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Let f : (R3, 0) → (R4, 0) be an analytic map germ with isolated instability. Its link is
a stable map which is obtained by taking the intersection of the image of f with a
small enough sphere S3

ε centred at the origin in R
4. If f is of fold type, we define a

tree, that we call dual tree, that contains all the topological information of the link
and we prove that in this case it is a complete topological invariant. As an
application we give a procedure to obtain normal forms for any topological class of
fold type.
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1. Introduction

The aim of this paper is to study the topological classification of real analytic map
germs f : (R3, 0) → (R4, 0) with isolated instability of fold type, that is, f is of
Thom–Boardman type Σ1,0. This is done by means of the topological type of their
associated link, a stable map from S2 to S3 obtained by intersecting the image of
f with a small enough 3-sphere S3

ε centred at the origin. We construct a complete
topological invariant of this link by defining an associated dual tree, a particular
type of graph, which contains all the topological information. We will prove that if
f and g are of fold type, they are topologically equivalent if and only if the dual
trees of their associated links are equivalent. In the last part, as an application, we
give a list of all topological classes up to dual trees with 4 vertices and an algorithm
to obtain a normal form of the topological class given by any dual tree.

The topological classification problem in the case of real analytic map germs
from R

n to R
p with n < p has been studied by several authors. In [8] Marar

and the second author give a full topological classification of map germs
f : (R2, 0) → (R3, 0) that belong to the 2-jet classes (x, y2, xy), (x, y2, 0) and
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(x, xy, 0). To do this they use the Gauss word of the associated link of these
map germs as a complete topological invariant. In [9] Martins and the second
author also work in this case, classifying all ruled surfaces. In [11, 12] Mendes
and the second author show that the knot type of the link of a real analytic
map germ with isolated singularity f : (R2, 0) → (R4, 0) is a complete invariant
for topological equivalence and show that for a generic projection from R

4 to
R

3, the projection of the knot coincides with the link of the projected singular
surface.

If we centre our attention in recent results for map germs f : (R3, 0) → (R4, 0),
Casonatto, Romero Fuster and Wik Atique have obtained in [4, 5] Vassiliev invari-
ants for stable maps of oriented 3-manifolds in R

4. In the complex case, Houston
and Kirk study in [7] the corank 1 A-classification.

Finally, let us remark that the techniques used in this paper of obtaining the
topological classification of real analytic map germs by means of its associated link
has been used by both authors and the second author with several collaborators in
other cases [1, 2, 15–17, 18].

The paper is organized as follows. In the second section we characterize the
notions of stability and finite determinacy of a map germ and define its associated
link in our particular case of study. In §3 we obtain a prenormal form for map germs
of fold type. In §4 we introduce the notion of mosaic of a 2-disc and its associated
dual tree. Section 5 is dedicated to define the notion of the dual tree of a folded
stable map from S2 to S3 and to prove that it becomes a complete topological
invariant (corollary 5.9). We finish the paper obtaining, in §6, as an application,
some normal forms (remark 6.1) and indicating how to generalize the procedure
(remark 6.2).

All map germs considered are real analytic except otherwise stated. We adopt
the notation and basic definitions that are usual in singularity theory (e.g. A-
equivalence, stability, finite determinacy, etc.), as the reader can find in Wall’s
survey paper [19] or in the book [14].

2. Stability, finite determinacy and the link of a germ

In this section we recall the basic definitions and results that we will need, includ-
ing the characterization of stable maps from R

3 to R
4, the Mather–Gaffney finite

determinacy criterion and the link of a map germ.
Two smooth (C∞) map germs f, g : (R3, 0) → (R4, 0) are A-equivalent if there

exist diffeomorphism germs φ : (R3, 0) → (R3, 0) and ψ : (R4, 0) → (R4, 0) such that
g = ψ ◦ f ◦ φ−1. If φ, ψ are homeomorphisms instead of diffeomorphisms, then we
say that f, g are topologically equivalent.

We say that f : (R3, 0) → (R4, 0) is k-determined if any map germ g with the same
k-jet is A-equivalent to f . We say that f is finitely determined if it is k-determined
for some k.

Let U ⊂ R
3 and V ⊂ R

4 be open sets. Following Mather techniques of classifica-
tion [10] we have that a proper C∞ map f : U → V is stable if and only if f presents
only the following phenomena: regular points, transverse double points, transverse
triple points, singular points of cross-cap type (f is A-equivalent to (x, y, z2, xz)),
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transverse intersection of curves of cross-cap type with 3-planes of regular points
and transverse quadruple points.

Assume now that f : (R3, 0) → (R4, 0) is finitely determined. Since f is A-
equivalent to its own k-jet, for some k, we can assume that f is a real analytic
map germ (in fact, polynomial). Moreover, by the Mather–Gaffney geometrical cri-
terion [19], there is a representative f : U → V , where U ⊂ R

3 and V ⊂ R
4 are open

neighbourhoods of the origin and such that

(1) f−1(0) = {0},
(2) f : U → V is proper,

(3) the restriction f : U\{0} → V \{0} is a stable map.

This means that f has an isolated ‘instability’ at the origin. Moreover, if f is stable
in U\{0}, the quadruple points and the transverse intersections of cross-cap curves
and 3-planes of regular points are isolated in U\{0}. By the curve selection lemma,
they are also isolated in U . Hence, by shrinking the neighbourhood U if necessary,
we can substitute condition (3) by the following stronger condition:

(3.1) f : U\{0} → V \{0} only presents regular points, transverse double points,
transverse triple points and singular points of cross-cap type.

Definition 2.1. We say that f : U → V is a good representative if it satisfies
conditions (1), (2) and (3.1) above. We say that f : (R3, 0) → (R4, 0) has isolated
instability if it admits a good representative.

We remark that any finitely determined map germ has isolated instability, but the
converse is not true. For instance, the map germ f(x, y, z) = (x, y, z2, z(x2 + y2)2)
has isolated instability but its complexification has not isolated instability, so it is
not finitely determined by the Mather–Gaffney criterion [19].

Let us define the double point space of a map germ.

Definition 2.2. Let f : (R3, 0) → (R4, 0) be a map germ. We define the set
germ D2(f) in (R3 × R

3, 0) as the points (x, y, z, x′, y′, z′) such that either
f(x, y, z) = f(x′, y′, z′) and (x, y, z) �= (x′, y′, z′) or f is not immersive at (x, y, z)
and (x′, y′, z′) = (x, y, z).

The double point space is defined as D(f) = p1(D2(f)) ⊂ (R3, 0), where p1 : R
3 ×

R
3 → R

3 is the canonical projection. In other words, D(f) is given by the points
(x, y, z) such that either f−1(f(x, y, z)) �= {(x, y, z)} or f is not immersive at
(x, y, z).

To finish this section we review the cone structure of a map germ f : (R3, 0) →
(R4, 0) with isolated instability, following the arguments of Fukuda in [6]. Let us
fix some notation:

D4
ε = {y ∈ R

4 : ‖y‖2 � ε}, S3
ε = {y ∈ R

4 : ‖y‖2 = ε}.
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Given a map germ f : (R3, 0) → (R4, 0) we take a representative f : U → V and we
also set:

D̃3
ε = f−1(D4

ε ), S̃2
ε = f−1(S3

ε ).

Theorem 2.3. Let f : U → V be a good representative of a map germ f : (R3, 0) →
(R4, 0) with isolated instability. Then there is ε0 > 0 such that for any ε with 0 <
ε � ε0 we have:

(1) S̃2
ε is diffeomorphic to S2,

(2) f |S̃2
ε
: S̃2

ε → S3
ε is stable and its A-class is independent of ε.

(3) f |D̃3
ε
: D̃3

ε → D4
ε is topologically equivalent to the cone on f |S̃2

ε
.

Definition 2.4. Let f : U → V be a good representative of a map germ
f : (R3, 0) → (R4, 0) with isolated instability. We call the stable map f |S̃2

ε
: S̃2

ε → S3
ε

the link of f .

It follows from theorem 2.3 that the link is a stable map γ : S2 → S3, that is,
it only presents regular points, transverse double point curves, singular points of
cross-cap type and transverse triple points. Moreover, the link is well defined up to
A-equivalence and that the map germ f is topologically equivalent to the cone on
its link. In particular, we have the following immediate consequence, which implies
that the topological classification of map germs from (R3, 0) to (R4, 0) with isolated
instability can be reduced to the topological classification of their associated links.

Corollary 2.5. Let f, g : (R3, 0) → (R4, 0) be two map germs with isolated insta-
bility whose associated links are topologically equivalent. Then f and g are
topologically equivalent.

We will see that the converse of this corollary is also true at the end of §4, if we
assume that f and g are of fold type.

3. Map germs of fold type

The aim of this section is to obtain a prenormal form for map germs f : (R3, 0) →
(R4, 0) that are of fold type, that is, they belong to the Thom–Boardman class Σ1,0.
To do this, we follow Mond’s arguments in [13] for map germs (R2, 0) → (R3, 0).
The first step is to calculate the different A2-classes that we have inside the set of
germs of corank 1.

Lemma 3.1. Let f : (R3, 0) → (R4, 0) be a corank 1 map germ. Then, its 2-jet
j2f(0) is A-equivalent to either (x, y, z2, xz), (x, y, xz, yz), (x, y, z2, 0), (x, y, xz, 0)
or (x, y, 0, 0).
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Proof. Since by hypothesis we are working in corank 1, by coordinate changes in
the source and target, we can assume that

j2f(0) = (x, y, p(x, y, z), q(x, y, z)),

for some homogeneous polynomials p(x, y, z), q(x, y, z) of degree 2. By using another
coordinate change in the target we can remove in j2f(0) all the terms that only
depend on the variables x, y and thus we obtain that j2f(0) is equivalent to

(x, y, a1z
2 + a2xz + a3yz, b1z

2 + b2xz + b3yz).

Let α =
(a1 a2 a3

b1 b2 b3

)
and we suppose that rank(α) = 2.

We consider different cases.

• If (a1, b1) �= (0, 0), without loss of generality we can suppose that a1 �= 0.
First of all, we make the coordinate changes in the target⎧⎪⎪⎪⎨⎪⎪⎪⎩

X = X

Y = Y

Z = Z

T = T − b1
a1
Z

and we get that j2f(0) ∼ (x, y, a1z
2 + a2xz + a3yz, b2xz + b3yz).

With a change in the source⎧⎪⎨⎪⎩
x = x

y = y

z = z − a2
2a1

x− a3
2a1

y

we get that j2f(0) ∼ (x, y, z2, b2xz + b3yz).
Since rank(α) = 2, we can suppose that b2 �= 0 and making in first place a

change in the source ⎧⎪⎨⎪⎩
x = x− b3

b2
y

y = y

z = z

and after that a change in the target⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X = X + b3

b2
Y

Y = Y

Z = Z

T = T

we get that j2f(0) ∼ (x, y, z2, xz).

• If (a1, b1) = (0, 0) using the fact that rank(α) = 2 and applying suitable change
of coordinates we get that j2f(0) ∼ (x, y, xz, yz).
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If rank(α) = 1 we have that j2f(0) ∼ (x, y, a1z
2 + a2xz + a3yz, 0), obtaining, fol-

lowing an analogous procedure to the previous case the A2-orbits (x, y, z2, 0) and
(x, y, xz, 0).

Finally, if rank(α) = 0 we get that j2f(0) ∼ (x, y, 0, 0). �

The following result gives us the A2-classes of type Σ1,0. We denote by E3 the
local ring of smooth function germs (R3, 0) → R, with maximal ideal m3.

Lemma 3.2. The A2-classes (x, y, z2, 0) and (x, y, z2, xz) are Thom–Boardman type
Σ1,0. The rest A2-classes in lemma 3.1 are not.

Proof. Since we are considering the corank 1 case, all A2-classes are of
Thom–Boardman type Σ1. If we compute the Jacobian matrix of each class, in the
case of (x, y, z2, xz), (x, y, z2, 0) they have the 3 × 3 minor z, that is, if we denote
by I the ideal in E3 generated by the components of j2f(0) and the minors of the
Jacobian matrix, we have in this case that I = 〈x, y, z〉. Therefore, dimR I/m3I = 3
and, as a consequence, all of them are of Thom–Boardman type Σ1,0.

Otherwise, if we consider the rest of the classes, I has terms in z of multi-
plicity greater or equal than two. Thus, dimR I/m3I = 2 and they belong to the
Thom–Boardman class Σ1,1. �

Combining lemmas 3.1 and 3.2 we can state the main result of this section.

Lemma 3.3. Let f : (R3, 0) → (R4, 0) be a map germ with Thom–Boardman type
Σ1,0. Then, f is A-equivalent to a map germ of the form

(x, y, z2, zp(x, y, z2)),

where p ∈ m3.

Proof. Since f has Thom–Boardman type Σ1,0, by lemma 3.2 its 2-jet is A-
equivalent to (x, y, z2, xz) or (x, y, z2, 0). Therefore,

f(x, y, z) = (x, y, z2 + P1(x, y, z), P2(x, y, z))

with P1 ∈ m3
3, P2 ∈ m2

3.
Since (x, y, z2) is 2-determined, f is A-equivalent to (x, y, z2, A(x, y, z)), for some

A ∈ m2
3. Applying the Malgrange Preparation theorem [14], we can write

A(x, y, z) = B(x, y, z2) + zC(x, y, z2),

for some B,C ∈ E3. Taking the coordinate change in the target⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = X

Y = Y

Z = Z

T = T −B(X,Y,Z)

we get the requested result. �
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Remark 3.4. Let f : (R3, 0) → (R4, 0) be a map germ of fold type. By lemma 3.3,
after applying a suitable change of coordinates, f(x, y, z) = (x, y, z2, zp(x, y, z2).
This implies that:

(1) f has no triple points,

(2) the double point space D(f) is given by the equation p(x, y, z2) = 0, so is
symmetric with respect to the plane z = 0,

(3) the image of f is contained in the half-space Z � 0 and is symmetric with
respect to the hyperplane T = 0,

(4) the image of f intersects the hyperplane T = 0 only at the double points.

4. Mosaics and dual graphs

In this section we introduce the concept of a mosaic in the 2-disc D2 and we
associate it with a graph Γ that codifies all its topological information. First of all,
we define what a mosaic is.

Definition 4.1. We call a mosaic inD2 to a pair (D2,K) whereK ⊂ D2 is a closed
1-dimensional submanifold with boundary such that ∂K = K ∩ ∂D2. We will say
that two mosaics (D2,K) and (D2,K ′) are equivalent if there is a homeomorphism
φ : D2 → D2 such that φ(K) = K ′.

For a mosaic (D2,K), descompose K = C1 ∪ · · · ∪ Cs ∪D1 ∪ · · · ∪Dt into con-
nected components, where Ci are simple arcs whose ends are the only boundary
points of D2 and Dj are simple closed curves in the interior of D2. In figure 1 we
have an example of a mosaic.

Definition 4.2. Let (D2,K) be a mosaic. We can associate a graph Γ = (V,E)
such that each vertex vi ∈ V corresponds to a connected component of D2\K and
vivj ∈ E if and only if the respective connected components are separated from
each other by a connected component of K. We use ∗ to denote the vertices that
correspond to a connected component with boundary points in its closure and • to
the others. We call Γ the dual graph of the mosaic (D2,K).

Example 4.3. We give some examples of dual graphs of mosaics:

Figure 1. Example of a mosaic.
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Figure 2. Dual graph of the empty mosaic.

Figure 3. Dual graph of a mosaic with a simple arc.

Figure 4. Dual graph of a mosaic with a simple closed curve.

(1) Let (D2,K) be a mosaic such that K = ∅. Therefore, its dual graph has only
one vertex of type ∗ (figure 2)

(2) Let (D2,K) be a mosaic such that K = C a simple arc. Therefore, its dual
graph has two vertices of type ∗ (figure 3)

(3) Let (D2,K) be a mosaic such that K = D a simple closed curve. Therefore,
its dual graph has two vertices, one of type ∗ and one of type • (figure 4)

(4) Let (D2,K) be the mosaic of figure 1. Therefore, its dual graph has ten
vertices, six of type ∗ and four of type •, whose configuration is the following
(figure 5):
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966 J.A. Moya-Pérez and J.J. Nuño-Ballesteros

Figure 5. Dual graph of the mosaic of Figure 1.

Lemma 4.4. The dual graph Γ of a mosaic (D2,K) has a final vertex, that is, a
vertex of degree one. Moreover, if Γ has vertices of type •, at least one of them must
be final.

Proof. Let Γ be the dual graph of a mosaic (D2,K). Let us see first that Γ always
have a final vertex. Since any vertex of Γ corresponds to a connected component
of D2\K, this is equivalent to see that we can find a connected component that
does not contain other connected component. But this is easy to prove applying
Jordan’s Curve Theorem. If we start drawing any of the connected components
of K, it divides D2 in 2 parts. If we choose one of them (the interior one in the case
of having a closed curve), we again have a disc and we can repeat the procedure,
that will finish after a finite number of steps, by the finiteness of the number of
connected components of K, obtaining a final vertex.

If Γ has at least a vertex of type •, then K has at least a connected component
which is a closed curve. We take the interior of such a closed curve in D2 and the
same argument as above implies that we have at least a final vertex of type •. �

The following result gives us the answer of when a graph Γ will be the dual graph
of a mosaic (D2,K).

Theorem 4.5. Let Γ = (V,E) be a graph with vertices of type ∗ and •. Then Γ is
the dual graph of a mosaic (D2,K) if and only if:

(1) Γ is a tree,

(2) Γ has at least a vertex of type ∗ and if it contains two or more, they are
connected by a path that does not contain vertices of type •.

Proof. Let us suppose that Γ is the dual graph of a mosaic (D2,K). To prove (1)
we use the fact that a connected graph Γ is a tree if and only if its Euler character-
istic is χ(Γ) = 1. We prove it by induction on the number of vertices of Γ. For dual
graphs with 1 and 2 vertices it is clear from example 4.3. Let us suppose this is true
for a dual graph with v − 1 vertices (and v − 2 edges by the fact of having Euler
characteristic equal to 1). Assume Γ has v vertices. By lemma 4.4, Γ has a final
vertex vi connected to another vertex vj . We can eliminate the vertex vi, obtain-
ing a graph Γ′ with v − 1 vertices. Moreover, Γ′ is the dual graph of the mosaic
(D2,K ′), where K ′ is obtained from K by elimination of the connected component
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corresponding to the edge vivj . By induction, χ(Γ′) = 1 and hence χ(Γ) =
(v − 1) + 1 − ((v − 2) + 1) = 1, since we are adding a final vertex.

We use again induction on the number of vertices to prove (2). For dual graphs
with 1 and 2 vertices it is clear from example 4.3. Let us suppose this is true for
a dual graph with v − 1 vertices. If we consider a graph with v vertice and with
a vertice of type • in the path that connects two vertices of type ∗ (and as a
consequence not final), if we eliminate a final vertex of type • we have the same
situation but in a graph with v − 1 vertices, arriving to a contradiction.

To see the converse we prove that given a graph Γ that verifies (1) and (2) we
can build a mosaic (D2,K) whose dual graph is Γ. Again we do it by induction
on the number of vertices of Γ. Let us suppose first that Γ only has vertices of
type ∗. For 1, 2 and 3 vertices this is true from example 4.3. If we suppose it is
true for v − 1 vertices and we consider a graph Γ with v vertices, by the fact of
having a tree [condition (1)] we know that Γ has a final vertex vi connected to
another vertex vj . We eliminate vi and obtain a graph Γ′ with v − 1 vertices that
also satisfies conditions (1) and (2). By induction hypothesis, Γ′ is the dual graph
of a mosaic (D2,K). We can get the mosaic whose associated dual graph is Γ just
by adding a new arc Ci to K in the connected component corresponding to vj .

We consider now the general case where we may have also vertices of type •. We
use induction on the number of vertices of type •. For 0 vertices it is true by the
previous case. Assume it is true for v − 1 vertices and suppose Γ has v vertices.
By condition (2), Γ has at least a final vertex vi of type • connected to another
vertex vj . We can eliminate vi and repeat the same procedure used in the previous
case. We obtain that Γ is the dual graph of a mosaic (D2,K). �

Remark 4.6. Since the dual graph Γ of a mosaic (D2,K) is a tree, we call it the
dual tree of (D2,K). By conditions (1) and (2) of theorem 4.5 we have that the
subgraph of Γ given by all the vertices of type ∗ is also a tree, which can be seen
as the ‘trunk’ of Γ. Each connected component of the subgraph of Γ given by all
the vertices of type • is also a tree and is connected at most to one vertex of
type ∗. These connected components can be seen as the ‘branches’ of Γ.

It is natural to introduce the following notion of equivalence of dual trees of
mosaics.

Definition 4.7. We say that two dual trees Γ = (V,E) and Γ′ = (V ′, E′) are equiv-
alent if they are isomorphic and, moreover, the bijection α : V → V ′ sends vertices
of type ∗ (resp. •) to vertices of type ∗ (resp. •).

Now, we can state and prove the final result of this section.

Theorem 4.8. Two mosaics (D2,K) and (D2,K ′) are equivalent if and only if
their associated dual trees Γ = (V,E) and Γ′ = (V ′, E′) are equivalent.

Proof. If (D2,K) and (D2,K ′) are equivalent, there is a homeomorphism φ : D2 →
D2 such that φ(K) = K ′ and the relative position of their connected components is
the same. This induces a bijection α : V → V ′ that sends vertices of type ∗ (resp. •)
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to vertices of type ∗ (resp. •) and vivj ∈ E if and only if α(vi)α(vj) ∈ E′. Therefore
Γ and Γ′ are equivalent.

We prove the converse by induction on the number of vertices of Γ. For 1 vertex,
K = K ′ = ∅ and both mosaics (D2,K) and (D2,K ′) are equal. If the result is true
for dual trees with v − 1 vertices, we consider two dual trees with v vertices Γ and
Γ′ that are equivalent. We eliminate a final vertex vi of Γ and its corresponding in
Γ′, v′i, obtaining two new graphs Γ1 and Γ′

1 of v − 1 vertices that are equivalent.
By induction hypothesis, their corresponding mosaics, (D2,K1) and (D2,K ′

1) are
equivalent. If we add to K1 and K ′

1 the connected component that we have elim-
inated associated to the vertices vi and v′i respectively, we obtain two equivalent
mosaics, which are also equivalent to (D2,K) and (D2,K ′). �

5. The dual tree of a stable map

In this section we construct a complete topological invariant for map germs
f : (R3, 0) → (R4, 0) of fold type. We first introduce the notion of folded stable
map, which is motivated by remark 3.4.

Let us consider the 2-sphere

S2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1},

and the 3-sphere

S3 = {(X,Y,Z, T ) ∈ R
4 : X2 + Y 2 + Z2 + T 2 = 1}.

Definition 5.1. Let γ : S2 → S3 be a stable map. We say that γ is folded if it
satisfies the three following conditions:

• γ has no triple points,

• D(γ) is symmetric with respect to the plane z = 0,

• γ(S2) is contained in the hemisphere Z � 0 and is symmetric with respect to
the meridian T = 0,

• γ(S2) intersects T = 0 only at the double points.

This implies that γ(D(γ)) ⊂ {T = 0, Z � 0} ∩ S3 = S2
+, which is diffeomorphic

to D2.

Definition 5.2. Let γ : S2 → S3 be a folded stable map. Therefore, γ(D(γ)) ⊂ S2
+

and it is a disjoint union of simple arcs C1 � C2 � · · · � Ck �D1 � · · · �Dj , where
Ci is a simple curve that starts and ends in the border of S2

+ and Di is a simple
closed curve. This implies that (S2

+, γ(D(γ))) is a mosaic.
We call the dual tree of γ to the dual tree of the mosaic (S2

+, γ(D(γ))).

Remark 5.3. If f : (R3, 0) → (R4, 0) is a map germ of fold type, then its associated
link f |S̃2

ε
: S̃2

ε → S3
ε is folded.
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Figure 6. Dual tree of the link of the regular map.

We can assume that f(x, y, z) = (x, y, z2, zp(x, y, z2)), so it satisfies conditions
(1), (2), (3) and (4) of remark 3.4. Moreover, we have a commutative diagramwhere
ψ(P ) = P/

√
ε and φ is some diffeomorphism. Since

S̃2
ε = {(x, y, z) ∈ R

3 : x2 + y2 + z2 + z2p(x, y, z2)2 = ε}.
we can choose φ in such a way that it preserves the symmetry with respect to the
plane z = 0. This implies that γ is folded.

Example 5.4. Let us examine some examples of links of map germs f : (R3, 0) →
(R4, 0) of fold type.

(1) Let γ : S2 → S3 be the link of the immersion f(x, y, z) = (x, y, z, 0). Then
D(γ) = ∅, so the dual tree has just one vertex (figure 6).

(2) Let γ : S2 → S3 be the link of the cross cap f(x, y, z) = (x, y, z2, xz). Then
γ(D(γ)) has one connected component (a segment) and as consequence
S2

+\γ(D(γ)) has two connected components in the border. Therefore the dual
tree of γ has two vertices, both of type ∗ (figure 7).

(3) Let γ : S2 → S3 be the link of the map germ f(x, y, z) = (x, y, z2, z(x2 +
y2 − z2)). Then γ(D(γ)) has one connected component (a closed curve) and
as consequence S2

+\γ(D(γ)) has two connected components, one in the bor-
der. Therefore the dual tree of γ has two vertices, one of type ∗ and one of
type • (figure 8).

(4) Let γ : S2 → S3 be the link of the map germ f(x, y, z) = (x, y, z2, z(x2 −
y2 + z2)). Then γ(D(γ)) has two connected components (both a segment)
and as consequence S2

+\γ(D(γ)) has three connected components, all in the
border. Therefore the dual tree of γ has three vertices, all of them of type ∗
(figure 9).

In order to simplify the notation, given a folded stable map γ : S2 → S3, we
denote by t(γ) the associated dual tree and by � the equivalence relation between
dual trees.

Before proving the main result of this section, we need to verify that for any
mosaic (D2,K) we can find a folded stable map γ such that (S2

+, γ(D(γ))) is equiv-
alent to (D2,K). To do this, we define two operations in γ, associated to the
elimination or addition of a final vertex in its dual tree.

https://doi.org/10.1017/prm.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.27
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Figure 7. Dual tree of the link of the cross cap.

Figure 8. Dual tree of the link of the map germ (x, y, z2, z(x2 + y2 − z2)).

Figure 9. Dual tree of the link of the map germ (x, y, z2, z(x2 − y2 + z2)).

Let γ : S2 → S3 be a folded stable map. Let vi be a final vertex in its dual tree
t(γ). We construct a new folded stable map γ′ such that t(γ′) is obtained from t(γ)
after eliminating the vertex vi. We have two cases:

vi is of type •
We construct γ′ with the aid of the symmetric version of the miniversal unfolding
of the bigerm of Ae-codimension 1 given by two regular branches having a contact
of type x2 + y2. More explicitly, we consider the family ft : R

2 � R
2 → R

3, with
t ∈ R, given by{

(x, y) �→ (x, y, x2 + y2 − t), on the fist copy of R
2,

(x′, y′) �→ (x′, y′,−x′2 − y′2 + t), on the second copy of R
2.
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Figure 10. Image of ft.

We now consider the restriction ft : f−1
t (D3) → D3, where D3 is the unit closed

disc centred at the origin in R
3. The image of this map can be seen in figure 10 for

t > 0 (left), t = 0 (centre) and t < 0 (right).
The final vertex vi corresponds to a connected component of S2

+\γ(D(γ)) whose
boundary is a simple closed curve D in the interior of S2

+. We can choose a closed
3-ball B in S3 which contains D in its interior, is symmetric with respect to T =
0 and such that the restriction γ : γ−1(B) → B is A-equivalent to the mapping
ft : f−1

t (D3) → D3, with t > 0. We define γ′ : S2 → S3 as the folded stable map
that coincides with γ in an open neighbourhood of B and γ′ : γ′−1(B) → B is A-
equivalent to the mapping ft : f−1

t (D3) → D3, with t < 0. Certainly we can do this
in a smooth way.

We can also perform the inverse operation. Given any folded stable map γ′ : S2 →
S3 and given any vertex vj in t(γ′), we can construct a new folded stable map
γ : S2 → S3 such that t(γ) is obtained after connecting a new final vertex of type
• to the vertex vj . In this case, we take a closed 3-ball B in S3 symmetric with
respect to T = 0 and such that the restriction γ′ : γ′−1(B) → B is A-equivalent to
the mapping ft : f−1

t (D3) → D3, with t < 0. As before, we define γ : S2 → S3 as
the folded stable map that coincides with γ′ in an open neighbourhood of B and
γ : γ−1(B) → B is A-equivalent to the mapping ft : f−1

t (D3) → D3, with t > 0.
We observe that the two operations are uniquely defined and are inverse up to

A-equivalence. That is, if we eliminate in γ a final vertex of type • connected to
some other vertex vj and we add a new final vertex of type • connected to vj , then
the resulting map is A-equivalent to γ. Analogously, the same happens if we first
add a new final vertex of type • and then we eliminate that vertex.

vi is of type ∗
In this case we use the miniversal unfolding of the monogerm of Ae-codimension
1 of type S+

1 in Mond’s classification [13]. The usual normal form of this class is
already symmetric and is the family ft : R

2 → R
3, with t ∈ R, given by

(x, y) �→ (x, y2, y(x2 + y2 − t)).

As before, we take the restriction ft : f−1
t (D3) → D3. We see the image of ft in

figure 11 for t > 0 (left), t = 0 (centre) and t < 0 (right).
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Figure 11. Image of ft.

The final vertex vi corresponds now to a connected component of S2
+\γ(D(γ))

bounded by a simple arc C with ends in the boundary of S2
+. We proceed as in the

previous case. We take a closed 3-ball B in S3 which contains C in its interior, is
symmetric with respect to T = 0 and such that the restriction γ : γ−1(B) → B is
A-equivalent to the mapping ft : f−1

t (D3) → D3, with t > 0. We define γ′ : S2 → S3

as the folded stable map that coincides with γ in an open neighbourhood of B and
γ′ : γ′−1(B) → B is A-equivalent to the mapping ft : f−1

t (D3) → D3, with t < 0.
The inverse operation is defined in an analogous way. Given γ′ and a vertex

vj ∈ t(γ′) of type ∗, we construct γ such that t(γ) is obtained after adding a new
vertex of type ∗ connected to vj . As before, the two operations are uniquely defined
and are inverse up to A-equivalence.

Lemma 5.5. Let (D2,K) be a mosaic of a 2-disc D2. Then, there exists a folded
stable map γ : S2 → S3 such that (S2

+, γ(D(γ)) is equivalent to (D2,K).

Proof. We prove it by induction on the number of vertices of the associated dual
tree of (D2,K). For mosaics with dual trees of 1 and 2 vertices this is proved by
example 5.4. Let us suppose the result is true for mosaics with dual trees of v
vertices. If the dual tree Γ of (D2,K) has v + 1 vertices we can eliminate a final
vertex of Γ, obtaining the dual tree Γ′ of a mosaic (D2,K ′), where Γ′ has v vertices.
By induction hypothesis there exists a stable map γ′ : S2 → S3 that is folded, such
that (S2

+, γ
′(D(γ′)) is equivalent to (D2,K ′). Applying to γ′ an operation of type

1 or 2, depending if the eliminated final vertex was of type • or ∗ respectively, we
get a folded stable map γ and (S2

+, γ(D(γ)) is equivalent to (D2,K). �

Now, we are in conditions of stating and proving the main result of this section

Theorem 5.6. Let γ, δ : S2 → S3 be two folded stable maps. Then γ and δ are
topologically equivalent if and only if their respective dual trees are equivalent.

Proof. Let γ, δ : S2 → S3 be two folded stable maps that are C0-A-equivalent. There
exist homeomorphisms α : S2 → S2 and β : S3 → S3 such that δ = β ◦ γ ◦ α−1. We
start with γ and we assign a vertex vi to each connected component of S2

+\γ(D(γ)).
Since β sends connected components of S2

+\γ(D(γ)) to connected components of
S2

+\δ(D(δ)), we can choose for each connected component of S2
+\δ(D(δ)) the same

vertex. With these choices we have that vivj is an edge of t(γ) if and only if it is
an edge of t(δ) and, as a consequence, both dual trees are equal.

We prove the converse by induction on the number of vertices of t(γ). If t(γ) has
only one vertex, it must be of type ∗. This implies, by hypothesis, that γ(D(γ)) =
δ(D(δ)) = ∅. Therefore, γ and δ are embeddings. Then, by the generalized Schönflies
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theorem [3], γ(S2) and δ(S2) are unknotted in S3, and, as a consequence, γ and δ
are topologically equivalent.

Let us suppose the result is true for v vertices. If t(γ) has v + 1 vertices, we elim-
inate a final vertex. The new graph has v vertices and is the dual tree of a stable
map γ′ : S2 → S3 obtained from γ by applying an operation of type 1 or 2, depend-
ing if the eliminated final vertex was of type • or ∗ respectively. If we eliminate the
corresponding final vertex in t(δ) we obtain a new graph with v vertices, that is
the dual tree of a stable map δ′ obtained by applying the correspondent operation
to δ. By induction hypothesis, γ′ and δ′ are topologically equivalent. We apply the
same movement to both stable maps to undo the last operation, obtaining that γ
and δ are topologically equivalent. �

Remark 5.7. Let f : (R3, 0) → (R4, 0) be an analytic map germ with isolated insta-
bility of fold type, that is, f can be written in the form (x, y, z2, zp(x, y, z2)). We can
choose a good representative f : U → V such that U and V are homeomorphic to
the closed 3-ball and 4-ball, respectively, D(f) ⊂ U , f(D(f)) ⊂ V ∩ {T = 0} ⊂ R

3

are simply connected and f(D(f)) = CC1 � · · · � CCk � CD1 � · · · � CDj , where
CCi is the cone of a segment that starts and ends at Z = 0 and CDi is the cone of
a simple closed curve Di. We define a graph Γ = (V,E) where vi ∈ V is associated
to each one of the connected components of V ∩ {T = 0}\f(D(f)) and vivj is an
edge of Γ if and only if the respective connected components are separated from
each other by a connected component of f(D(f)). We have that Γ is a tree that
coincides with the tree of the associated link of f , t(f |S2

ε
).

Applying last results we have the converse of corollary 2.5 for map germs of fold
type.

Theorem 5.8. Let f, g : (R3, 0) → (R4, 0) be analytic map germs with isolated
instability of fold type. Then, if f and g are topologically equivalent, their associated
links are topologically equivalent.

Proof. We choose a good representative of f in the sense of remark 5.7. Since f
and g are topologically equivalent, we get a representative of g, g : U ′ → V ′ such
that U ′ and V ′ are homeomorphic to the closed 3-ball and 4-ball, respectively and
D(g) ⊂ U ′, g(D(g)) ⊂ V ′ ∩ {T = 0} ⊂ R

3 are simply connected. We define its cor-
responding associated graph Γ′, a tree that coincides with the tree of the associated
link of g. Using again the topological equivalence of f and g we get that the dual
trees of their associated links, t(f |S̃2

ε
) and t(g|S̃2

ε
) are equal. Applying theorem 5.6,

this directly implies that both links are topologically equivalent. �

Putting together theorems 5.6 and 5.8, and corollary 2.5, we have the following
result.

Corollary 5.9. Let f, g : (R3, 0) → (R4, 0) be analytic map germs with isolated
instability of fold type. Then, f and g are topologically equivalent if and only if the
dual trees of their associated links are equivalent.
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Table 1. Topological classes up to 4 vertices.

p(x, y, z2) Dual tree

x

x2 + y2 − z4

(x2 + z2 − y)(x2 + z2 + y)

(x2 + y2 − z4)(2x2 + 2y2 − z4)

(x2 + z2 − y)(x2 + y2 + z4 + 2xz2 + 2yz2)

6. Topological classification of map germs of fold type

Given an analytic map germ with isolated instability f : (R3, 0) → (R4, 0) of fold
type, we want to study its topological type by means of the dual tree of its link. We
are going to give a complete list of topological classes for fold maps with associated
dual trees up to 4 vertices and to indicate how to obtain the normal form associated
to any dual tree of a folded stable map γ : S2 → S3

Remark 6.1. Let f : (R3, 0) → (R4, 0) be an analytic map germ with isolated insta-
bility of fold type f(x, y, z) = (x, y, z2, zp(x, y, z2)) such that the associated dual
tree of its link has at most 4 vertices. Then, f is topologically equivalent to one of
the germs of tables I and II. They are computed by software Mathematica.

Remark 6.2. Let f : (R3, 0) → (R4, 0) be an analytic map germ with isolated insta-
bility of fold type f(x, y, z) = (x, y, z2, zp(x, y, z2)) such that f(D(f)) has k + j
connected components, k contained in {Z > 0} and j intersecting {Z = 0}. Then,
we can find suitable coefficients Ai, Bi, Ci,Di, Ei, 1 � i � k + j such that f is topo-
logically equivalent to a germ whose double point spaceD(f) is given by an equation
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Table 2. Topological classes up to 4 vertices.

p(x, y, z2) Dual tree

(x2 + y2 + z4 + 2xz2 + 2yz2)(x2 + y2 + z4 − 2xz2 − 2yz2)

y(x2 + z2 − y)(x2 + z2 + y)

(10x2 + 10z2 − y)(10x2 + 10z2 + y)(10y2 + 10z2 − x)

(4yz2 + 3z4 + x2 + y2)(x2 + z2 − y)(2x2 + 2z2 − y)

(10x2 + 10y2 − z4)(10x2 + 10z2 − y)(10x2 + 10z2 + y)

(x2 + y2 + z4 + 2xz2 + 2yz2)(x2 + y2 + z2 − 2xz2 −
2yz2)(16x2 + 16z2 − y)

(64yz2 + 63z4 + 16x2 + 16y2)(4yz2 + 3z4 + x2 + y2)
(x2 + z2 − y)

of the form F1 · · ·Fk+j , where

Fi =

{
Aix

2 +Biy
2 + Ciz

4 +Dixz
2 + Eiyz

2, if 0 � i � k

Aix
2 +Biy

2 + Ciz
2 +Dix+ Eiy, if k + 1 � i � k + j

Proof. First of all, we see that we can find ε0 > 0 small enough such that if i �=
r, Fi ∩ Fr ∩ S2

ε = ∅, for any 0 < ε � ε0. Otherwise, we would have closed curves
contained in Fi ∩ Fr as near as we want to the origin and as a consequence, applying
the Curve Selection Lemma, we would have a surface contained in Fi ∩ Fr, which
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Table 2. Continued.

(x2 + y2 + z4 + 2xz2 + 2yz2)(x2 + y2 + z4 − 2xz2 −
2yz2)(x + y)

(x2 + y2 + z4 + 2xz2 + 2yz2)(x2 + y2 + z4 − 2xz2 −
2yz2)(x2 + y2 + 16z4 + 8yz2 − 8xz2)

(64yz2 + 63z4 + 16x2 + 16y2)(4yz2 + 3z4 + x2 +
y2)(−4yz2 + 3z4 + x2 + y2)

(x2 + y2 − z4)(2x2 + 2y2 − z4)(4x2 + 4y2 − z4)

(
1
4x2 + 1

4y2 − z2
)

(2yz2 + 2xz2 + z4 + x2 + y2)(−2yz2 −
2xz2 + z4 + x2 + y2)

is a contradiction with the fact that for any δ > 0 we always can choose generic
coefficients Ai, Bi, Ci,Di, Ei, Ar, Br, Cr,Dr, Er such that Fi ∩ Fr ∩ S2

δ = ∅.
Now, we proof the result by induction. Applying last remark we know that the

result is true for k + j � 3. If we suppose that the result is true for a map germ
f such that f(D(f)) has k + j connected components, we can get a normal form
for a map germ f ′ such that f ′(D(f ′)) = f(D(f)) � F where F is a connected
component of f ′(D(f ′)) just by adding to the equation of D(f) a factor of the form
(Ax2 +By2 + Cz4 +Dxz2 + Eyz2) if F is contained in {Z > 0} or of the form
(A2

x +By2 + Cz2 +Dx+ Ey) if F intersects {Z = 0}, with A,B,C,D,E chosen
in a convenient way. �
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