

3 Y / 3 ^ < 0 for 1 - [ l + (1 - 4a)1/2]/2ay < s < 1 - [ l - ( 1 - 4 a ) l / 2 ] / 2 a y .

Consequently y achieves its minimum on [0,1] at either 5 = 0 or 5 = 1 — [ 1 — ( 1
- 4 a ) ' / 2 ] / 2 o y .

Now,

= 2G(y) - 2G([l - (1 - 4a)1/2]/2«) - yG'(y)

and, since^ > [1 + (1 - 4a)1/2],

G(y)>G[[l-(l-4ay/2]/2a).
Also, differentiation of sG'(s) reveals that [1 + (1 - 4a)1/2]/2a <y0 and sG'(s)
is decreasing for^0 < s < I/a. Hence, for y > _yo>
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and y(y, 1 - [1 - (1 - 4a)l/2]/2ay) > 0. Therefore, for 0 < 5 < 1, y(y, s) > 0.
Thus, for y>y0,

I'(y)>0. Q.E.D.

LEMMA 5. Let a, = 0.224508; then, for a < a,, there exists some yx £ (0, I /a)
such that, foryx <>> < [1 + (1 - 4a)1/2]/2a,

/'O0<o.

PROOF. It follows from (25) that, for y £ ([1 - (1 - 4a)1/2]/2a, [1 + (1 -
4a)'/2]/2a),

3y/35>0 forsE (l - [ l - (1 -4a)1/2]/2aj>,l),

dy/ds<0 fors£ (0,1 - [ l - (1 - 4a)'/2]/2ay).

Also,

«, l) = 2G([l + (1 - 4a)l/2]/2«) - 2G(0)

Now, numerical calculation shows that, for a < 0.224508,

Y([l + (1 - 4 a ) 1 / 2 ] / 2 a , l ) < 0 .

Since y is continuous there is some yx such that

[l - (1 - 4a)1/2]/2a <yx <[l + (1 - 4a)1/2]/2a,

and, lory £ [ ,̂,[1 + (1 - 4a)l/2]/2«],

Using the derivative inequalities (26), we have, for ^ i ^ ^ < [ l + ( l —

4 a ) l / 2 ] / 2 a a n d 0 < 5 ^ 1,

y(y,s)<0.

Therefore,

I'(y)<0. Q.E.D.

We conclude our discussion of the properties of / ' by showing its continuity
and demonstrating its singular behaviour at the origin.

LEMMA 6. I'(y) is continuous on (0, I/a).
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PROOF. Suppose (xn) is a sequence in (0, I /a) such that xn -+ y G (0, I/a).
Then, using the Lebesgue dominated convergence theorem, we can show that
I'(xn) -> I'(y) as n -» 00. Hence / ' is continuous on (0, I/a). Q.E.D.

COROLLARY 7. Le/ a,, j>, fte as in Lemma 5, andy0 as in Lemma 4. / / a < a,
then there exist X, Ysuch that I'(X) = I'(Y) = 0 with

[l - (1 -4a)V2]/2a<X<yi and

PROOF. This follows from the continuity of / ' and Lemmas 4 and 5. Q.E.D.

LEMMA 8. For any a > 0, I\y) ~y~x/1, as y -> 0+ .

PROOF. Firstly,

y(y, s) = 2G(.y) - 2G(.y(l - *)) ~ y[G'(y) - (1 - s)G'{y(l - s))]

= [G'(yS(s))-yi(s)G"(yt(S))]ys,

where £(s) G [1 - s, 1].
Also

where f(5) e [1 - s,\].
So, from Figures 1 and 2, we see that for y near 0 (_y < I /a — 1 if a < 1, or

y e (0, I /a) if a > 1) and s E [0,1],

, s) < (?'(j>)ys fora<l ,

<[G'(0) -yG"(y)]ys fora>l ,

and

G(y)-G{y(l-s))>G'(Q)ys fora<l,

3= G'{y)ys fora ^ 1.

Therefore, for a < 1,

G'(O)3/V/2 ^
( 2 7 )
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and, for a > 1,

r{y) < G'(0)-yG"(y) n _*_ = G'(0) - yG"(y)

G'(f/2//2 J 2^ G'()3/2 y ' K 'G'(y)

Also,

y{y,s)>[G'(0)-yG"(y)]ys fora<l,

> G'(y)ys fora > 1,

and

G(y)-G(y(l-s))^G'(y)ys fora<l,

< G'(0)ys for a > 1.

Consequently,

(29)

f o r a > l .
G'(0)3/2

The result now follows from (27), (28) and (29). Q.E.D.

We can now consider the implications of these results for the bifurcation
diagram of (20), (22) (that is a graph of a "norm of the solutions" of (20), (22)
against X). We have shown that

where u0 = w(0). Now, if M, and w2 are two solutions of (20), (22) with w,(0) =
u2(0) = M0 then w, and u2 are solutions of the initial value problem

u" + X ( l - o « ) e " = 0 in (0,1),

«'(0) = 0 and w(0) = u0.

Consequently u^ = u2; so u0 — M(0) is a suitable norm for the bifurcation
diagram of (20), (22).

In Lemma 8 we showed that I'(y) ~y'x/1 as y -> 0 + , so I{y) ~ 2yl/2 as
y -> 0+ . Therefore X ~ 2«0 as u0 -» 0 + . Now, the other properties of / which we
have shown depend on the value of a. So we will consider two cases:

(i) a > \. In this case, by Lemma 3, I'(y) > 0 for any j> e (0, I /a) , and so, by
Lemma 1,

M0 -> I / a as X -» oo.

Thus the bifurcation diagram is as in Figure 3.
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uo>

FIGURE 3. Bifurcation diagram for the slab, a > \.

(ii) For a < a, = 0.224508, I'(y) is negative for some values of y. So there is a
range of «0 for which X decreases with u0. Also, I\y) > 0 for y close to I /a
(Lemma 4); thus, by Lemma 1, w0 -» I /a as A -> oo. This leads to a bifurcation
diagram similar to that of Figure 4. We cannot show at this stage that there are
only two turning points, however we believe that this is the case. This is
represented on the diagram by the dotted part of the curve.

FIGURE 4. Bifurcation diagram for the slab, a ^av

We see from these diagrams that there must be some transitional value of a, atr

say, which is the least upper bound of the values of a for which (20), (22) can
have multiple solutions for some values of X. Then, for a > atr, the bifurcation
diagram always has positive slope, but there are values of a, less than and
arbitrarily close to atr, such that the diagram has negative slope somewhere.
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Numerical calculation of / ' shows that atr s 0.242. Also, we found that, if
a > 0.242 then I'(y) > 0 for all y G (0, I/a), while if a < 0.242 then there is
some interval of y, depending on a, on which /'(y) < 0.

We now turn our attention to a somewhat more general problem, namely the
case when /i < v = oo. Here the system (20), (22) can be written in the form
(letting h = au + v)

v"-Xa(l +v)exp((h-v)/a) =0 in (0,1), (30a)

t/(0) = o(l) = 0,

h" = 0 in (0,1),
A'(0) = 0, ,,'(1)

By (30b), h is constant on [0,1], h = B say; then

v'(\) = iiB.

The first integral of (30a) gives

where u0 = v(0) is the minimum value of v on [0,1]. So, when x = 1,

(2\eB/")l/2 = ,iB/a[G(-vo/a) - G(0)]1/2. (31)

Also, the second integral of (30a) yields

•'o

= I(-vo/a). (32)

Hence, from (31),

fi/a = l(-vo/a)[G(-vo/a) - G{0)] 1/2/M. (33)

and finally, substituting back into (32),

A = {[l{-vo/a)]2^[-I{-vo/a){G{-vo/a) - G(0))1/2/,i]

= {n~vo/af, (34)

where

[ 1 / 2 ] (35)
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The properties of I(y), determined in the previous lemmas, can now be used to
easily show the following behaviour of T(y):

LEMMA 9. T(y) is a positive function defined and continuous on [0, I /a) and
differentiable on (0, I /a) . Further

r(0) = 0, lim T(y) = 0,

and T achieves its maximum value at some y* G (0, I /a).

We shall now show that we can choose a and \i to ensure that T(y) has three
turning points in (0, I /a).

LEMMA 10. Suppose a < 0.224508; then we define xt, x2, x3, xA and K(a) as
follows:

x2 = min{x e (0, I/a): /'(*) = 0},

x3 = max{x G (0, I/a): I'(x) = 0},

K(a) = -min{/'(x): x G (0, I/a)},

x, = max{x G (0, x2): I'(x) = K(a)},

x4 = min{x G (x3, I/a): I'(x) = K{a)}.

A Iso, we define

P{y) = \G'{y)[l{y)f[G{y) - G(0)]"1/2 + \l(y)l'(y)[G{y) - G(0)]]/2,

andL(a) = sup{| P(y) \ : y G (x,, x4)}.
7//t0 = L(a)/K(a) and p > JU0 then there existyt, y2, y3 G (0, I /a) such that

PROOF. By Lemmas 4, 5, 6 and Corollary 7, x2, x3, and K(a) are well-defined,
and K(a) is seen to be positive. Also, by Lemmas 1 and 8, x} and x4 are
well-defined. Now, by Lemma 6, P(y) is seen to be continuous, and hence
bounded, on [xv JC4]; thus L(a) is well-defined.

From (35),

~ P(y)Mexp{-I(y)[G(y) -
Hence, for fi > jt0,

l'{xx) - P(x,)/M > K(a) ~ L(a)/fi > 0

s o r ' ( x , ) > 0 .
Similarly r ' ( ^ 4 ) > 0 .
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Now, let x5 be a point in (x2, x3) at which I'(y) achieves its minimum; so
I'(x5) = -K(a). Then

-K(a) + L(a)/|i < 0.

Hence r ' ( x 5 ) < 0 .
From the continuity of I'(y) on (0, I/a) (Lemma 6) we deduce that T'(y) is

also continuous on (0, I /a). Thus, there exists, G (*,, x5) and j>2 G (x5, x4) such
that r't.y,) = r\y2) = 0- Since T(x4) > 0 and T(y) -» 0 as.y -» I/a", it follows
that there exists j>3 E (x4, I /a) such that T'(y3) = 0. Q.E.D.

This lemma enables us to deduce that the bifurcation diagram in this case is
similar to that in Figure 5. Here -v0 = -o(0) is a suitable norm for the diagram.
We note that we have not shown that there are only three turning points, but we
believe this to be the case. This is represented on the diagram by the dotted part
of the curve.

FIGURE 5. Bifurcation diagram for the slab, a < a,, ft >

We note here X has a maximum value X*, beyond which there are no solutions
to (27), or, equivalently, to (20), (22) with v = oo. (See Part I, Section 3.)

Now, u = (h — v)/a — (B — v)/a, so using the relationship (33) between B
and v0, we can use u0 = «(0) as a norm in the bifurcation diagram. In this case
the diagram is similar to Figure 6. Once again the dotted part of the curve
represents our speculations only.
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FIGURE 6. Bifurcation diagram for the slab, a < a,, y. > fi0.

4. Discussion

The results in Section 2 on the uniqueness of solutions to the problem (1), (2),
together with the results on the existence and continuity of solution branches in
Part I (Burnell, Lacey and Wake [3]) give a partial description of the solution set
for these steady state equations. Further, these results lead us to conjecture about
the behaviour of solutions to the time-dependent problem

V2M + A(l + v)eu = du/dt forxGfi and t > 0, (36a)

V 2 u - \ a ( l +v)e" = dv/dt forxGfi and t > 0, (36b)

with boundary conditions in (2) together with prescribed initial conditions.
When there are multiple solutions to (1), (2) then there is a possibility, as

shown for the slab, that there is a jump in the norm of the solution as A increases
through some value A,. This also suggests the possibility of critical behaviour,
with a sudden change in the behaviour of the solution to the initial value problem
(36), if there are no periodic solutions to (36) for A in some neighbourhood of A,.
In fact, if the bifurcation diagram is similar to that of Figure 6 then there appears
to be the possibility of having critical behaviour and periodic solutions.

In Section 2 we found that there exist intervals of A for which (1), (2) has a
unique solution and on which the solution branch is continuous (see Part I,
Section 4). This suggests that there is no critical behaviour displayed by the
solutions to (36), for these values of A.
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For the case of n = v = oo in the slab, we have found estimates of atr such that
for some values of a < atr there are multiple solutions, and hence critical
behaviour, while for a> alr the solution is always unique and there can be no
critical behaviour. From our computed results for this case, we conjecture that for
all a < au (1), (2) has multiple solutions, for some values of X. We also conjecture
that this situation will hold for other regions £2 and other values of jn and v, except
for n < v — oo.

For the slab when ju < v = oo, we see that, for X < X*, there are at least two
solutions to (30), and if a is sufficiently small and ju sufficiently large then there is
an interval of X in which there are at least four solutions. Taking such values of a
and ju, and taking v large but finite (so that there must be a solution to (20), (22)
for all X), and since we expect to have solutions close to those for v = oo when
X < X*, this suggests the possibility of a bifurcation diagram as in Figure 7.

(7=00

/ar (7 large (l?<00)

FIGURE 7. Speculative bifurcation diagram for small a and large /i.

Finally, we believe that there will be similar diagrams for more general regions
in R2 and R3.
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